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Abstract

Impairments in energy metabolism are implicated Huntington’s disease (HD) pathogenesis. Reduced
levels of the mitochondrial enzyme succinate dehydrogenase (SDH), the main element of complex |1,
are observed post mortem in the brains of HD patients, and energy metabolism defects have been
identified in both presymptomatic and symptomatic HD patients. Chemical preconditioning with 3-
nitropropionic acid (3-NP), an irreversible inhibitor of SDH, has been shown to increase tolerance
against experimental hypoxia in both heart and brain. Here we studied the effect of chronic
preconditioning using low doses of 3-NP (24 mg/kg), administered via the drinking water, on
cognition function and phenotype progression in the R6/2 mouse model of HD. R6/2 mice carrying
CAG repeat lengths of either 250 or 400 repeats were used. Both are transgenic fragment models,
with 250CAG mice having a more rapid disease progression than 400CAG mice. After 3-NP
treatment there were significant improvements in all aspects of the behavioural phenotype, apart from
body weight, with timing and magnitude of improvements dependent on both CAG repeat length and
sex. Specifically, a delay in the deterioration of general health (as shown by delayed onset of
glycosuria and increased survival) was seen in both male and female 400CAG mice and in female
250CAG mice and was consistent with improved appearance of 3-NP treated R6/2 mice. Male
250CAG mice showed improvements but these were short term, and 3-NP treatment eventually had
deleterious effects on their survival rate. When cognitive performance of 250CAG mice was assessed
using a two-choice discrimination touchscreen task, we found that female mice showed significant
improvements. Together, our results support the idea that energy metabolism contributes to the
pathogenesis of HD, and suggest that improving energy deficits might be useful therapeutically.
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Introduction

Huntington’s disease (HD) is an autosomal dominant neurological disease, characterised by early
neurodegeneration of striatum and cortex [1]. Clinical signs and symptoms of HD include chorea,
dystonia, psychiatric disturbance and cognitive decline [2]. While the mechanisms underlying the
neurodegeneration remain unclear, defects in energy metabolism have been identified in both
presymptomatic [3-4] and symptomatic [5] HD patients, as well as in post mortem HD brain [6].
Furthermore, patients in advanced stages of HD experience unexplained weight loss (cachexia)
despite an increased calorie intake [7-8]. Cachexia has also been well documented in the R6/2 mouse

model of HD [9-12].

Studies of energy metabolism in humans reveal a progressive decline in mitochondrial enzyme
activity with normal aging [13-14]. Energy metabolism has been the focus of research in HD for many
years and various hypotheses have been put forward to explain its possible role in the pathogenesis of
HD. Beal first proposed a role for mitochondrial defects in striatal vulnerability [15-17]. An earlier
hypothesis constructed to explain HD striatal pathology was the ‘excitotoxicity hypothesis’[18-19]
[20-24], whereby increased sensitivity and/or prolonged or excessive exposure to glutamate, the
principal excitatory neurotransmitter, results in striatal excitotoxicity [25]. Energy deficits exacerbate
excitotoxicity [26-27] and the current thinking is that multiple mechanisms, including excitotoxicity,
energy deficit, oxidative stress, inflammatory processes, and protein aggregation, are interlinked, and

together trigger the neurodegenerative process [28-29].

Succinate dehydrogenase (SDH), the main element of Complex Il, is an enzyme involved in both the
tricarboxylic acid cycle (TCA) and the electron transport chain. Reduced levels of SDH have been
observed post mortem in the brains of HD patients compared to normal controls [30]. Similar
deficiencies have been identified in the R6/2 mouse. For example, whole brain protein extracts show
transient changes in the expression of Ip (a subunit of Complex I1) between 2 and 12 weeks of age
[31], while high-resolution respirometric (HRR) studies reveal reduced levels of Complex Il in the

striatum at 12 weeks of age [32]. 3-nitropropionic acid (3-NP) is a specific and irreversible inhibitor

3



of SDH [33-34] and systemic administration to rodents eventually causes spontaneous bilateral striatal
lesions, with sparing of NADPH diaphoase interneurons and reactive gliosis [16, 35-37]. Indeed,
before the development of transgenic HD mouse models 3-NP toxicity was widely used as model of

HD in rats [16, 38] and mice [39-40].

