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Abstract

Thispaper exploits a basic connection between sequential quadratic programming and
Riemannian gradient optimization to address the general question of selecting a metric
in Riemannian optimization, in particular when the Riemannian structure is sought on a
quotient manifold. The proposed method is shown to be particularly insightful and effi-
cient in quadratic optimization with orthogonality and/or rank constraints, which covers
most current applications of Riemannian optimization in matrix manifolds.

1 Introduction

Gradient algorithms are a method of choice for large-scale optimization, but their convergence
properties critically depend on the choice of a suitable metric. Good metrics can lead to su-
perlinear convergence whereas bad metrics can lead to very slow convergence. Goodness of
the metric depends on its ability to encode second-order information about the optimization
problem. For general optimization problems with equality constraints, sequential quadratic
programming (SQP) methods provide an efficient selection procedure based on (approximat-
ing) the Hessian of a local quadratic approximation of the problem [32, Chapter 18]. This
approach is Lagrangian; that is, it lifts the constraint into the cost function. An alternative
is to embed the constraint into the search space, leading to unconstrained optimization on a
nonlinear search space. Selecting the metric then amounts to equipping the search space with
a Riemannian structure [4, 13, 35]. Riemannian optimization has gained popularity in the
recent years because of the particular nature of the constraints that show up in many matrix
or tensor applications, in particular orthogonality and rank constraints. Such constraints
are nonlinear and nonconvex, but nevertheless very special [13, 29]. In particular, they are
efficiently encoded through matrix factorizations and their underlying geometry makes the
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search space sufficiently structured to make the machinery of Riemannian optimization com-
petitive with alternative approaches, including convex relaxations. A current limitation of
Riemannian optimization is, however, in the choice of the metric. Previous work has mostly
focused on the search space, exploiting the differential geometry of the constraint, but dis-
regarding the role of the cost function. This limitation was pointed out early [22] and has
been addressed in a number of recent contributions that emphasized the importance of pre-
conditioning [25, 26, 28, 31, 38], but with no general procedure. The simple observation, and
the main contribution, of the present paper is that SQP provides a systematic framework for
choosing a metric in Riemannian optimization in a way that takes into consideration both the
cost function and the constrained search space. This connection seems novel and insightful,
especially in the situation where the unconstrained optimization problem is formulated on a
quotient manifold, leading to a situation where the Hessian of the Lagrangian is singular in
the total space. Most notably, this situation covers optimization problems on the Grassmann
manifold and on the manifold of matrices of fixed rank.

This paper advocates that the use of SQP to select a metric in Riemannian optimization
is general and connects two rather independent areas of constrained optimization. We focus
in particular on the special case of quadratic cost functions with orthogonality and/or rank
constraints. This particular situation encompasses a great deal of current successful appli-
cations of Riemannian optimization, including the popular generalized eigenvalue problem
[2, 13] and linear matrix equation problems [8, 38]. Even in these highly researched prob-
lems, we show that SQP methods unify a number of recent disparate results and provide
novel metrics. In the eigenvalue problem, where both the cost and constraints are quadratic,
the SQP method suggests a parameterized family of Riemannian metrics that provides novel
insight on the role of shifts in the power, inverse, and Rayleigh quotient iteration methods.
In the problem of solving linear matrix equations, low-rank matrix factorizations make the
cost function quadratic in each of the factors, leading to Riemannian metrics rooted in block-
diagonal approximations of the Hessian. In all of the mentioned applications, we stress the
complementary, but not equivalent, role of SQP and Riemannian optimization: the SQP
method provides a framework for selecting the metric from the (degenerate) Lagrangian in
the total space while the Riemannian framework provides the necessary generalization of un-
constrained optimization to quotient manifolds, allowing for rigorous design and convergence
analysis of a broad class of quasi-Newton algorithms in optimization problems over classes of
equivalences of matrices.

We view this approach of selecting a metric from the Lagrangian as a form of Rieman-
nian preconditioning. Similar to the notion of preconditioning in the unconstrained case [32,
Chapter 5], the chosen Riemannian metrics have a preconditioning effect on optimization
algorithms.

This paper does not aim at a comprehensive treatment of the topic, but rather focuses
on connections between several classical branches of matrix calculus: matrix factorizations
and shifts in numerical linear algebra, Riemannian submersions in differential geometry, and
SQP in constrained optimization. The connection between SQP and the Riemannian Newton
method on submanifolds is shown in Section 2. The general idea of using the Lagrangian
to select a metric in Riemannian optimization for constraints with symmetries is presented
in Section 3. We discuss the choice of the metric depending on the curvature properties
of both the cost and the constraint and the interpretation of the Lagrange parameter as a
shift. Section 4 develops the specific situation of quadratic cost and orthogonality constraints,
revisiting the classical generalized eigenvalue problem. Section 5 further develops the specific
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min
x∈Rn

f (x)

subject to h(x) = 0

min
x∈M

f (x),

where M = {x : h(x) = 0}

has dimension p

max
λ∈Rp

min
x∈Rn

f (x)− 〈λ, h(x)〉,

where λ is the Lagrange multiplier

Riemannian frameworkSequential quadratic programming

(constraints are embedded

into the cost function)

(constraints are encoded

into the seach space)

Figure 1: Two complementary viewpoints on optimization with equality constraints.

situation of quadratic cost and rank constraints, with applications to solving large-scale matrix
Lyapunov equations. All numerical illustrations use the Matlab toolbox Manopt [10].

2 SQP as Riemannian Newton method

Consider the optimization problem

min
x∈Rn

f(x)

subject to h(x) = 0,
(1)

where f : Rn → R and h : Rn → R
p are smooth functions. To illustrate the connection

between SQP and Riemannian optimization, we first consider the simplified situation in which
the set M := {x : h(x) = 0} has the structure of an embedded differentiable submanifold of
R
n [4, Section 3.3], i.e., hx(x) is full rank everywhere, where hx(x) is the first-order derivative

of h at x and is represented as an n× p matrix.
We recall two complementary approaches for the problem (1), namely the sequential

quadratic approach and the Riemannian approach. The schematic view is shown in Figure 1.
We aim at connecting these two approaches in order to tune the metric on the search space
in such a way that it incorporates second-order information of the problem.

2.1 The constrained optimization viewpoint (SQP)

SQP is a particularly well known approach for equality constrained nonlinear optimization
[32, Chapter 18]. The core idea is to deal with the unconstrained Lagrangian L : Rn ×R

p →
R : (x, λ) 7→ L(x, λ) with two sets of parameters, defined as

L(x, λ) = f(x)− 〈λ, h(x)〉, (2)

where 〈·, ·〉 is the Euclidean inner product and λ ∈ R
p is the Lagrange multiplier. With the

introduction of λ, the optimization problem (1) translates to the problem

max
λ∈Rp

min
x∈Rn

L(x, λ), (3)
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which leads to a primal-dual iterative algorithm in (x, λ) ∈ R
n × R

p, but the linearity in λ
is exploited to reduce the number of variables. For example, in the neighborhood of a local
minimum, the best least-squares estimate of the Lagrange multiplier is

λx = (hx(x)
T (hx(x)))

−1hx(x)
T fx(x), (4)

where hx(x) and fx(x) are the first-order derivatives of the functions h and f at x, respectively
[32, Equation (18.21)]. We use the convention that fx(x) is a column vector of length n and
hx(x) is a full column rank matrix of size n× p. The least-squares estimate of λ corresponds
to the least-squares solution of the optimality condition hx(x)λ = fx(x). It should be noted
that any other estimate for hx(x)λ = fx(x) is equally valid, provided that the equality is
satisfied at optimality.

Substituting λ with λx transforms the primal-dual iteration in (x, λ) to a purely primal
iteration in the variable x alone [32, Page 539]. Once the Lagrange multiplier is estimated,
the SQP optimization approach proceeds by minimizing the quadratic programming problem

arg min
ζx∈Rn

f(x) + 〈fx(x), ζx〉+
1
2〈ζx,D

2L(x, λx)[ζx]〉

subject to Dh(x)[ζx] = 0
(5)

at each iteration, where x is assumed to be in the constraint set (i.e., it is a feasible point),
fx(x) is the first-order derivative of the cost function f , D2L(x, λx)[ζx] is the second-order
derivative of L(x, λx) with respect to x (keeping λx fixed) that is applied in the direction
ζx ∈ R

n, 〈·, ·〉 is the Euclidean inner product, and Dh(x)[ζx] is the Euclidean directional
derivative of h(x) in the direction ζx ∈ R

n, i.e., Dh(x)[ζx] = limt→0(h(x+ tζx)− h(x))/t.
If the quantity 〈ζx,D

2L(x, λx)[ζx]〉 is strictly positive in the tangent space of constraints,
then the problem (5) has a unique solution [32, Section 18.1]. The solution ζ∗x of (5) is
interpreted as a search direction. Following the search direction with a step-size s, the next
iterate x+ in the SQP algorithm is obtained by projecting x+ sζ∗x onto the constrained space
to maintain strict feasibility of the iterates, where ζ∗x is the solution to (5). This specific
SQP algorithm is also called the feasibly projected SQP method as every iterate x+ is feasible
[5, 39].

