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A/H7N9 viruses bind to both human and avian receptors. Here, we show that a switch towards human 15 

receptor specificity caused by the G219S substitution in hemagglutinin (HA) coincided with a decrease in 16 

stability of A/Anhui/1/13 virus HA, which could be restored by several amino acid substitutions. We thus 17 

identified substitutions altering the stability and receptor binding preference of A/H7N9 viruses, properties 18 

that are associated with airborne transmission of avian influenza viruses between mammals.  19 
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Recent human infections with influenza A/H7N9 viruses in China have raised concern of a 20 

pandemic threat emerging from avian reservoirs. Until August 2014, A/H7N9 viruses caused 452 21 

laboratory-confirmed human cases of infection, of which 124 were fatal. (19). To date, no sustained 22 

human-to-human transmission of A/H7N9 viruses has been detected, although some of these viruses 23 

possess known mammalian adaption markers in the HA and in the polymerase genes (18). Studies using 24 

the ferret model have demonstrated that the airborne transmissibility of A/H7N9 viruses was more 25 

efficient than that of other avian influenza viruses, but less efficient as compared to pandemic and 26 

seasonal human influenza viruses (1, 13, 18, 21, 25, 26). The relatively inefficient airborne transmissibility 27 

of A/H7N9 viruses could be partially due to their dual receptor specificity (15, 20). Most A/H7N9 virus 28 

isolates can recognize both avian and human receptors (15), as the result of a leucine at position 217 (H7 29 

numbering, corresponding to position 226 in H3 numbering (2)). However, phenotypic traits beyond 30 

human receptor binding preference, such as increased acid or temperature stability, have been shown to 31 

be critical for airborne transmission of avian A/H5N1 viruses between ferrets (8, 10). Here, we describe 32 

several amino acid substitutions that change the receptor binding specificity and stability of the HA of 33 

A/H7N9 A/Anhui/1/13 virus (AN1). 34 

We first investigated the impact of two substitutions in the receptor-binding site, L217Q and 35 

G219S. AN1 virus with amino acid substitution L217Q was previously detected in a minor virus population 36 

that emerged in ferrets upon inoculation with the AN1 virus isolate (13). The Q217L/G219S combination 37 

contributed to the emergence of the 1957 H2N2 and 1968 H3N2 pandemic viruses and is known to be 38 

responsible for the switch in binding specificity of H2 and H3 influenza viruses from avian to human 39 

receptor preference (12). Tharakaraman et al. showed that the G219S substitution resulted in increased 40 

binding of AN1 HA to the apical surface of human trachea and alveolar epithelium (17), but its impact on 41 

the receptor specificity of AN1 was not determined. Recombinant viruses containing 7 gene segments of 42 

the attenuated virus A/Puerto Rico/8/38 and HA of AN1 with or without mutations of interest were 43 

produced in 293T cells and propagated in MDCK cells by reverse genetics according to standard 44 

procedures (5). Binding properties of recombinant viruses to α2.3- and α2.6- linked sialic acids (SA), the 45 

avian- and human-type receptors respectively, were assessed using a modified turkey red blood cell 46 

(TRBC) assay (3). The latter analysis confirmed that the AN1WT virus possesses both avian and human 47 
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receptor binding preference as shown previously (13) (Table 1). AN1L217Q virus predominantly bound to 48 

avian receptors, but with residual binding to human receptors. This is in agreement with the study of Shi 49 

et al., that also showed that the L217Q substitution in AN1 HA did not completely abrogate human 50 

receptor binding, implying that other substitutions in the RBS might contribute to the α2,6-SA preference 51 

of AN1 (15). Moreover, we determined that AN1G219S virus bound exclusively to human receptors. This is 52 

in contrast to Yang et al., where the introduction of G219S in A/Shanghai/2/13 HA, also possessing the 53 

Q217L substitution, did not completely switch the receptor specificity as determined by glycan microarray 54 

(22). 55 

HA-mediated cell-to-cell fusion was assessed using a syncytium formation assay in Vero cells, 56 

upon transfection of HA gene segments expressed from a pCAGGS expression plasmid and subsequent 57 

exposure to different pH (10). The pH threshold at which cell-to-cell fusion was triggered by AN1WT HA 58 

was 5.6, which is relatively high compared to human influenza viruses (6) (Fig 1a). For AN1L217Q HA, the 59 

fusion threshold decreased to pH 5.4 while AN1G219S HA showed a pH threshold of fusion > 6.0. The 60 

conformational change of HA from a non-fusogenic to a fusogenic state can also be triggered at neutral 61 

pH when the HA is exposed to increasing temperature. Therefore, the heat stability was assessed using a 62 

temperature sensitivity assay to further assess HA stability (10). In agreement with the results of the 63 

fusion assay, AN1L217Q HA showed increased temperature stability, whereas AN1G219S HA was less stable 64 

compared to AN1WT HA (Fig 1b). These results are consistent with what was recently shown for airborne-65 

transmissible A/H5N1 virus, for which human receptor specificity coincided with decreased stability of HA 66 

in the absence of compensatory mutations (10).  67 

We further investigated whether substitutions could increase the HA stability of AN1WT to levels 68 

comparable to human or airborne viruses or compensate for the impact of the G219S substitution. Two 69 

substitutions – H103Y and T315I (H5 numbering) – are known to increase the stability of A/H5N1 viruses 70 

via different mechanisms (4, 7, 8, 10, 11). Using computational modelling , we identified a N94K 71 