In this study, 3-NP was not used as a toxin to induce lesions. Rather, we used 3-NP in a therapeutic
strategy known as ‘preconditioning’ [41]. The theory behind preconditioning, first described by in
1964 [42], is that administration of a toxic substance at a sub-toxic level induces a response that is
protective, or at least limits the degree of damage caused by subsequent presentation of a similar or
stronger dose of the toxin. Chemical preconditioning with 3-NP has been used to show increased
tolerance against hypoxia in both heart and brain [43-47], although these studies used only acute
exposure periods to the preconditioner. Nevertheless, these short periods of preconditioning were able
to confer a significant period of defence (an effect known as the first window of protection) that lasted
for 1-2 hours post-exposure [48-49]. There is also evidence for a second window of protection that is
a delayed, less vigorous response, which occurs 24 hours post-exposure [50]. We wondered if
preconditioning would have any effect on deterioration of phenotype of HD mice. We already have
evidence that there is endogenous protection against disease that derives from genetic mutation, since
young R6/2 mice are less vulnerable than WT mice are to 3-NP [41]. Furthermore, excitotoxins such
as kainic acid [28] and quinolinic acid [51] are less effective in juvenile R6/2 mice than they are in
WT mice. We have suggested that this is due to autoprotection against endogenous toxicity of the
mutant huntingtin protein, a product of the HD transgene. In the present study, we sought to
investigate the effect of chronic preconditioning with 3-NP as a treatment strategy, to establish
whether prolonged treatment with low dose 3-NP could delay phenotype progression and/or improve

cognition function in the R6/2 mouse model of HD.

Methods

Animals



All components of this study were carried out in accordance with the UK Animals (Scientific
Procedures) Act, 1986, and with the approval of the University of Cambridge Animal Welfare and
Ethical Review Board. Lighting was controlled on a 12h light:12h dark cycle, with the light period
starting at 07:30h. Behavioural testing was conducted during the light phase. The housing facility
temperature was maintained at 21-23°C and the relative humidity was controlled (55 £ 10%). Mice
had ad libitum access to water via lowered waterspouts and standard dry laboratory food with access
to nesting materials and a Perspex house in the home cage. In addition, mice were given a daily
supplementary feed of ‘mash’ (pellets soaked in water overnight), one pellet per mouse, unless
otherwise stated. A total of 252 mice (for details see below) were used for this study. Mice were taken
from colonies of R6/2 mice established in the University of Cambridge and maintained by
backcrossing onto CBA x C57BL6 F1 female mice. Genotyping was performed by PCR from tail
snips taken at 3 weeks of age. CAG repeat lengths were measured by Laragen (USA) and determined
using Genemapper software. R6/2 mice had CAG lengths of either 250 (255 + 1; n=84) or 400 (397

1; n=43) repeats.

Experimental Groups

Mice were age-matched and housed in single sex, single genotype cages of 10-12 mice. Single
genotype groups were used to remove any potential increases in appearance or survival which may
result from WT mice acting as ‘nursemaids’ to the transgenic mice. We have shown previously that
increased activity of WT mice, such as that which occurs at mash feeding times, encourages R6/2
mice housed with them to rouse and feed and modifies both their behaviour and survival [52]. Half
the mice received low dose 3-NP in their drinking water, the other half received water only, and acted
as vehicle controls. Two experiments were performed. In the first, 250CAG (n=20 male: 10 3-NP
treated, 10 control; n=20 female: 10 3-NP treated, 10 control), 400CAG (n=22 male: 11 3-NP treated,
11 control; n=21 female: 10 3-NP treated, 11 control) and age matched WT littermate (n=41 male: 20
3-NP treated, 21 control; n=40 female: 20 3-NP treated, 20 control) mice were used for behavioural

phenotype assessment (SHIRPA, glycosuria testing, body weight and survival analysis) as outlined



below. In the second, 250CAG (h=20 male; n=24 female) and age matched WT littermates (n=20

male; n=24 female) mice underwent cognitive assessment using the touchscreen system.

