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Abstract: 

New strategies for visualizing self-assembly at the nanoscale level are prone to grant deep 

insights into the function and dysfunction of molecular machineries in cells and living 

organisms. Of particular interest is the self-assembly of misfolded proteins into amyloid fibrils, 

which is related to a range of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s 

diseases. Here, we probe the links between the mechanism of α-synuclein aggregation and its 

associated neuronal toxicity by using optical nanoscopy directly in a neuronal cell culture model 

of Parkinson’s disease. The nanoscale level of detail revealed by super-resolution microscopy 

enables us to show that amyloid fibrils of the protein are taken up by neuronal cells and act as 

seeds for elongation reactions which both consume endogenous α-synuclein and suppress its 

de novo aggregation. When α-synuclein is internalized in its monomeric form, however, it 

nucleates and triggers the aggregation of endogenous α-synuclein, leading to apoptosis, 

although there are no detectable cross-reactions between externally added and endogenous 

protein species. Monomer-induced apoptosis can be reduced by pre-treatment with seed fibrils, 

suggesting that partial consumption of the externally added or excess soluble α-synuclein can 

be significantly neuroprotective. 

\body 

The proliferation of α-synuclein (AS) aggregates (1–6), including the existence of distinct ‘prion-like’ 

strains (7, 8) as well as their spatial propagation throughout the brain (9), have been proposed to occur 

in the brains of patients suffering from Parkinson’s disease (PD) but their links to pathology and to 

neuronal death have remained elusive (10–13). In this study, we use optical nanoscopy (14–18) to 

observe neurons directly and to assay AS internalization, as well as fibril-induced templating reactions 

involving endogenous AS at the molecular level. We further correlate this information with toxic 

phenotypes.  

We have previously shown that the presence of AS ‘’seed fibrils’’ or ‘’seeds’’, short fibrils, pre-formed in 

vitro (see Fig. 1 and Materials and Methods section) favors elongation reactions over spontaneous 

nucleation (term used for seed-independent aggregation hereafter) in vitro (18). Furthermore, the seed 

fibrils were found to display highly inhomogeneous growth kinetics, with a significant fraction showing 

little or no growth at all (18). Here, we use two-color direct stochastic optical reconstruction microscopy 

(dSTORM), a super-resolution imaging method (14), to investigate how such processes may be 

modified in the cellular environment. The results show the potential of this technique for studying the 

mechanisms of aggregation events in vivo and provide evidence for the neuroprotective role of reducing 

the concentration of free AS in the cellular environment. 

Results and Discussion 

Externally added seed fibrils of α-synuclein act as templates for exogenously added monomeric 

α-synuclein and prevent its nucleation. We first incubated neuronal cells with AS seed fibrils (50 nM, 

5% covalently labeled with Alexa Fluor 568 (AF568), green) and AS monomers (500 nM, 10% covalently 

labeled with Alexa Fluor 647 (AF647), red), either each individually, or both in sequence. Either seed 

fibrils and/or monomeric protein were taken up by cells within 1 h (Suppl. Fig. 1). Two-color dSTORM 

imaging permitted us to distinguish between seed species and their subsequent elongation by monomer 

addition (see Suppl. Info for details). When cells were incubated with monomer only, we found that 

spontaneous aggregate formation by monomeric AS within cells occurs faster than in vitro (Fig. 2a and 

c) where aggregation proceeds slowly in the absence of mechanical agitation and/or surfaces that 

induce primary nucleation (19, 20). This observation suggests that within a cellular environment 

catalytically active surfaces, such as e.g. lipid bilayers (20) or low pH in endosomes (21) enhance the 

nucleation rate of AS. In the presence of both monomers and seed fibrils however (Fig. 2b), the 
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elongation of the latter via monomer addition dominates over spontaneous formation of aggregates. 