The resulting iterative algorithm is shown in Table 1 and has the properties of a Newton
algorithm (locally in the neighborhood of a minimum) with favorable convergence properties
[39]. The algorithm in Table 1 is the simplified version of the algorithm in [39]. Additionally,
the SQP approach is appealing for the simplicity of its formulation.

2.2 Connecting SQP to Riemannian Newton method

An alternative treatment of problem (1) is to recast it as an unconstrained optimization
problem on a nonlinear search space that encodes the constraint. For special constraints
that are sufficiently structured, the framework leads to an efficient computational framework
[4, 13, 35]. Particularly, concrete numerical algorithms, both first-order and second-order, are
developed by endowing the set M := {x : h(x) = 0} with a Riemannian structure.

The connection between SQP and the Riemannian framework for constraints that are
embedded in R

n (i.e., the manifold M has the structure of an embedded submanifold) has
been studied in [15], [13, Section 4.9], and more recently in [5, Section 4]. In particular, the
following two results are relevant for the present paper.
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The SQP algorithm for

min
x∈Rn

f(x)

subject to h(x) = 0.

1. Compute the search direction ζ∗x that is the solution of (5).

2. The next iterate x+ is obtained by projecting x+sζ∗x onto the constrained
space, where the step-size s is obtained with backtracking line search.

3. Repeat until convergence.

Table 1: The SQP algorithm.

Proposition 2.1. ([5, Proposition 4.1]): If M is an embedded submanifold of Rn, then the
SQP algorithm in Table 1 is equivalent to the Riemannian Newton method for the choice of
the Lagrange multiplier λ in (4).

Proposition 2.2. (From the remark made by Gabay [15, Remark 4.3]): Assume that M is an
embedded submanifold of Rn and f : M → R is a smooth function with isolated minima on M.
If x∗ ∈ M is a local minimum of f : M → R on M, then the second-order derivative of the
Lagrangian along ζx∗ ∈ Tx∗M (the tangent space of M at x∗), i.e., 〈ζx∗ ,D2Lx(x

∗, λx∗)[ζx∗ ]〉,
captures all second-order information of the cost function f on M.

Propositions 2.1 and 2.2 show that SQP and the Riemannian Newton method are equiv-
alent for embedded submanifolds. Furthermore, this connection emphasizes the role of the
Hessian of the Lagrangian in the total space in effectively capturing second-order information
of the problem, locally in the neighborhood of a minimum.

Our goal in the present paper is to build upon this connection in situations where the
constrained search space is equipped with the differentiable structure of a quotient mani-
fold rather than an embedded submanifold. This situation is frequent in applications due
to symmetry properties of the optimization problem. The symmetries make the connection
between SQP and Riemannian optimization less straightforward because the Lagrangian is
degenerate at a local minimum. Nevertheless, we aim at showing that the structure of the
Lagrangian in the total space is still very insightful in suggesting Riemannian metrics that
capture second-order information on the quotient manifold.

3 Metric selection on quotient manifolds

Quotient manifolds are embedded in the manifold M (that itself is in R
n) up to an equivalence

relation ∼. The search space is then the set of equivalence classes. Optima are not isolated
in the computational total space M, but they become isolated once we consider the abstract
quotient space M/ ∼. (A precise characterization of the space M/ ∼ is shown in Section
3.1.)

Because of their prevalence in applications, quotient manifolds have been a focus of much
research in Riemannian optimization [4, 13, 35]. Algorithms are run in the total space, but
under appropriate compatibility between the Riemannian structure of the total space and the
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Rx(ξx)
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M := {x : h(x) = 0}
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x+

TxM Vx

Hx

TxM is tangent space

Vx is vertical space
Hx is horizontal space

TxM = Hx ⊕ Vx

Riemannian metric gxM

Figure 2: A schematic view of optimization on constraints with symmetries. The dotted lines
represent abstract objects and the solid lines are their matrix representations. The points
x and y in the total (computational) space M belong to the same equivalence class (shown
in solid blue) and they represent a single point [x] := {y ∈ M : y ∼ x} in the quotient
space M/ ∼. An algorithm by necessity is implemented in the computation space, but
conceptually, the search is on the quotient manifold. With the Riemannian metric g from (6),
the quotient manifold M/ ∼ is submersed into M. The vertical space Vx is the linearization
of the equivalence class. The horizontal space Hx is complementary to the vertical space
Vx and provides a matrix representation to the abstract tangent space T[x](M/ ∼) of the
Riemannian quotient manifold. Consequently, tangent vectors on the quotient space are
lifted to the horizontal space. Given ξx as the horizontal lift, i.e., matrix representation of a
tangent vector ξ[x] belonging to the abstract space T[x](M/ ∼), Rx maps it onto an element
in M.

Riemannian structure of the quotient manifold, they define algorithms in the quotient space.
The exposition for quotient manifolds here follows [4, Chapters 3, 5, and 8].

3.1 The Riemannian optimization viewpoint

Consider an equivalence relation ∼ in the total (computational) space M. The quotient man-
ifold M/ ∼ generated by this equivalence property consists of elements that are equivalence
classes of the form [x] = {y ∈ M : y ∼ x}. Equivalently, if [x] is an element in M/ ∼,
then its matrix representation in M is x. For example, the Grassmann manifold Gr(r, n),
which is the set of r-dimensional subspaces in R

n, is obtained by the equivalence relation-
ship Gr(r, n) = St(r, n)/O(r). St(r, n) is the set of matrices of size n × r with orthonormal
columns and O(r) is the set of square r × r orthogonal matrices. Each element in the total
space M := St(r, n) = {X ∈ R

n×r : XTX = I} is characterized by a matrix X ∈ R
n×r such

that XTX = I. And an abstract element on the Grassmann manifold Gr(r, n) is characterized
by the equivalence class [X] := {XO : O ∈ O(r)} at X ∈ St(r, n).

Since the manifoldM/ ∼ is an abstract space, the elements of its tangent space T[x](M/ ∼
) at [x] also call for a matrix representation in the tangent space TxM that respects the
equivalence relation ∼. Equivalently, the matrix representation of T[x](M/ ∼) should be
restricted to the directions in the tangent space TxM on the total space M at x that do not
induce a displacement along the equivalence class [x]. This is realized by decomposing TxM
into complementary subspaces, the vertical and horizontal subspaces such that Vx ⊕ Hx =
TxM. The vertical space Vx is the tangent space of the equivalence class [x]. On the other
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The Riemannian steepest-descent algorithm for

min
x∈M

f(x).

1. Search direction: compute the negative Riemannian gradient ξx =
−gradxf with respect to the Riemannian metric gx (6). Equivalently,
we solve the problem (9).

2. Retract with backtracking line search: the next iterate is computed using
the retraction (10) such that x+ = Rx(sξx), where the step-size s is
obtained with backtracking line search.

3. Repeat until convergence.

Table 2: The Riemannian steepest-descent algorithm.

hand, the horizontal space Hx, which is any complementary subspace to Vx in TxM, provides
a valid matrix representation of the abstract tangent space T[x](M/ ∼) [4, Section 3.5.8].
An abstract tangent vector ξ[x] ∈ T[x](M/ ∼) at [x] has a unique element in the horizontal
space ξx ∈ Hx that is called its horizontal lift. Our specific choice of the horizontal space is
the subspace of TxM that is the orthogonal complement of Vx in the sense of a Riemannian
metric.

A Riemannian metric gx : TxM × TxM → R at x ∈ M in the total space defines a
Riemannian metric g[x] : T[x](M/ ∼)× T[x](M/ ∼) → R, i.e.,

g[x](ξ[x], η[x]) := gx(ξx, ηx), (6)

on the quotient manifold M/ ∼, provided that the expression gx(ξx, ηx) does not depend
on a specific representation along the equivalence class [x]. Here ξ[x] and η[x] are tangent
vectors in T[x](M/ ∼), and ξx, ηx are their horizontal lifts in Hx at x. Equivalently, the
definition (6) is well posed when gx(ξx, ζx) = gy(ξy, ζy) for all x, y ∈ [x], where ξx, ζx ∈ Hx

and ξy, ζy ∈ Hy are the horizontal lifts of ξ[x], ζ[x] ∈ T[x](M/ ∼) along the same equivalence
class [x] [4, Section 3.6.2]. In words, the metric gx is invariant along the equivalence class [x].
Endowed with this Riemannian metric, the quotient manifold M/ ∼ is called a Riemannian
quotient manifold of M.