Drug Administration

For one week prior to drug administration, water bottles containing tap water were weighed daily, to
determine the average daily water intake per group for initial drug dose calculations. The drug was
calculated on a per-cage, rather than per-mouse basis. Once the drug was introduced to the water
bottles there was no decrease in water intake, suggesting that there were no issues with palatability of
water containing 3-NP. 3-NP treated mice received 3-NP in their drinking water from 5 weeks of age
(250CAG cognitive assessment groups), 8 weeks of age (250CAG phenotype assessment groups) or
15 weeks of age (400CAG phenotype assessment groups). The cognitive assessment group began
treatment earlier to allow treatment to take place prior to cognitive testing which began at 8 weeks of
age. The remaining mice received tap water and served as controls. The target dose of 3-NP was 24
mg/kg daily. This was administered as a rising concentration. Initial dosing began at12 mg/kg, until
the target dose of 24 mg/kg was reached over the course of a week (dose was increased in 3 mg/kg
increments every second day). After the first week, all water bottles were refreshed twice weekly, at
the same time of day. Water bottles were weighed daily (at the same time each day) to confirm
volume intake, and mice were weighed twice weekly to recalculate the dose rates. The average water
intake per cage, from the previous seven days, was used to calculate the drug dose for the next dosing

period.

Experiment 1 - Phenotype Assessment

SHIRPA

We used a modified version of the SmithKline Beecham, Harwell, Imperial College, Royal London
Hospital, phenotype assessment (SHIRPA) protocol (SmithKline Beecham Pharmaceuticals; Harwell,
MRC Mouse Genome Center and Mammalian Genetics Unit; Imperial College School of Medicine at
St Mary’s; Royal London Hospital, St Bartholomew’s and the Royal London School of Medicine).

The full modified protocol used for SHIRPA testing is outlined in Glynn et al [53]. In brief, a mouse



was removed from the home cage to be individually evaluated in a clean cage. We visually assessed
the mice for a number of phenotypic elements, including piloerection, lordokyphosis, parapebral
closure, fore and hindlimb clasping, tremor and righting reflex. 250CAG mice deteriorate more
rapidly than 400CAG mice [12] so 250CAG mice were tested at two week intervals from 8 weeks of
age and 400CAG mice at 4 week intervals from 15 weeks of age until death. However, only data
collected up to 20 weeks of age for 250CAG mice and 44 weeks of age for 400CAG mice (a time
point where all mice were still alive) were included in statistical analysis. Data were quantified using
a binary system where a ‘normal’ behaviour received a score of 0 and an ‘abnormal’ behaviour
received a score of land a cumulative score determined for each mouse at each timepoint. Higher
scores indicate a greater degree of abnormality.

Portrait photographs

Portrait photographs were taken of all mice at 20 (250CAG mice) and 40 (400CAG mice) weeks of
age from which the angle of spinal curvature was measured as an indication of the degree of
lordokyphosis present.

Glycosuria testing

Urine samples were collected weekly from mice and tested using Diastix reagent sticks (Bayer PLC,
Berks, UK), for detection of glycosuria. The presence of a glycosuria reading >111 mmol/L was
regarded as indicative of diabetic status.

Body weights and survival

Body weights were recorded twice weekly from 8 (250CAG groups) or 15 (400CAG groups) weeks
of age, until the last R6/2 mouse had died or was killed for humane reasons. However, only data
collected up to 20 weeks of age for 250CAG mice and 45 weeks of age for 400CAG mice (a time
point where all mice were still alive) were included in statistical analysis. Age of death was recorded
for all R6/2 mice. Mice were killed when they reached a defined end point (if they were moribund,

lacked a righting reflex, or failed to respond to 10 seconds of gentle stimulation).