Indeed, dSTORM experiments performed in SH-SY5Y cells show that the majority of added monomeric 

AS (red) is sequestered by the added AS seeds (green) (Fig. 2b and d). In particular, Fig. 2d shows a 

comparison between the lengths of aggregates formed by nucleation of exogenously added monomeric 

protein when this is added together with seed fibrils (red triangles-indicated by arrowheads in Fig. 3b) 

and the extent of seed elongation by exogenously added monomeric protein (dark blue squares-

indicated by arrows in Fig. 3b). In order to quantify seed fibril elongation by added monomeric AS, we 

analyzed the length distributions of the species observed in each of the two detection channels (‘’red’’ 

for monomer and ‘’green’’ for seed fibrils) separately. We applied masks to imaged areas in which 

‘’green’’ and ‘’red’’ signals co-localized and subsequently quantified the length of the red aggregates, 

which had elongated the seed fibrils. Similarly, in order to quantify the nucleation of added monomeric 

protein, we measured the length of the aggregates of the red channel which did not co-localize with any 

green seed fibrils (see Materials and Methods for details).  Due to the high spatial resolution of dSTORM 

imaging, we were able to distinguish between these two types of aggregation processes. 

Seed fibril elongation dominates over nucleation of endogenous AS. In a next step we investigated 

whether or not exogenously added AS seed fibrils can be elongated by the endogenous AS present in 

dopaminergic neurons. We incubated both ventral-mesencephalic (VM) and SH-SY5Y cells with labeled 

AS seeds (50 nM, 5% covalently labeled with AF568, green) for 1 h before washing and incubating the 

cells in AS-free medium for 24 h. The neurons were then fixed and stained with primary antibodies 

against endogenous AS for either VM or SH-SY5Y cells, followed by a secondary AF647-labeled 

antibody. The dSTORM images (Fig. 3) show that the exogenously added seed fibrils (green) are 

elongated through the addition of endogenous AS (red). We refer to the ensuing fibrillar species as 

hetero-fibrils (Fig. 3b and c) in both VM and SH-SY5Y cells. Moreover, we have measured seed 

elongation by comparing the size of seed fibrils in vitro with fibrils that were present in cells after 24h 

incubation in AS-free medium using TEM and obtain similar results as described above using super-

resolution imaging (see Suppl. Fig. 3 and Suppl. Information for details).  

A comparison of the lengths of endogenous AS aggregates, which do not co-localize with seeds and 

must therefore have formed by spontaneous nucleation (“Nucleation’’ in Fig. 3d), with those which form 

the elongated segment of the added seed fibrils, giving rise to hetero-fibrils (“Seed elongation’’ in Fig. 

3d) demonstrates that endogenous AS is preferentially recruited to elongate exogenous seeds rather 

than undergoing nucleation. The analysis of the length distributions for seed elongation and monomer 

nucleation was performed in a similar fashion as described earlier for seeded elongation by 

exogenously added monomer (see Materials and Methods section in SI). In order to examine the 

likelihood of random co-localization between objects in the red and green channels, we performed a 

quantitative co-clustering analysis using Ripley’s K function (see Suppl. Info). The results in Suppl. Fig. 

4 show that there is no random co-localization between seed fibrils and monomeric protein. On the 

contrary, there is a clear positive correlation between seeds and addition of monomer, suggesting that 

seed fibrils grow by elongation reactions. 

Furthermore, we found that neither of the primary antibodies used displayed significant cross-reactivity 

with the labeled AS added exogenously. We compared the length of hetero-fibrils formed in cells with 

the length of the initial AF568-labeled seed fibrils measured in vitro by staining the latter with the same 

primary and secondary antibodies as used in cells (Suppl. Fig. 5). The average length of the hetero-

fibrils in cells was significantly greater than that of the initial seed fibrils. Overall, these data suggest 

that in neurons the rate of monomer addition to a pre-formed seed fibril is significantly faster than that 

of spontaneous nucleation, for both exogenously added and endogenous monomeric protein.  

Monomeric, but not fibrillar AS, added exogenously to neurons induces apoptosis after 72 h. 

Many studies have recently shown that smaller, oligomeric species of AS rather than mature fibrils 

induce toxicity (12, 13, 22–24). Here, we addressed directly whether or not seed fibrils that are capable 

of seeding endogenous AS can induce toxicity in neuronal cells, as some reports have suggested (8, 
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25, 26). Using an apoptosis detection assay (Fig. 4d and Suppl. Fig. 9) we show that adding unlabeled 

seed fibrils (either 50 nM or 500 nM) to neurons does not lead to significantly increased cell death within 

72 h of incubation in AS-free medium in comparison to untreated control neurons. In contrast, we find 

that the addition of unlabeled monomeric AS (500 nM) leads to significantly increased levels of 

apoptosis in VM cells under similar experimental conditions (Fig. 4d and Suppl. Fig. 6 and 9), confirming 

reports that correlate increased levels of AS with disease pathology (27, 28).  