The choice of the metric (6), which is invariant along the equivalence class [x], and of the
horizontal space Hx as the orthogonal complement of Vx, in the sense of the Riemannian met-
ric (6), makes the space M/ ∼ a Riemannian submersion. It allows for a convenient matrix
representation of the gradient of a cost function. Figure 2 presents a schematic view of the
search space. Consequently, the steepest-descent algorithm on the manifold M that respects
the equivalence property ∼ on the space acquires the form shown in Table 2. Convergence
of the steepest-descent algorithm in the neighborhood of a local minimum is shown by Absil
et al. [4, Theorems 4.3.1 and 4.5.1]. The main ingredients of Table 2 are the gradient direction
computation and the retraction mapping.
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Riemannian gradient

The horizontal lift of the Riemannian gradient grad[x] of a cost function, say f : M → R, on
the quotient manifold M/ ∼ is uniquely represented by the matrix representation, i.e., the

horizontal lift of grad[x]f = gradxf, (7)

where gradxf is the gradient of f on the computational space M at x. The equality in (7)
is possible due to invariance of the cost function along the equivalence class [x], the choice
of the Riemannian metric (6), and the choice of the horizontal space Hx as the orthogonal
complement of the vertical space Vx [4, Section 3.6.2].

The gradient gradxf on the computational space is computed from its definition: it is the
unique element of TxM that satisfies [4, Equation 3.31]

Df(x)[ηx] = gx(gradxf, ηx) for all ηx ∈ TxM, (8)

where gx is the Riemannian metric (6) and Df(x)[ηx] is the Euclidean directional derivative
of f in the direction ηx, i.e., Df(x)[ηx] = limt→0(f(x+ tηx) − f(x))/t [4, Section 3.6]. An
equivalent way of computing gradxf is by solving the convex quadratic problem

gradxf = argmin
ζx∈TxM

f(x)− 〈fx(x), ζx〉+
1
2gx(ζx, ζx), (9)

where fx(x) is the first-order derivative of the cost function f , 〈·, ·〉 is the Euclidean inner
product, and gx is the Riemannian metric (6) at x ∈ M. It should be noted that 〈fx(x), ζx〉 =
Df(x)[ζx]. The equivalence between solutions to (8) and (9) is established by observing that
the condition (8) is, in fact, equivalent to the optimality conditions of the convex quadratic
problem (9).

Retraction

An iterative optimization algorithm involves computing a search direction and then “moving
in that direction.” The default option on a Riemannian manifold is to move along geodesics,
leading to the definition of the exponential map [4, Section 5.4]. Because the calculation of
the exponential map can be computationally demanding, it is customary in the context of
manifold optimization to relax the constraint of moving along geodesics. The exponential map
is then relaxed to a retraction, which is any map Rx : Hx → M that locally approximates the
exponential map, up to first-order, on the manifold [4, Definition 4.1.1]. A natural update on
the manifold is, thus, based on the update formula

x+ = Rx(sξx), (10)

where ξx ∈ Hx is a search direction, s is the step-size, and x+ ∈ M.
The retraction Rx defines a retraction R[x](ξ[x]) := [Rx(ξx)] on the Riemannian quotient

manifold M/ ∼, provided that the equivalence class [Rx(ξx)] does not depend on the specific
choice of the matrix representations of [x] and ξ[x]. Here ξx is the horizontal lift of an abstract
tangent vector ξ[x] ∈ T[x](M/ ∼) in Hx and [·] is the equivalence class defined earlier in the
section. Equivalently, the retraction operation R[x](ξ[x]) := [Rx(ξx)] is well defined on M/ ∼
when Rx(ξx) and Ry(ξy) belong to the same equivalence class, i.e., [Rx(ξx)] = [Ry(ξy)] for all
x, y ∈ [x].
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3.2 Inferring a metric from the Lagrangian

The practical performance of the Riemannian steepest-descent algorithm in Table 2 greatly
depends on the choice of the metric (6). The dominant trend in Riemannian optimization
has been to infer the metric from the geometry of the search space. Symmetry properties of
the search space suggest choosing invariant metrics, that is, metrics that are not affected by
a symmetry transformation of variables. In many situations, invariance properties of search
space single out the choice of a unique metric [4, 13, 30]. However, the metrics that are
motivated solely by the search space may not perform well in an optimization setup as they
do not take into consideration the cost function [22].

To address the above issue, we connect the SQP approach in Table 1 to the Riemannian
steepest-descent algorithm in Table 2 with a specific metric that is induced by the Lagrangian
(2). In particular, we extend the ideas of Propositions 2.1 and 2.2 to the case of quotient
manifolds. The extension has a twofold objective. First, it provides a guidance in choosing
metrics on a manifold with symmetries. Second, it provides a framework to extend SQP to
constraints with symmetries.

Theorem 3.1. Consider an equivalence relation ∼ in the space M. Assume that both M
and M/ ∼ have the structure of a Riemannian manifold with the metric ḡ on M and that
the function f : M → R is a smooth function with isolated minima on the quotient manifold
M/ ∼. Assume also that M has the structure of an embedded submanifold in R

n.
If x∗ ∈ M is a local minimum of f : M → R on M, then the following hold:

(i) 〈ηx∗ ,D2L(x∗, λx∗)[ηx∗ ]〉 = 0 for all ηx∗ ∈ Vx∗, and

(ii) the quantity 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 captures all second-order information of the cost
function f on M/ ∼ for all ξx∗ ∈ Hx∗,

where Vx∗ is the vertical space, Hx∗ is the horizontal space (the subspace of Tx∗M that is
complementary to Vx∗), 〈·, ·〉 is the Euclidean inner product, and D2L(x∗, λx∗)[ξx∗ ] is the
second-order derivative of L(x, λx) with respect to x at x∗ ∈ M applied in the direction
ξx∗ ∈ Hx∗ and keeping λx∗ fixed to its least-squares estimate (4).

Proof. Statement (i) corresponds to the degeneracy of the Lagrangian at a local minimum
and statement (ii) is an extension of Proposition 2.2 to the case of quotient manifolds.

The Lagrangian L(x∗, λ) at x∗, because both the cost and the constraint terms remain
invariant under the equivalence relation ∼, is constant along the equivalence class [x∗] :=
{y∗ ∈ M : y∗ ∼ x∗}. It should be noted that since x∗ is a local minimum, the first-order
derivative of the Lagrangian with respect to x at x∗ is zero, i.e., Lx(x

∗, λx∗) = 0. It should
be noted that Lx(x, λx) is the derivative of L(x, λx) with respect to the first argument, i.e.,
λx is kept fixed. Differentiating the Lagrangian L(x, λx) twice at x∗ along the linearization
of the equivalence class [x∗], that is the vertical space Vx∗, results in the first equality in (i).

To prove (ii) of the theorem, we exploit the Riemannian structure on M/ ∼. The theory
of Riemannian submersion [4, Chapter 3] states that the horizontal space Hx is orthogonal to
the vertical space Vx with respect to the metric ḡx and allows us to compute the Riemannian
gradient and Hessian of f on M/ ∼ using the orthogonal projection of their counterparts
in the total space M. From the computation of the Riemannian gradient gradxf and the
first-order derivative of the Lagrangian we have the equality [4, Equation 3.31]

Df(x)[ξx] = 〈Lx(x, λx), ξx〉 = ḡx(gradxf, ξx) for all ξx ∈ TxM.

9



Taking the Euclidean directional derivative of the above equation at x∗ along ξx∗ ∈ Hx∗ with
the additional information that gradx∗f = 0 (x∗ is a local minimum),

〈ξx∗ ,D2f(x∗)[ξx∗ ]〉 = 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 = ḡx∗(ξx∗ ,Dgradx∗f [ξx∗]), (11)

where the specific operation Dgradx∗f [ξx∗] should be treated as the Euclidean differential of
a vector field, the Riemannian gradient gradx∗f , along ξx∗ . In this case, D2L(x, λx)[ξx] is the
second-order derivative of L(x, λx) with respect to x along ξx keeping λx fixed.

We define Πx : Rn → Hx as the orthogonal projection operator in the metric ḡx, and
Hessxf [ξx] as the Riemannian Hessian in the total space M applied along the direction ξx ∈
Hx. The horizontal lift of the Riemannian Hessian Hess[x]f [ξ[x]] on the quotient manifold
M/ ∼ has the characterization Πx(Hessxf [ξx]) [4, Proposition 5.3.3]. Additionally, the Koszul
formula relates the operation Dgradxf [ξx] and the Riemannian Hessian in the total space M
[4, Theorem 5.3.1].