Experiment 2 — Cognitive Assessment



Behavioural testing was carried out in 12 automated touchscreen testing chambers. The task used for
testing is similar to that described previously [54]. Mice were trained to use the touchscreen at 5
weeks of age and began discrimination training at 8 weeks of age. They were given 14 daily sessions
of 30 two-choice discrimination trials. After this, the stimuli were reversed for a further 14 sessions
with the new stimulus-reward contingency. Apparatus consisted of an infrared touchscreen (Craft
Data Ltd., Bucks, UK) and a standard modular testing chamber housed within a sound-attenuating box
(Med Associates Inc., Vermont, USA) fitted with a 28 volt DC fan for ventilation and masking of
exterior noise. The inner operant chamber (21.6 x 17.8 x 12.7 cm; Med Associates Inc., Vermont,
USA) consisted of a metal frame with clear Perspex walls and a stainless steel grid floor. A 3W
houselight, pellet receptacle (magazine) and a tone generator (Med Associates Inc., Vermont, USA)
were fitted to the rear wall. The magazine was illuminated by a 3W light bulb and fitted with
photocell head entry detectors to detect the presence of a mouse retrieving a reward pellet. Pellets
were dispensed by a 14mg pellet dispenser situated outside the testing chamber. Stimuli were
presented on an infrared touchscreen located at the opposite end of the chamber. A red Perspex
‘mask’, containing two response windows behind which the stimuli were displayed, was positioned in
front of the touchscreen. Windows were positioned 1.6 cm above the chamber floor, to prevent the
mouse triggering the touchscreen with its tail. To maintain motivation to work for reward pellets,
starting from three days prior to testing, and continuously throughout cognitive testing, mice were
placed on a food-restricted diet, such that their body weight was no less than 85% of the free-feeding

body weight of a standard R6/2 mouse. Mice were fed mash within one hour of completing testing.

Statistical analysis

Statistical analyses were performed using Statsoft Statistica v12 software (Statsoft, Tulsa, Oklahoma,
USA) and Prism 5 (GraphPad Software Inc., San Diego, USA). SHIRPA abnormality scores were
analysed using a repeated measures ANOVA. Although SHIRPA and body weight data were
collected until end stage, only data up to 20 weeks for 250CAG groups and up to 45 weeks for
400CAG groups is presented and analysed since after this time a number of mice had died or been
killed and could therefore not be included in longitudinal analysis. For analysis of touchscreen testing
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we used repeated measures ANOVA (factors: treatment and genotype). Bonferroni’s post-hoc test was
used to determine differences, when significant group effects were identified. Significance levels were

set at p<0.05 for all analyses.

Results

3-NP treatment delays progression of the HD phenotype

Both groups of WT control mice had a mean SHIRPA index of 1 at each data collection point,
irrespective of treatment. This reflects their ‘normal’ phenotype (smooth coat, standard gait etc.).
Delays in phenotype progression, as indicated by a lower SHIRPA abnormality index, were seen in 3-
NP treated 250CAG male and female mice (Figure 1A, B) and 400CAG repeat female mice (Figure
2B) compared to R6/2 untreated control groups. In the male 250CAG 3-NP treated mice there was a
significant delay in phenotype development from 14 to 18 weeks of age, as reflected in their higher
SHIRPA abnormality index (F s, 204=3.3556, p<0.01; Figure 1A), but this improvement was lost by 20
weeks. A similar effect was also seen in the female 250CAG 3-NP treated mice, with a significant HD
phenotype evident from 18 weeks of age compared to R6/2 vehicle treated control mice (F(g,
216)=16.129, p<0.001; Figure 1B). In the 400CAG groups, there was a significant beneficial effect of
3-NP treatment on SHIRPA index in female mice from 36 weeks onwards (Figure 2B; F 7, 135=14.553,
p<0.001). These delays in phenotype progression were consistent with improved appearance of 3-NP
treated R6/2 mice (Figure 3). For example, female 3-NP treated 400CAG mice in particular show a
glossy coat and bright eyes, compared to vehicle treated counterparts (Figure 3E,F). We also saw a
reduction in the degree of lordokyphosis present in the male 250CAG R6/2 mice at 20 weeks of age
(F1,12=19.275, p<0.001; Figure 3C,D). There was a similar effect seen in male 400CAG mice
(F.16=4.8924, p<0.05; Figure 3G,H) at 45 weeks of age, despite the lack of improvement seen in the

SHIRPA index.