substitution (16), located at the trimer interface of AN1 HA, which could potentially have a similar impact 72 

as the H103Y substitution in HA of A/H5N1. Substitution N94K is predicted to interact with E74 of HA2 in 73 

the neighboring monomer (Fig 2b). However, this would come at the expense of E74 losing an interaction 74 

with Q76 in HA2 of another monomer, resulting in little overall change in stability. We further investigated 75 
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the A210E substitution, also located at the trimer interface although more distal to the stalk, which was 76 

detected as a minor variant in ferrets upon inoculation with the AN1 virus (13). Substitution A210E is 77 

predicted to yield interactions with the side chains of both T156 and S237 on the neighboring monomer, 78 

thus increasing its stability (Fig 2c). These interactions are presumably affected when this mutation is 79 

combined with G219S, due to their close proximity. We also investigated the K58I substitution in HA2, 80 

which is known to increase the HA stability of A/H5N1 viruses (24). In AN1, amino acid K58 is predicted to 81 

interact with nearby N282, causing a kink in the peptide backbone and less than optimal interaction 82 

between the adjacent monomers (Fig 2d). The K58I mutation would, surprisingly, lead to a loss of this 83 

interaction but presumably allows the movement of the backbone, improving interactions of the 84 

neighboring charged amino acids R54 and E57 in HA2 to the adjacent monomer.  85 

Substitutions N94K, K58I and A210E were assessed for their ability to alter the stability of both 86 

AN1WT and AN1G219S. Substitution N94K caused an increase in acid stability in both AN1WT and AN1G219S 87 

HA (Fig 1a). However, the temperature stability of AN1N94K and AN1G219S N94K viruses was not increased 88 

compared to AN1WT and AN1G219S viruses (Fig 1b). The K58I substitution resulted in a marked increase in 89 

acid and temperature stability of AN1 HA with and without the G219S substitution (Fig 1a-b). AN1A210E HA 90 

presented a similar pH threshold for fusion as the AN1WT HA. However, the A210E substitution resulted in 91 

a decrease of the pH threshold for fusion of AN1G219S by 0.2 pH unit (Fig 1a) and a higher HA 92 

thermostability with and without the G219S substitution (Fig 1b). 93 

Here, we show that a switch towards human receptor specificity coincided with a decrease in 94 

stability of HA of the AN1 virus. Moreover, we demonstrated that several compensatory amino acid 95 

substitutions can restore the acid and/or temperature stability of the AN1G219S HA and increase the 96 

stability of AN1WT HA. Interestingly, the effect of K58I on HA stability was similar for the A/H7N9 and 97 

A/H5N1 HA subtypes. In previous studies, the K58I substitution has been associated with an increase in 98 

virus replication of A/H5N1 viruses in the upper respiratory tract of mice and ferrets (9, 14, 23, 24). It 99 

would be interesting to study the impact of this substitution on replication and transmission in ferrets. 100 

Keeping in mind that (acid) stability may only be a surrogate marker for another phenotype (e.g. stability 101 

in aerosols or respiratory droplets), increased knowledge of amino acid substitutions that alter the HA 102 
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stability across HA subtypes would help to better understand stability as a biological trait for replication 103 

and transmission of influenza viruses.  104 

This study identified amino acid substitutions that alter the HA stability and binding preference of A/H7N9 105 

viruses, properties that have been shown critical for airborne transmission of avian influenza viruses 106 

between mammals. These data may be useful for surveillance and assessment of the pandemic potential 107 

of zoonotic viruses, upon confirmation of the virus phenotypes in appropriate animal models.  108 
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Table 1. Receptor binding specificity of AN1WT and mutant viruses determined by a modified TRBC 115 

hemagglutination assay 116 

 HA titer (HAU/50 μl) 

Virus TRBC VCNAa-TRBC α2,3-TRBC α2,6-TRBC 

VN1194/04(A/H5N1) 64 Neg 128 Neg  

NL213/03(A/H3N2) 64 Neg Neg  64 

AN1wt 64 Neg 4 24 

AN1L217Q 64 Neg 64 2 

AN1G219S 32 Neg  Neg  8 

a VCNA, Vibrio cholerae Neuraminidase 117 



 7

Figure 1. pH threshold of fusion and thermostability of AN1WT HA and mutant HAs 118 

(A) Syncytium formation in Vero cells expressing wildtype or mutant AN1 HA proteins after exposure to 119 

different pH. The black boxes represent the range of pH values at which fusion was detected 120 

microscopically. (B) HA protein stability as measured by the ability of viruses to agglutinate TRBCs after 121 

incubation at 50 ºC for the indicated times (minutes). Colors indicate the HA titers upon treatment at 122 

various time-points at 50 ºC as shown in the legend. 123 

 124 

Figure 2. Cartoon representation of a model of the trimer structure of HA of AN1 at different positions. 125 

(A) HA of AN1 with the substitutions studied annotated. (B) Mutant N94K (cyan) is predicted to interact 126 

with E74 in HA2 of the neighboring monomer but results in the loss of an interaction between E74 and 127 

Q76. (C) Mutant A210E (shown as orange sticks), close to G219 (magenta), is predicted to interact with 128 

the side chains of both T156 and S237 on the neighboring monomer. (D) At position 58, there is a gap 129 

between the monomers due to the interaction of K58, kinking the peptide backbone. Substitution K58I 130 

could allow the backbone to straighten and form more inter-monomer interactions. 131 
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