At the minimum x∗, second-order information of f on the manifold M/ ∼ is captured by
the quantity ḡx∗(ξx∗ ,Πx∗(Hessx∗f [ξx∗ ])) for all ξx∗ ∈ Hx∗ . The term simplifies as follows:

ḡx∗(ξx∗ , Πx∗(Hessx∗f [ξx∗])
︸ ︷︷ ︸

{

horizontal lift of the
Hessian on M/ ∼

}

) = ḡx∗(ξx∗ , Hessx∗f [ξx∗]
︸ ︷︷ ︸

the Hessian on M

) for Πx∗(ξx∗) = ξx∗

= ḡx∗(ξx∗ ,Dgradx∗f [ξx∗]) from the Koszul formula
and gradx∗f = 0

= 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 from (11).

This proves statement (ii).

Theorem 3.1 states that the underlying symmetries make the Lagrangian degenerate in
the tangent space TxM of the total space M. The other important observation is that the
quantity 〈ξx,D

2L(x, λx)[ξx]〉 captures second-order information at a local minimum along the
horizontal space, where the horizontal space is the subspace of TxM that is the orthogonal
complement of the vertical space Vx.

As an immediate consequence of Theorem 3.1, we observe that in the neighborhood of a
minimum, a selection of the search direction is given by solving

argmin
ζx∈Hx

f(x) + 〈fx(x), ζx〉+
1
2〈ζx,D

2L(x, λx)[ζx]〉, (12)

where Hx is any predefined horizontal space characterization. Followed by a retraction oper-
ation (Section 3.1), (12) defines locally a steepest-descent algorithm on the quotient manifold
M/ ∼, that is, an algorithm that iterates on the classes of equivalences. Here 〈·, ·〉 is the Eu-
clidean inner product and fx(x) is the first-order derivative of the function f . The scheme with
(12) has the interpretation of a steepest-descent algorithm on the quotient manifold M/ ∼
and can be considered as an extension of the classical SQP approach, that has been defined on
embedded constraints, to quotient manifolds. The significance of the result is twofold: first,
the computational problem (12) is considerably simpler than the computational machinery
needed for a steepest-descent or a quasi-Newton algorithm on a general quotient manifold.
Second, it decouples the second-order information term, i.e., D2L(x, λx), from the horizontal
space characterization Hx that could be predefined. The expression (12) is appealing as a
starting point to equip the quotient manifold with a Riemannian structure since it captures
second-order information in the neighborhood of a minimum.
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3.3 Regularized Lagrangians for Riemannian optimization

Motivated by the expression (12), we introduce the family of regularized Lagrangians

L̃(x, λx) = ω1f(x)− ω2〈λx, h(x)〉, (13)

with the corresponding candidate metrics

gx(ξx, ηx) = 〈ξx,D
2L̃(x, λx)[ηx]〉

= ω1 〈ξx,D
2f(x)[ηx]〉

︸ ︷︷ ︸

cost related

+ω2 〈ξx,D
2c(x, λx)[ηx]〉

︸ ︷︷ ︸

constraint related

(14)

in the total space M, where c(x, λx) = −〈λx, h(x)〉. The choice of the regularizing parameters
ω1 ∈ [0, 1] and ω2 ∈ [0, 1] is problem dependent, but concrete choices are discussed below and
also illustrated in Figure 3. The default choice of ω1 = 1 and ω2 = 1 is appealing because it
captures the full second-order information. However, it also leads to a degenerate Lagrangian
at the minimum. The choices of ω1 and ω2 thus result from a trade-off between ensuring the
positive definiteness of the metric candidate (14) in the tangent space TxM while capturing
second-order information near minima.

If in addition to being positive definite the metric (14) is invariant along the equivalence
class [x], and if the horizontal space Hx is chosen as the orthogonal subspace to the vertical
space Vx, then the manifold M/ ∼ has the structure of a Riemannian submersion [4, 13, 35].
This simplifies the computation of the search direction, which then amounts to solving the
problem

argmin
ζx∈TxM

f(x) + 〈fx(x), ζx〉+
1
2gx(ζx, ζx), (15)

where 〈·, ·〉 is the Euclidean inner product and fx(x) is the first-order derivative of the function
f , and gx(·, ·) is the Riemannian metric (14). It should be noted that even though the
minimization (15) is in the total tangent space TxM, the solution ζ∗x of (15), by construction,
belongs to the chosen horizontal space Hx that is orthogonal to Vx.

We further discuss two scenarios below that suggest how to exploit the available structure
to construct novel Riemannian metrics. The problem structure can be exploited in more
general situations along the same lines.

Case I: minimizing a strictly convex function

Consider the case when f is a strictly convex function. In this case the second-order derivative
fxx(x) ≻ 0 (due to strict convexity assumption) is a good metric candidate. In addition,
locally in the neighborhood of a minimum, a family of Riemannian metrics is identified from
(14) as

gx(ξx, ηx) = 〈ξx,D
2f(x)[ηx]〉

︸ ︷︷ ︸

fxx≻0 and dominating

+ω〈ξx,D
2c(x, λx)[ηx]〉

(16)

by selecting ω1 = 1 and ω2 = ω, where ω ∈ [0, 1), ξx, ηx are tangent vectors in TxM,
c(x, λx) = −〈λx, h(x)〉, and D2c(x, λx)[ηx] is the second-order derivative of c(x, λx) with
respect to x keeping λx fixed and that is applied along the direction ηx. The case ω = 1 is
discarded to prevent singularity of the metric candidate (16) in TxM in the neighborhood of
a minimum.
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f (x) c(x, λx) = −〈λx, h(x)〉

Convex Concave

Concave Convex

Case I

Case II

Metric

candidate

fxx(x) + ωcxx(x, λx)

ωfxx(x) + cxx(x, λx)

Figure 3: Choosing metrics for the Riemannian steepest-descent algorithm in Table 2. Shown
are two extreme situations in which the regularized Lagrangian (13) provides a clear metric
candidate locally in the neighborhood of a minimum. fxx(x) is the second-order derivative
of f(x) and cxx(x, λx) is the second-order derivative of c(x, λx) with respect to x keeping λx

fixed. Because of local convexity of the Lagrangian (on the tangent space) at a minimum,
convex and concave structures of the function f lead to a well defined family of metrics
parameterized by the regularization parameter ω ∈ [0, 1). It locally captures second-order
information of the problem. The case ω = 1 is discarded to prevent singularity of the metric
candidate at a local minimum. Additionally, to extend the metrics away from a minimum,
the parameter ω is updated at every iteration, e.g., with the procedure shown in (18).

Case II: maximizing a strictly convex function

Consider the problem of maximizing a convex cost function, that is equivalent to minimizing
a concave cost function, on a manifold. In this case, fxx(x, λx) ≺ 0, and locally in the
neighborhood of a minimum, second-order information of c(x, λx) = −〈λx, h(x)〉 is the source
of convexity. This fact follows from the second-order optimality condition of the optimization
problem [32, Chapter 18]. Here the problem structure suggests a family of Riemannian metrics

gx(ξx, ηx) = ω〈ξx,D
2f(x)[ηx]〉+ 〈ξx,D

2c(x, λx)[ηx]〉
︸ ︷︷ ︸

cxx is locally positive definite
(17)

by selecting ω1 = ω and ω2 = 1 in (14), where ω ∈ [0, 1), ξx, ηx are tangent vectors in
TxM, c(x) = −〈λx, h(x)〉, cxx(x, λx) is the second-order derivative of c(x, λx) with respect
to x keeping λx fixed. Once again ω = 1 is discarded to prevent singularity of the metric
candidate (17) in TxM in the neighborhood of a minimum.

Globalizing the local metrics

The parameter ω ∈ [0, 1) in the metrics (16) and (17), apart from providing a family of
Riemannian metrics, also plays a critical role in the numerical performance of the Riemannian
steepest-descent algorithm in Table 2. With ω = 0, the Riemannian metric captures only
part of second-order information and therefore, locally in the neighborhood of a minimum,
the Riemannian steepest-descent algorithm may converge poorly, e.g., linearly. On the other
hand with ω → 1, the Riemannian metric captures the full second-order information and the
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Riemannian steepest-descent algorithm is expected to show better convergence. A numerical
technique for interpolating between these two extreme scenarios is to vary ω = [0, 1) at
every iteration with an increasing barrier function that tends to 1 as the number of iterations
increases. A simple updating technique is ω(k) = 1−2k−1, where k is the iteration number. A
strategy to safeguard against a non-descent search direction, e.g., when solving the quadratic
programming problem (15) with the metric (14), is to ignore the updated ω that resulted in a
non-descent direction (checking this numerically is straightforward) and restart the procedure
of updating ω again.

A different technique is to modify ω as and when required. For example, defining δ = 1−ω,
we have the strategy where at the kth iteration

δk =

{
0.5δk−1 when a descent direction is obtained
4δk−1 when a non− descent direction is obtained,

(18)

with δ0 = 1. Care is taken to ensure that ω ∈ [0, 1) for all iterations.
Safeguards similar to the trust-regions, i.e., by constraining the norm of the search di-

rection, can also be implemented to ensure that the search direction computed with the
Riemannian metric remains a locally descent direction [32, Section 18.5].