3-NP treatment reduces weight gain in WT mice
All R6/2 mice had lower body weights than their WT counterparts throughout the study. The body
weight increase (as a percentage change from baseline) of WT mice in those groups receiving 3-NP
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from 8 weeks of age was significantly lower than that of WT mice in the vehicle treated group in both
male (F, 35=10.257, p<0.01) and female mice (F, 33=7.3986, p<0.05) (Figure 1 C,D). This effect

was not present in WT mice in the 400CAG group treated from 15 weeks of age.

3-NP treatment delays the onset of glycosuria

R6/2 250CAG mice typically develop glycosuria between 9 and 14 weeks of age [55]. While
glycosuria in 400CAG mice has not been reported previously, here, all R6/2 mice developed
glycosuria during the course of treatment. No WT mice developed glycosuria at any stage of the
experiment, regardless of treatment group. Delays in the onset of glycosuria were seen in 250CAG
repeat 3-NP treated female mice (X?=5.353; p<0.05; Figure 1F). Mean age of onset for mice in the
female control groups was 15.6 weeks compared to that of 3-NP treated female mice who developed
glycosuria at 18.7 weeks. There was no significant effect of 3-NP treatment in male 250CAG mice,
with mean age of onset being 16 weeks for 3-NP treated mice and 17.8 weeks for vehicle control
mice. In 400CAG repeat mice, 3-NP treatment resulted in a significant delay in the age of onset of
glycosuria in both male (X?=8.825; p<0.01) and female (X°=5.863; p<0.05) mice (Figure 2 E, F).
Mean age of onset in control groups was 30.4 weeks (males) and 37.6 weeks (females) compared to 3-

NP treated mice that developed glycosuria much later at 36.2 weeks (males) and 48 weeks (females).

3-NP treatment improves survival in R6/2 mice

3-NP treated male 250CAG mice died significantly earlier than untreated control groups (X?=19.95;
p<0.0001; Figure 1, G). However, 3-NP treatment improved survival in female 250CAG repeat mice
(X?= 10.44; p<0.01) (Figure 1, H) and male (X*=8.729; p<0.01) and female (X*=7.049; p<0.01)

400CAG repeat mice (Figure 2G, H). No WT mice died during the course of the study.

3-NP treatment has minor beneficial effects on performance in the touchscreen

R6/2 mice show progressive deficits in touchscreen performance dependent upon the age at which
testing begins [54]. No significant improvements were seen in male 250CAG mice for any of the
measures assessed (Figure 4D,E,F; 6B). Improvements in performance were seen in 3-NP treated
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female 250CAG mice during the acquisition phase of testing (Figure 5D,E,F). Significant
improvements were found in three measures of performance; total correction trials per session, time to
complete a session and the number of sessions required to reach criterion. Female 3-NP treated R6/2
mice required significantly fewer correction trials per daily session compared to all other groups
(F142-6.7764, p<0.05; Figure 5F) and took significantly less time than their vehicle-treated
counterparts to complete each daily session of 30 trials during the acquisition phase of training
(F1.42=8.8327, p<0.001; Figure 4H). The number of sessions required to reach criterion (>70%) by 3-
NP treated R6/2 female mice was not significantly different to that required by WT mice, regardless
of treatment group (Figure 6B). It was also not significantly different from vehicle-treated female
R6/2 mice, although they needed significantly more sessions that WT mice to reach criterion

(F(1.42=4.8938, p<0.05; Figure 6B).