4 Quadratic optimization with orthogonality constraints:
revisiting the generalized eigenvalue problem

Constrained quadratic optimization problems arise naturally in a number of applications,
especially while solving linear systems of matrix equations [4, Section 2.2]. Also popular are
the orthogonality constraints in large-scale problems that are imposed to identify relevant
smaller dimensional subspaces [13]. Specific optimization problems include the generalized
eigenvalue problem [1, 2, 13], the generalized orthogonal Procrustes problem [14], and the
joint diagonalization problem in signal processing [36], to name just a few.

For the sake of illustration, we specifically focus on the well-studied generalized eigenvalue
problem that computes the smallest eigenvalues and eigenvectors of the matrix B−1A, where
A is a symmetric matrix of size n × n and B is a symmetric positive definite matrix of size
n×n [13, Section 4.5, 16, Chapter 8]. This is realized by solving the optimization problem be-
low iteratively, an extensively researched question in the literature [16, Chapter 8, 3]. In this
section we exploit the quadratic nature of the cost function and the constraints to show that
a family of Riemannian metrics has a simple characterization. It is also shown that the algo-
rithms that result from the proposed metrics connect to a number of established algorithms,
each of which is interpreted as a steepest-descent algorithm with a specific Riemannian metric
choice.

The minimal r-eigenspace of B−1A is computed iteratively by solving the constrained
quadratic optimization problem

min
X∈Rn×r

1
2Trace(X

TAX)

subject to XTBX = I,
(19)

where the constraint set of n× r matrices that satisfy XTBX = I is known as the generalized
Stiefel manifold StB(r, n). The constraint enforces orthogonality among vectors in coordinates
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spanned by B1/2. Specifically when B = I, the generalized Stiefel manifold is the popular
Stiefel manifold St(r, n) := {X ∈ R

n×r : XTX = I} [13].
It should be noted that the optimization problem (19) is invariant under the transfor-

mation X 7→ XO for all O ∈ O(r), where O(r) is the set of r × r orthogonal matrices. As
a consequence, the problem (19) is an optimization problem on the abstract quotient space
StB(r, n)/O(r), also known as the generalized Grassmann manifold. For the case B = I,
this again boils down to the well-known Grassmann manifold Gr(r, n), which is the set of r-
dimensional subspaces in R

n [13]. The optimization problem (19) is, therefore, reformulated
on the generalized Grassmann quotient manifold, i.e.,

min
X∈Rn×r

1
2Trace(X

TAX)

subject to [X] ∈ StB(r, n)/O(r),
(20)

where the optimization is on the set of equivalence classes [X] := {XO : O ∈ O(r)} at
X ∈ StB(r, n).

The conventional choice of the metric in the Riemannian framework is

gx(ηx, ξx) = Trace(ηTx ξx), (21)

where x = X ∈ StB(r, n) and ξx, ηx are vectors in the tangent space of the constraints (the
matrix characterization of the tangent space is shown in Table 3). It is the unique metric
that is motivated by invariance on the orthogonal group, i.e., for the case when r = n it is
the unique choice [30]. Hence, it becomes a conventional choice for r < n. Because of its
simplicity and its geometric consideration, the metric (21) is also advocated by Absil et al.
[4], Edelman et al. [13].

In contrast, the developments in Section 3.3 suggest a family of Riemannian metrics that
take the complete problem structure into account by computing the regularized Lagrangian
(13) and its second-order derivative. To this end, we have the following matrix representations
for (19).

L(x, λx) = Trace(XTAX)/2 − 〈λx,X
TBX− I〉/2

⇒ Lx(x, λx) = AX−BXλx

⇒ D2L(x, λx)[ξx] = Aξx −Bξxλx,
(22)

where x has the matrix representation X ∈ StB(r, n), 〈·, ·〉 is the Euclidean inner product, and
the least-squares Lagrange multiplier is λx = Sym((XTBBX)−1(XTBAX)) from (4) with
the additional symmetry condition from the constraint, where Sym(·) extracts the symmetric
part of a square matrix, i.e., Sym(D) = (D+DT )/2. Lx(x, λx) is the first-order derivative of
L(x, λx) and D2L(x, λx)[ξx] is the second-order derivative of L(x, λx) applied in the direction
ξx, both computed while keeping λx fixed.

It should be noted that the least-squares estimate λx = Sym((XTBBX)−1 (XTBAX))
is the solution to the problem argminλ∈Rr×r ‖AX−BXλ‖2Q such that λ is symmetric, where

‖AX − BXλ‖2Q = Trace((AX − BXλ)TQ(AX − BXλ)) and Q = BX(XTBBX)−2XTB.

A different estimate of λx is obtained by solving the problem argminλ∈Rr×r ‖AX −BXλ‖2F
such that λ is symmetric. Both these estimates coincide at a local minimum and can be used
in the neighborhood of a minimum.

It is readily checked that the Lagrangian L(x, λx) in (22) remains unchanged under the
action X 7→ XO for all O ∈ O(r), where X ∈ StB(r, n). The action X 7→ XO also leads to
the transformation in the least-squares Lagrange multiplier as λx 7→ OTλxO. Subsequently,
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we have the following proposition for constructing a family of Riemannian metrics for the
problem (20) on the generalized Grassmann manifold.

Proposition 4.1. There exists a family of Riemannian metrics

gx(ξx, ηx) = ω1 〈ξx,Aηx〉
︸ ︷︷ ︸

cost related

−ω2 〈ξx,Bηxλx〉
︸ ︷︷ ︸

constraint related

(23)

on StB(r, n) with ω1, ω2 ∈ [0, 1], each of which induces a Riemannian metric on the quotient
manifold StB(r, n)/O(r) in the neighborhood of the minimum of the quadratic optimization
problem (20). The parameters ω1 and ω2 weight the cost and constraint, respectively. ξx and
ηx are vectors in the tangent space of the constraints at x = X such that XTBX = I and
λx = Sym((XTBBX)−1(XTBAX)) is the least-squares estimate, where Sym(·) extracts the
symmetric part of a square matrix, i.e., Sym(D) = (D+DT )/2.

Proof. First, we show that the metrics (23) respect the symmetry condition in (6). In order
to show that the metric does not change along the equivalence class [x] = [X] = {XO :
O ∈ O(r)} for all O ∈ O(r), it is equivalent, but simplified following [4, Proposition 3.6.1], to
show that the metric for tangent vectors ξx and ηx does not change under the transformations
X 7→ XO, ηx, 7→ ηxO, and ξx 7→ ξxO. These transformations lead to the transformation in
the least-squares Lagrange multiplier as λx 7→ OTλxO. Finally, a few extra computations
show that the metrics (23) indeed remain the same under the mentioned transformations.

Second, we show the construction of one particular family of Riemannian metrics. To this
end, consider the case when A ≻ 0. Consider the parameters ω1 = 1 and ω2 = ω. Restricting
ω ∈ [0, 1) guarantees that in the neighborhood of a minimum gx(ζx, ζx) > 0 for all ζx in the
tangent space, satisfying the criterion of positive definiteness.

The proofs for symmetry compatibility and positive definiteness on the tangent space
conclude the proof of the proposition.
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min
X∈Rn×r

Trace(XTAX)/2

subject to XTBX = I

Matrix representation
of an element x ∈ M

x = X

Computational space M StB(r, n) = {X ∈ R
n×r : XTBX = I}

Group action XO, ∀O ∈ O(r) such that OTO = OOT = I

Quotient space StB(r, n)/O(r)

Tangent vectors in TxM {ξx ∈ R
n×r : ξTx BX+XTBξx = 0}

Metric gx(ξx, ζx)
for ξx, ζx ∈ TxM

gx(ξx, ζx) = ω1Trace(ζ
T
x Aξx)

−ω2Trace(ζ
T
x Bξxλx)

or the metrics proposed in Section 4.1,
where λx = Sym((XTBBX)−1(XTBAX))

Cost function f(x) = Trace(XTAX)/2

First-order derivative of
f(x)

fx(x) = AX

Search direction argmin
ζx∈TxM

f(x) + 〈fx(x), ζx〉+
1

2
gx(ζx, ζx)

Retraction Rx(ξx) that
maps a search direction ξx
onto M

UVT ,

where X+ ξx = UΣVT is the restriction of thin SVD
such that UTBU = I,VTV = I, and
Σ is a positive diagonal matrix.

Table 3: Optimization-related ingredients for computing the extreme eigenvalues of B−1A.
The numeric complexity per iteration depends on solving the quadratic programming problem
for the search direction computation. In many instances exploiting sparsity in matrices A

and B leads to numerically efficient schemes. Here Sym(·) extracts the symmetric part of
a square matrix, i.e., Sym(D) = (D + DT )/2. Few choices of the regularizing parameters
ω1, ω2 ∈ [0, 1] for relevant situations are shown in Section 4.1.