Discussion

In this study, we found that preconditioning with 3-NP delays the onset of phenotype in male and
female R6/2 mice with 250 repeats. It also improves cognitive performance in the touchscreen, delays
the onset of glycosuria and increases survival in female 250CAG R6/2 mice. 3-NP preconditioning

also delays onset of glycosuria and increases survival in both male and female 400CAG mice.

Deficiencies in energy metabolism have long been a focus of HD research and various mechanisms
have been put forward to explain the role that such deficiencies might play in the progression of HD.
It is possible that in HD patients, while a mild energy metabolism impairment may always be present,
deleterious effects which might cause neuronal energy production to fall below a critical level, may
not become obvious until potentiated by the effects of reduced mitochondrial electron transport
enzyme activity seen in normal aging [13-14]. Metabolic deficits therefore, are often not measurable
until the disease has progressed to the later stages. Here we used 3-NP preconditioning using R6/2
mouse models to test the idea that there was a capacity for improvements in energy metabolism and
that this would manifest as phenotypic improvements in our mice. Our working hypothesis was that
mild inhibition of SDH caused by low level 3-NP administration functionally upregulated SDH, so
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that levels are increased by the time that disease-related impairments in energy metabolism are seen.
This may confer protection to striatal neurons through increased stabilisation of the SDH complex, as
suggested by Benchoua et al [56] who restored SDH levels in rat striatal neurons using lentivirus-
mediated gene overexpression. They showed that the overexpression of either the Ip or Fp subunit
restored complex Il levels and blocked mitochondrial dysfunction and striatal cell death. Note that we
did not measure SDH levels, since we have shown previously that the available assays are not
sensitive enough to pick up small changes [41, 57] and we also took our mice to end stage to
maximize the behavioural data available from the study. In future studies it would be valuable to
determine whether or not, at the time when the biggest changes in behaviour occurred, there were
changes in SDH activity, transcriptional and or protein levels. This would best be measured at a much

earlier age than was possible in our study.

WT mice gain weight when kept on an ad lib feeding regime. If 3-NP treatment is modifying energy
metabolism then a slower degree of weight gain in treated WT groups compared to untreated controls
would be expected. Interestingly, a similar effect was not seen in the R6/2 mice receiving 3-NP, even
though weight loss is pronounced in these mice one they become symptomatic. This may be a result

of the increased metabolism already known to exist in these mice [11].

It is possible that the effects of 3-NP we found here are not mediated via direct effects on the CNS but
rather, they may be mediated via cardiovascular improvements. Although HD is unequivocally a
neurological disease, cardiac dysfunction is the second most common cause of death in HD patients
(for review, see Zielonka et al [58]), and has also been identified as a potential factor in the
deterioration of the R6/2 mouse [59-61]. We have suggested previously that cardiac dysfunction plays
a role in the development of the R6/2 phenotype, with hearts of R6/2 mice having significant
differences in terms of function and morphology compared to WT mice, which increase in severity in
line with disease development [60].Gabrielson et al [62] studied the effect of 3-NP toxicity on the

cardiac function of four strains of mice (BALB/c, C57BL/6, FVB/n and 129SVEMS) and found that
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significant levels of cardiac toxicity accompanied the neurotoxity in each. They suggest that the
inhibition of SDH in heart mitochondria contributes to the cause of death in 3-NP poisoning in both
acute and subacute/chronic studies in mice. Studies investigating chemical preconditioning of rat heart
with 3-NP would support this theory. Hu et al [63] found that chemical preconditioning with 3-NP has
cardioprotective effects against ischemia-reperfusion injury in rat heart, with 3-NP treated animals
recovering significantly better following ischemia-reperfusion injury. Basgut et al [64] reported
similar findings, with 3-NP preconditioning significantly reducing infarct size, creatine kinase-MB
(CK-MB), lactate dehydrogenase (LDH) levels, ventricular tachycardia (VT) compared to untreated
controls. If, as suggested earlier, we are restoring SDH levels by preconditioning with 3-NP, then it
may be that we are also reducing (or at least delaying) cardiac dysfunction in our mice, resulting in
improved survival rates in the majority of our mice. No studies have directly evaluated sex differences
in the age of onset of cardiac dysfunction in R6/2 mice, although it is reasonable to assume that onset
of cardiac dysfunction may be delayed in female mice, in line with other aspects of the HD
phenotype. As we did not begin 3-NP dosing until 8 weeks of age (by which age cardiac dysfunction
was already identified in male mice in the Mimh et al study [59]) this may explain the lack of
improvement in survival of male 250CAG R6/2 mice. Indeed, it is possible that 3-NP treatment
exacerbated HD related cardiac deficits in the male mice resulting in the earlier deaths seen in this
study.