4.1 Metric tuning and shift policies

Due to the quadratic nature of both cost and constraints, the metric (23) has the appeal-
ing feature of being parameterized by the Lagrangian parameter λx. This object is low
dimensional when r ≪ n. It provides an interesting interpretation of various “shift” policies
developed in numerical linear algebra for eigenspace computations [16, Chapter 8]. We further
particularize the selection of regularization parameters ω1 and ω2 in (23) when A ≻ 0 and
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when A 6≻ 0. In both these cases, we propose metrics that connect to a number of classical
algorithms for the generalized eigenvalue problem [1–3].

When A ≻ 0

This instance falls under Case I of Section 3.3, i.e., with ω1 = 1 and ω2 = ω in (14). Therefore,
the family of proposed Riemannian metrics has the structure

gx(ξx, ζx) = Trace(ξTx Aζx)− ωTrace(ξTxBζxλx), (24)

where ξx and ζx are vectors in the tangent space of the constraints, the least-squares Lagrange
multiplier λx = Sym((XTBBX)−1(XTBAX)), and ω = [0, 1).

The metric (24) provides two insightful connections to the literature. First, the proposed
metric (24) with ω = 0 generalizes the well-known inverse iteration algorithm for computing
the smallest eigenvalues of a symmetric matrix [16, Section 8.2.2]. For the case when B = I,
the negative Riemannian gradient with the metric (24) and ω = 0 is computed as in Table 3
as

argmin
ζx∈Rn×r

ζTx X+X
T ζx=0

〈AX, ζx〉+
1
2Trace(ζ

T
x Aζx)

}

= A−1X(XTA−1X)−1 −X.

Given an iterate x = X such that XTX = I, the Riemannian steepest-descent update with
unit step-size, is x+ = Rx(A

−1X(XTA−1X)−1 − X), which is equivalent to the update
x+ = qf(A−1X) on the Grassmann manifold, where Rx(·) is the retraction operator defined
in Table 3 and qf(A−1X) is the Q-factor of the QR decomposition of A−1X. This is also the
classical inverse iteration update [16, Section 8.2.2]. This shows that the inverse iteration has
the interpretation of a Riemannian steepest-descent algorithm with the metric (29) for ω = 0.

A second insight is obtained for the case when ω is updated with iterations. The Rie-
mannian steepest-descent algorithm with the metric (24) generalizes the popular Rayleigh
quotient iteration algorithm (see 16, Section 8.2.3, 2, Algorithm 4.2, 3). Given an iterate
x = X such that XTX = I, Absil et al. [2, Algorithm 4.2] propose the Grassmann-Rayleigh
quotient iteration (GRQI) algorithm for computing the next update x+ with the steps

AZ− ZXTAX = X (we solve for Z)
x+ = qf(Z).

}

(25)

To show that the Riemannian steepest-descent algorithm with the metric (24) generalizes
GRQI algorithm (25), we consider again the case when B = I. At each iteration of the
Riemannian steepest-descent algorithm with the metric (24), we are required to solve the
system of linear equations (by looking at the optimality conditions of the quadratic program
for computing the search direction) for ζx ∈ R

n×r and an auxiliary variable µx ∈ R
r×r (µx is

the Lagrange multiplier corresponding to the constraint ζTx X+XT ζx = 0) of the form

argmin
ζx∈Rn×r

ζTx X+XT ζx=0

〈AX, ζx〉+
1
2(Trace(ζ

T
x Aζx)− ωTrace(ζTx ζxλx))

}

⇒

{
Aζ∗x − ωζ∗xλx = Xµ∗

x −AX

XT ζ∗x + ζ∗x
TX = 0,

(26)

where ω ∈ [0, 1), ζ∗x is the computed search direction, and µ∗
x is the Lagrange multiplier that

guarantees that the search direction ζ∗x belongs to the tangent space of the constraints. It
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should be noted that the linear system of equations (26) can be solved efficiently by exploit-
ing additional sparsity structure in A [2]. Once the solution for µ∗

x in (26) is obtained by
eliminating the constraint XT ζ∗x + ζ∗x

TX = 0, the Riemannian steepest-descent update x+
with unit step-size is

Aζ∗x − ωζ∗xλx = Xµ∗
x −AX

x+ = Rx(ζ
∗
x) ≡ qf(X+ ζ∗x)

}

⇔

{
AZ− ωZλx = X(µ∗

x − ωλx)
x+ = qf(Z),

⇔

{
AZ− ωZXTAX = X(µ∗

x − ωλx) (we solve for Z)
x+ = qf(Z),

(27)

where Z := X + ζ∗x, Rx(·) is the retraction operation defined in Table 3, and qf(Z) is the
Q-factor of the QR decomposition of Z. It should be noted that Rx(ζ

∗
x) and qf(X+ ζ∗x) define

the same element on the Grassmann manifold and hence the equivalence in (27). It should
also be emphasized that the update (27) is similar to (25) in the neighborhood of a minimum
up to the extra terms ω and µ∗

x − ωλx. The similarity of (27) and (25) is more profound for
r = 1 and when ω is updated, e.g., using (18). This connection also shows a way to extend
GRQI beyond the neighborhood of a minimum. Consequently, GRQI update (25) proposed
by Absil et al. [2] has the interpretation of a Riemannian steepest-descent algorithm with the
metric from (24).

When A 6≻ 0

Consider first the case when A ≺ 0 that falls under Case II of Section 3.3, i.e., with ω1 = ω
and ω2 = 1 in (14), suggesting (locally) a family of Riemannian metrics that has the form

gx(ξx, ζx) = ωTrace(ξTx Aζx)− Trace(ξTxBζxλx), (28)

where ξx and ζx are vectors in the tangent space of the constraints and ω ∈ [0, 1). The
expression for the least-squares Lagrange multiplier from (4) is λx = Sym((XTBBX)−1

(XTBAX)), where Sym(·) extracts the symmetric part of a square matrix, i.e., Sym(D) =
(D+DT )/2.

It should be noted that as −λx is only guaranteed to be positive definite locally in the
neighborhood of a local minimum, the metric characterization (28) is a Riemannian metric
only in the neighborhood of a local minimum. In order to extend the metric away from a local
minimum, we modify the metric, defined in (28), by replacing −λx with (λT

x λx)
1/2 resulting

in the modified metric

gx(ξx, ζx) = ωTrace(ξTxAζx) + Trace(ξTx Bζx(λ
T
xλx)

1/2), (29)

where (λT
x λx)

1/2 is the matrix square root of λT
xλx that is well defined as long as λx is full

rank. The full-rank assumption of λx is required for the metric, from (29), to be a smooth
inner product. The modified metric, shown in (29), is also a good metric candidate for the
case when A is symmetric indefinite since (λT

xλx)
1/2 is also positive definite in this case.

The proposed metric in (29) with ω = 0 generalizes the well-known power iteration algo-
rithm for computing the dominant eigenvalues of a matrix [16, Section 8.2.1]. To show this
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Figure 4: Benefits of the proposed metric (24) for the generalized eigenvalue problem to
compute the extreme 5-dimensional subspace (corresponding to the smallest 5 eigenvalues) of
the matrix pencil (A,B) of size 500× 500. The problem instance is described in Section 4.2.
Shown are 10 runs of the Riemannian steepest-descent algorithms with random initializations
for the problem instance. The distance to the solution is defined as the square root of the sum
of squared canonical angles between the current subspace and the dominant 5-dimensional
subspace of B−1A.

consider the case B = I. Given an iterate x = X such that XTX = I, the update of the
Riemannian steepest-descent algorithm with unit step-size has the characterization (after a
few computations) that is equivalent to x+ = qf(X(I+λx(λ

T
xλx)

−1/2)−AX(λT
x λx)

−1/2). Lo-
cally, in the neighborhood of a minimum, I+λx(λ

T
xλx)

−1/2 ≈ 0, and therefore, the equivalent
update is x+ = qf(AX) which is the classical power iteration update [16, Section 8.2.1]. In
other words, the power algorithm has the interpretation of a Riemannian steepest-descent al-
gorithm with the metric from (29) and with ω = 0. Similarly, the steepest-descent algorithm
with a shifted version of the metric (29), i.e., for ω updated with iterations, generalizes the
GRQI algorithm proposed by Absil et al. [2].

A similar insight still holds when the quadratic cost is generalized to a strictly concave
function, i.e., minimizing a concave cost (or maximizing a convex cost) with orthogonality
constraints. For the metric with ω = 0, i.e., taking only the constraint-related term, this is
the essence of the generalized power method proposed by Journée et al. [18].

4.2 A numerical illustration

As a numerical comparison, we consider the example proposed by Manton [22, Section 8]. A
is a diagonal matrix of size 500 × 500 with entries equispaced on the interval [10, 11]. B is
chosen as the identity matrix of size 500 × 500. In Figure 4, we seek to compute the r = 5
smallest eigenvalues of B−1A. The algorithms compared are the Riemannian steepest-descent
algorithms with the Euclidean metric (21) and the preconditioned Riemannian metric in (24)
with the ω-updating procedure (18). Both the algorithms are stopped when either the norm of
the gradient is below 10−8 or when they complete 500 iterations. Distances of the iterates to
the solution are plotted for the algorithms. The distance of an iterate X to the solution Xopt

is defined as the square root of the sum of canonical angles between X and Xopt. In Matlab it
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is computed using the command norm(acos(svd(orth(X)’*orth(Xopt)))). Figure 4 shows
the initial 50 iterations, where we see that tuning the metric to the problem structure leads
to improved performance.

5 Quadratic optimization with rank constraints

This class of problems has met with considerable interest in recent years. Applications in-
clude collaborative filtering [34], multivariate linear classification [7], dimensionality reduction
[12], learning of low-rank distances [20, 24, 27], filter design problems [22], model reduction
in dynamical systems [8, 21, 38], sparse principal components analysis [11, 17], computing
maximal cut of a graph [11, 17], and low-rank matrix completion [9, 19, 29, 31, 37], to name
just a few.

In all those applications, the discussion in Section 3.2 allows us to propose novel pre-
conditioned Riemannian metrics. These metrics connect to those proposed by Mishra and
Sepulchre [25], Mishra and Vandereycken [26], Mishra et al. [28], Ngo and Saad [31] for specific
optimization problems.

A popular way to characterize the set of fixed-rank matrices is through fixed-rank matrix
factorizations. Most matrix factorizations have symmetry properties that make them non-
unique. And in many cases the set of rank r of n × m matrices R

n×m
r is identified with

structured (smooth and differentiable) quotient spaces [6, 23, 29]. Figure 5 shows three
different fixed-rank matrix factorizations and the quotient manifold structure of the set Rn×m

r .
To identify Riemannian metrics on the low-rank manifold R

n×m
r , we consider minimization

of a convex quadratic cost function. Specifically, we focus on the parameterization X = GHT ,
where X ∈ R

n×m
r , G ∈ R

n×r
∗ (the set of full column rank matrices), and H ∈ R

m×r
∗ . Other

fixed-rank matrix factorizations are dealt with similarly.
Consider the optimization problem

min
X∈Rn×m

r

1
2Trace(X

TAXB) + Trace(XTC), (30)

where A ≻ 0 of size n × n, B ≻ 0 of size m×m, and C ∈ R
n×m. Positive definiteness of A

and B implies that the cost function is bounded from below and is convex in X. Invoking
the low-rank parameterization X = GHT , shown in Figure 5, the problem (30) translates to

min
(G,H)∈Rn×r×Rm×r

1
2Trace(HGTAGHTB) + Trace(HGTC)

subject to [(G,H)] ∈ R
n×r
∗ × R

m×r
∗ /GL(r),

where the equivalence class [(G,H)] := {(GM−1,HMT ) : M ∈ GL(r)} and GL(r) is the set
of r × r square matrices of non-zero determinant.

A conventional way to handle this symmetry in the Riemannian framework is endowing
the set Rn×r

∗ with the natural metric [4, Section 3.6.4]. Since the computational space M is
the product space R

n×r
∗ × R

m×r
∗ , the natural metric is

gx(ηx, ξx) = Trace((GTG)−1ηT
G
ξG) + Trace((HTH)−1ηT

H
ξH),

where x has the matrix representation (G,H) ∈ R
n×r
∗ ×R

m×r
∗ and ξx, ηx are vectors belonging

to the tangent space R
n×r × R

m×r, i.e., ξx has the matrix representation (ξG, ξH) ∈ R
n×r ×

R
m×r.
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After taking the symmetry into account, the search space is the quotient space characterized by
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∗
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∗
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Group action
that keeps X
unchanged

(G,H) 7→
(GM
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T

1
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for any (O1,O2) ∈ O(r)×O(r)

(U,Y) 7→
(UO,YO

T )
for any O ∈ O(r)

Figure 5: Fixed-rank matrix factorizations lead to quotient search spaces due to their intrinsic
symmetries. The pictures emphasize the situation of interest, i.e., the rank r is small compared
to the matrix dimensions. St(r, n) is the set of n× r matrices with orthogonal columns, Rn×r

∗

is the set of n × r matrices with full column rank, GL(r) is the set of r × r square matrices
with non-zero determinant, and O(r) is the set of r × r square matrices with orthonormal
columns and rows.

In contrast, we follow the developments in Section 3.3 to propose a family of metrics
that takes the problem structure into account by exploiting the structure of the regularized
Lagrangian (13). Since the set Rn×r

∗ ×R
m×r
∗ is an open subset of the space Rn×r ×R

m×r, the
Lagrangian only consists of the cost function, i.e.,

L(x) = Trace(HGTAGHTB)/2 + Trace(HGTC)

⇒ Lx(x) = (AGHTBH+CH,BHGTAG+CTG)
⇒ D2L(x)[ξx] = (AξGHTBH+ 2AGSym(HTBξH) +CξH,

BξHGTAG+ 2BHSym(GTAξG) +CT ξG),

(31)

where x has the matrix representation (G,H) ∈ R
n×r
∗ ×R

m×r
∗ , ξx has the matrix representation

(ξG, ξH) ∈ R
n×r ×R

m×r, Lx(x) is the first-order derivative of L(x), D
2L(x)[ξx] is the second-

order derivative of L(x) applied in the direction ξx, and Sym(·) extracts the symmetric part
of a square matrix, i.e., Sym(D) = (DT +D)/2.

It is readily checked that the Lagrangian L(x) in (31) remains unchanged under the
transformation (G,H) 7→ (GM−1,HMT ) for all M ∈ GL(r). Subsequently, we have the
following proposition for constructing a family of Riemannian metrics for (30) on the fixed-
rank quotient manifold.

Proposition 5.1. There exists a family of Riemannian metrics

gx(ξx, ηx) = ω1〈ηG,AξGHTBH〉
+ω2〈ηG, 2AGSym(HTBξH) +CξH〉
+ω3〈ηH,BξHGTAG〉
+ω4〈ηH, 2BHSym(GTAξG) +CT ξG〉,

(32)
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on R
n×r
∗ × R

m×r
∗ with ω1, ω2, ω3, ω4 ∈ [0, 1], each of which induces a Riemannian metric on

the quotient manifold R
n×r
∗ ×R

m×r
∗ /GL(r) in the neighborhood of the local minimum of (30).

Here x = (G,H) ∈ M, M = R
n×r
∗ ×R

m×r
∗ , and ξx, ηx are vectors in the tangent space TxM.

Proof. First, we show that the metrics from (32) respect the condition in (6). In order
to show that the metric does not change along the equivalence class [x] = [(G,H)] =
{(GM−1,HMT ) : M ∈ GL(r)} for all M ∈ GL(r), it is equivalent, but simplified follow-
ing [4, Proposition 3.6.1], to show that the metric for tangent vectors ξx, ηx ∈ TxM does not
change under the transformations (G,H) 7→ (GM−1,HMT ), (ηG, ηH) 7→ (ηGM−1, ηHMT ),
and (ξG, ξH) 7→ (ξGM−1, ξHMT ). A few extra computations show that indeed the metrics
from (32) respect the condition in (6).

Second, we show the construction of one particular family of Riemannian metrics. To this
end, consider the case in (32) where ω1 = 1 and ω2 = ω3 = ω4 = ω. Restricting ω ∈ [0, 1)
guarantees that in the neighborhood of a minimum gx(ζx, ζx) > 0 for all ζx ∈ TxM, satisfying
the criterion of positive definiteness on the tangent space.

The proofs for symmetry compatibility and positive definiteness on the tangent space
conclude the proof of the proposition.
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min
G∈R

n×r

∗

H∈R
m×r

∗

Trace(HGTAGHTB)/2 + Trace(HGTC)

Matrix representation
of an element x ∈ M

x = (G,H)

Computational space M R
n×r
∗ × R

m×r
∗

Group action (GM−1,HMT ) , ∀M ∈ GL(r)

Quotient space R
n×r
∗ × R

m×r
∗ /GL(r)

Tangent vectors in TxM ξx = (ξG, ξH) ∈ R
n×r × R

m×r

Metric gx(ξx, ζx)
for ξx, ζx ∈ TxM

gx(ξx, ηx) = ω1〈ηG,AξGHTBH〉
+ω2〈ηG, 2AGSym(HTBξH) +CξH〉
+ω3〈ηH,BξHGTAG〉
+ω4〈ηH, 2BHSym(GTAξG) +CT ξG〉,

or the metrics proposed in Section 5.1

Cost function f(x) = Trace(HGTAGHTB)/2 + Trace(HGTC)

First-order derivative of
f(x)

fx(x) = (SH,STG),

where S = AGHTB+C

Search direction argmin
ζx∈TxM

f(x) + 〈fx(x), ζx〉+
1

2
gx(ζx, ζx)

Retraction Rx(ξx) that
maps a search direction ξx
onto M

(G+ ξG,H+ ξH)

Table 4: Optimization-related ingredients for the problem (30). The numerical complexity per
iteration of the Riemannian steepest-descent algorithm depends on solving for ζx for the search
direction computation. For example, sparsity in matrices A and B considerably reduces the
computation cost. The retraction mapping is the Cartesian product of the standard retraction
mapping on the manifold R

n×r
∗ [4, Example 3.6.4]. Few choices of the regularizing parameters

ω1, ω2, ω3, ω4 ∈ [0, 1] for relevant situations are discussed in Section 5.1.