Improvements seen in female R6/2 mice were generally larger than those seen in male R6/2
mice in the majority of aspects of this study, in both 250CAG and 400CAG mice, the only exception
being lordokyphosis. This is consistent with previous data from our laboratory showing that
behavioural and cognitive deficits consistently appear earlier in male R6/2 mice than they do in
female R6/2 mice and that male R6/2 mice die earlier [65-66]. These sex differences are consistent
with a previous study where Nishino et al [67] found gender and sex-hormone dependent differences
in the vulnerability to 3-NP intoxication in rats. They suggested that not only does oestrogen protect
against vulnerability to chemical hypoxia by 3-NP, but also that testosterone exacerbates the
vulnerability. This suggestion is supported by data from Mogami et al [68] who found that 17b-
estradiol (Tamoxifen) conferred cytoprotective effects to brain endothelial cells under 3-NP stress. It
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is possible that the testosterone-induced exacerbation of 3-NP intoxication is strong enough to
overcome the beneficial effects conferred by the low-dose 3-NP regime, hence the lack of
improvements seen in the SHIRPA testing of 400CAG male mice. This effect may not have been seen
in the 250CAG male mice because their testosterone levels drop [69]. Another possible reason is that
we did not start treatment of 250CAG repeat mice in the behavioural experiments until they had
reached full maturity at 8 weeks of age. By this age, although not overtly manifest, signs of
neurological abnormality are already appearing [9, 70-72]. It is possible that had we started treatment
of mice earlier, greater improvements would be seen in the R6/2 male mice. Note that it is possible
that because the 3-NP was administered in the drinking water, some individuals may have had a
marginally greater drug intake than others. This may explain the variability of treatment success seen
in some of the testing measures. The dosing method should be considered carefully if preconditioning
strategy is investigated in future studies. Controlled delivery by a minipump would eliminate the

variability, although it would not be possible to alter the drug dose.

Conclusion

Preconditioning with 3-NP delays the onset of the overt phenotype (male and female 250CAG; female
400CAG). It also delays onset of glycosuria (female 250CAG; male and female 400CAG), improves
cognitive performance (female 250CAG) and prolongs survival (female 250CAG; male and female
400CAG). The slowing of phenotype progression supports the idea that regulation of energy
metabolism is a significant therapeutic target for development of drug treatments for HD. While
chemical preconditioning has been widely studied in heart and brain, the potential of using
preconditioning for the treatment of neurodegenerative disease remains largely uninvestigated. It is
clear from the improvements shown here that the potential of preconditioning as a therapy should not
be overlooked, and should be investigated in more detail in HD animal models. Caution, however,
must be exercised when extrapolating potential therapeutic strategies from mice to humans with HD.

However promising the preconditioning approach is, it remains that 3-NP is a powerful mitochondrial
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toxin whose effects are very variable in humans. The wrong dose could cause brain lesions [73],