Matrix characterizations of various optimization-related ingredients are summarized in
Table 4. The retraction operator is the standard generalization of the retraction operator on
the manifold R

n×r
∗ defined by Absil et al. [4, Example 3.6.4].

It should be noted that numerical performance of algorithms depends on computing the
Riemannian gradient efficiently with the metric (32). This may become a numerically cum-
bersome task due to a number of coupled terms that are involved in (32). However, below we
show that the problem structure can be further exploited to decompose the metric (32) into
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a locally dominating part with a simpler metric structure and a weighted remainder. The
dominant approximation may be preferred in a number of situations.

5.1 Metric tuning and shift policies

It should be emphasized that the cost function in (30) is convex and quadratic in X. Conse-
quently, the cost function is also convex and quadratic in the arguments (G,H) individually.
As a consequence, the block diagonal elements of the second-order derivative Lxx(x) of the
Lagrangian (31) are strictly positive definite. This enables us to construct a family of Rie-
mannian metrics with shifts of the form

gx(ξx, ηx) = ω〈ηG, 2AGSym(HTBξH) +CξH〉
+ω〈ηH, 2BHSym(GTAξG) +CT ξG〉

+ 〈ηG,AξGHTBH〉+ 〈ηH,BξHGTAG〉
︸ ︷︷ ︸

from block diagonal approximation of Lxx(x)

(33)

in the neighborhood of a minimum, where x = (G,H) ∈ R
n×r
∗ × R

m×r
∗ , ξx, ηx are tangent

vectors in R
n×r × R

m×r, and ω ∈ [0, 1). The form in (33) is derived from (32) by choosing
ω1 = ω3 = 1 and ω2 = ω4 = ω. It should be noted that the case ω = 1 is discarded to prevent
singularity of the metric candidate.

Away from the neighborhood, the metric (33) with ω = 0 becomes a good metric candidate
as HTBH and GTAG are positive definite for all (G,H) ∈ R

n×r
∗ ×R

m×r
∗ . The other benefit

of ω being 0 is that the resulting metric has a simpler matrix characterization, and hence it
may be preferred in numerically demanding instances.

5.2 Symmetric positive definite matrices

A popular subset of fixed-rank matrices is the set of symmetric positive semidefinite matrices
[11, 17, 24, 38]. The set S+(r, n), the set of rank-r symmetric positive semidefinite matrices
of size n×n, is equivalent to the set Rn×m

r with symmetry imposed on the rows and columns,
and therefore, it admits a number of factorizations similar to those in Figure 5. Consequently,
the low-rank parameterization discussed earlier, in the context of the general case, has the
counterpart X = YYT , where X ∈ S+(r, n) and Y ∈ R

n×r
∗ (full column rank matrices of size

n×r). This parameterization is not unique as X ∈ S+(r, n) = YYT remains unchanged under
the transformation Y 7→ YO for all O ∈ O(r), where O(r) is set of orthogonal matrices of size
r × r such that OOT = OTO = I. The resulting search space is, thus, the set of equivalence
classes [Y] = {YO : O ∈ O(r)} and is the quotient manifold R

n×r
∗ /O(r) [17].

The following proposition summarizes the discussion on Riemannian metrics for the case
of symmetric positive semidefinite matrices.

Proposition 5.2. Consider the optimization problem

min
X∈Rn×n

1
2Trace(XAXB) + Trace(XC)

subject to X ∈ S+(r, n),
(34)

where A,B ≻ 0 of size n × n and C ∈ R
n×n is a symmetric matrix. Consider also the

factorization X = YYT of rank-r symmetric positive semidefinite matrices to encode the
rank constraint, where Y ∈ R

n×r
∗ (full column rank matrices).
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There exists a family of Riemannian metrics

gx(ξx, ηx) = ω〈ηx, 2AYSym(YTBξx) + 2BYSym(YTAξx) + 2Cξx〉

+ 〈ηx,AξxY
TBY +BξxY

TAY〉,
︸ ︷︷ ︸

Dominant positive definite approximation of Lxx(x)

(35)

on R
n×r
∗ with ω ∈ [0, 1), each of which induces a Riemannian metric on R

n×r
∗ /O(r) in the

neighborhood of the minimum of the problem (34). Here x = Y ∈ R
n×r
∗ , ξx, ηx are vectors in

the tangent space R
n×r, and Lxx(x) is the second-order derivative of the Lagrangian. Beyond

the neighborhood, the metric (35) with ω = 0 becomes a good metric candidate as YTBY and
YTAY are positive definite for all Y ∈ R

n×r
∗ .

Proof. The proof follows from the discussion in Section 5.1.

5.3 A numerical illustration

We showcase the Riemannian preconditioning approach for computing low-rank solutions to
the generalized Lyapunov equation of the form

AXB+BXA = C, (36)

where A,B ≻ 0, and C is a low-rank symmetric positive semidefinite matrix. Matrices have
appropriate dimensions. A is referred to as the system matrix and B is referred to as the mass
matrix. The solution to (36) is expected to be low rank and symmetric positive semidefinite
[8, 21, 38].

To compute low-rank solutions to (36), we minimize the energy norm Trace(XAXB)
−Trace(XC) over S+(r, n) [38]. Proposition 5.2 allows to characterize a family of metrics in
(35) for solving the generalized Lyapunov equation. In contrast, an alternative is to consider
the Euclidean metric, i.e.,

gx(ξx, ζx) = Trace(ζTx ξx), (37)

where x = Y and ξx and ζx are tangent vectors. This is, for example, the Riemannian metric
proposed by Journée et al. [17]. It is invariant to the group action Y 7→ YO for all O ∈ O(r).
Although the alternative choice (37) is appealing for its numerical simplicity, the following
test case clearly illustrates the benefits of the Riemannian preconditioning approach.

We consider the standard benchmark problem from [33, Example 2.1] that corresponds
to discretization of a one-dimensional heat equation from heat flow in a thin rod. For this
example, A is a tridiagonal matrix of size 500 × 500. The main diagonal of A has all the
elements equal to 2. In addition, the first diagonals below and above the main diagonal of
A have all the entries equal to −1. A is an ill-conditioned matrix with condition number
105. The mass matrix B is an identity matrix of size 500 × 500. The matrix C is a rank
one matrix of the form eeT , where eT is a row vector of length 500 of the form [0 0 . . . 0 1].
We seek to find a rank-5 matrix that best solves the generalized Lyapunov equation (36).
Both the algorithms are stopped when either the norm of the gradient is below 10−8 or when
they complete 500 iterations. The plots in Figure 6 show the progress of relative residual
‖AXB+BXA−C‖F/‖C‖F with iterations over 10 random initializations, where X = YYT .
The Riemannian algorithm with the metric (35) and ω = 0 convincingly outperforms the
algorithm based on the Euclidean metric (37) in Figure 6 for a number of runs, where the
initial 300 iterations are shown for clarity.
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Figure 6: The generalized low-rank Lyapunov equation problem (36). The test case is the
benchmark problem from [33, Example 2.1] with n = 500. The proposed Riemannian pre-
conditioning approach with the metric (35) and ω = 0 drastically improves the performance
over the algorithm based on the Euclidean metric (37). Additionally, the choice ω = 0 leads
to a simpler metric structure that can be exploited in a large-scale setup. Here we show the
convergence of the relative residual ‖AXB + BXA − C‖F/‖C‖F (different from the cost
function Trace(XAXB)− Trace(XC)) that is often used as a measure of recovery.

6 Conclusion

This paper addresses the important issue of selecting a metric in the Riemannian optimization
framework on a quotient manifold. We have shown that sequential quadratic programming
provides an insight into selecting a family of Riemannian metrics that takes into account
second-order information of the problem. Quadratic optimization with orthogonality or rank
constraints provides a class of nonconvex problems for which the method is particularly in-
sightful, thanks to local convexity of the cost and constraint when taken separately. In those
instances, Riemannian preconditioning connects to a number of existing algorithms and pro-
vides a geometric interpretation of a number of “shift” policies in numerical linear algebra.
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