rather than improve neurological function.
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Figure 1: Phenotype assessment of 250CAG mice 3-NP preconditioning delayed onset of phenotype
in R6/2 male (A, C, E, G) and female (B, D, F, H) mice. Data shown are mean SHIRPA scores (A,B);
body weight changes (C,D); onset of glycosuria (E,F) and survival (G,H). For SHIRPA (A,B) and body
weight (C,D) analysis, only data up to 20 weeks was analysed as after this time some mice had died
or been killed. N numbers at 20 weeks were 10 male vehicle, 10 female vehicle, 10 male 3-NP
treated, 10 female 3-NP treated WT and 10 male vehicle, 10 female vehicle, 10 male 3-NP treated,
10 female 3-NP treated R6/2 250 mice. Data in A-F are mean + SEM. * indicates differences between
treated vs untreated groups *p<0.05; **p<0.01; ***p<0.001. Where error bars are not visible, they
are obscured by the symbols. Dotted line in A and B indicates the level of WT score. In A & B filled
columns represent R6/2 3-NP treated mice, open columns represent R6/2 control mice; In C & D
filled triangles represent WT 3-NP treated mice, open triangles represent WT control mice; InE, F, G

& H filled circles represent R6/2 3-NP treated mice and open circles represent R6/2 control mice.

Figure 2: Phenotype assessment of 400CAG mice 3-NP preconditioning delayed onset of phenotype
in R6/2 male (A, C, E, G) and female (B, D, F, H) mice. Data show SHIRPA (A,B); body weight changes
(C,D); onset of glycosuria (E,F) and survival (G,H). For SHIRPA (A,B) and body weight (C,D) analysis,
only data up to 45 weeks was analysed, as after this time some mice had died or been killed. N
numbers at 45 weeks were 11 male vehicle, 10 female vehicle, 11 male 3-NP treated, 10 female 3-NP
treated WT and 11 male vehicle, 11 female vehicle, 11 male 3-NP treated, 10 female 3-NP treated
R6/2 250 mice. Data in A-F are mean + SEM. * indicates differences between treated vs untreated
groups *p<0.05; **p<0.01; ***p<0.001. Where error bars are not visible, they are obscured by the
symbols. Dotted line in A and B indicates the level of WT score. In A & B filled columns represent
R6/2 3-NP treated mice, open columns represent R6/2 control mice; In C & D filled triangles
represent WT 3-NP treated mice, open triangles represent WT control mice; In E, F, G & H filled

circles represent R6/2 3-NP treated mice and open circles represent R6/2 control mice.
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Figure 3: Representative photographs of late stage R6/2 mice showing angles of spinal curvature
End stage is 20-25 weeks for 250CAG mice and >45 weeks for 400CAG mice. Portraits shown in A, C,
E, G and | are: male WT (A), 250CAG control (C), 250CAG 3-NP treated (E), 400CAG control (G) and
400CAG 3-NP treated (I) mice. Portraits shown in B, D, F, H and J are: female WT (B), 250CAG control
(D), 250CAG 3-NP treated (F), 400CAG control (H) and 400CAG 3-NP treated (J) mice. Line indicates

the angle of spinal curvature.

Figure 4: Cognitive testing of male 250CAG mice in the touchscreen Data show the acquisition and
subsequent reversal of a two-choice discrimination task for male WT (A, B, C) and R6/2 (D, E, F) mice.
Performance measures shown are percent correct (A,D); total number of correction trials (B,E),
number of sessions to criterion (C,F) and time taken to complete 30 trials (D,H). Data points are
mean = SEM. For all panels filled circles (®) represent 3-NP treated mice and open circles (o)

represent control mice.

Figure 5: Cognitive testing of female 250CAG mice in the touchscreen Data show the acquisition
and subsequent reversal of a two-choice discrimination task for female WT (A, B, C) and R6/2 (D, E,
F) mice. Performance measures shown are percent correct (A,D); total number of correction trials
(B,E), number of sessions to criterion (C,F) and time taken to complete 30 trials (D,H). Data are mean
+ SEM. * indicates differences between treated vs untreated groups *p<0.05; ***p<0.001. For all

panels filled circles () represent 3-NP treated mice and open circles (o) represent control mice.

Figure 6: Cognitive testing of male and female 250CAG mice in the touchscreen The number of
sessions needed to reach criterion for Male (A) and female (B) R6/2 mice are shown in control (open
columns) and 3-NP treated (closed columns) mice. Data are mean * SEM. *p<0.05; **p<0.01;

*%*p<0.001.
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