Exogenously added monomeric AS triggers the nucleation of endogenous AS. To test whether or 

not exogenous monomeric AS induces toxicity via co-aggregation with endogenous AS, we added 

monomeric AF647-labeled AS (500 nM, 10% covalently labeled with AF647, red) to VM cells in the 

absence of seed fibrils. Using the same protocol as described above for the detection of hetero-fibrils 

in VM and SH-SY5Y cells we observed that aggregates of endogenous AS were formed throughout the 

cell, even in areas that were not in close proximity to incorporated exogenous protein. Moreover, 

dSTORM imaging revealed that the mean area of endogenous AS particles (stained with a primary and 

a secondary antibody conjugated with AF568, green) formed in the presence of exogenously added 

monomer was significantly higher than that of endogenous AS species present in control cells that had 

not been treated with exogenous AS monomers (Fig. 4c). It thus appears that the endocytosed 

exogenous monomer triggers the aggregation of endogenous AS (Fig. 4a (iii)) without the two moieties 

coming necessarily into direct contact. Similar results were obtained for SH-SY5Y cells (Suppl. Fig. 7). 

However, as we have previously shown in Fig. 2, exogenously added monomeric AS self-nucleates and 

forms small aggregates inside the cells. It therefore remains to be determined whether or not the 

exogenously added monomeric protein upon formation of small aggregates, can indirectly trigger 

endogenous AS nucleation via other mechanisms such as cell stress, the production of oxidative 

species, or through a general loss of protein homeostasis. Overall, these findings therefore link the 

aggregation of endogenous AS induced indirectly by exogenous monomer with an increased toxicity. 

Endocytosed monomeric AS has a reduced propensity to seed endogenous AS compared to 

pre-formed AS fibrils. Having established that seed fibrils can elongate via addition of monomeric AS, 

both externally added and endogenous, we investigated the growth propensity of aggregates formed 

by endocytosed monomeric protein. We find that these aggregates have a reduced propensity to seed 

endogenous AS relative to pre-formed AS seed fibrils. Indeed, in previous experiments performed in 

vitro (18) we observed a high level of heterogeneity in the elongation rates for individual AS fibrils within 

a given population. We thus hypothesized that aggregates formed of endogenous AS upon addition of 

exogenous monomer might correspond to non-fibrillar structures or fibrillar populations with low seeding 

propensity. To test this idea we treated VM cells for 1 h with AF647-labeled monomeric AS (red), 

incubated them in AS-free medium for either 3 or 7 days and then for 1 h in medium containing 

monomeric AF568-labeled AS (green). This procedure was followed by a 24 h incubation period in AS-

free medium (see Suppl. Information for details). Subsequent dSTORM imaging (Suppl. Fig. 8a and b) 

reveals little growth of AF647-labeled AS aggregates via addition of AF568-labeled monomer, despite 

the two being clearly co-localized. Most of the aggregates appear globular, with only a few featuring 

elongated, fibrillar shapes. Taken together with the in vitro data reported earlier, these findings are 

consistent with the concept of amyloid fibril structural polymorphism (5, 29), i.e. that aggregates of the 

same peptide can exhibit a variety of conformational structures. This observation is interesting in the 

light of recent reports demonstrating that fibrillar mouse explants do not in all cases induce seeding in 

non-transgenic mice (30) and in other animal models of disease (31–33). Furthermore, our results 

indicate that in addition to fibrillar AS species, soluble AS can readily aggregate following uptake by 

cells, a conclusion similar to that drawn from experiments with Tau in a cellular model of Alzheimer’s 

disease (21).  

Apoptosis can be counteracted by the addition of seed fibrils prior to exposure to monomeric 

AS. In a final set of experiments we found that upon pre-incubation of neurons with seed fibrils for 1 h 

prior to the addition of monomeric AS, apoptosis was reduced to the levels observed in control cells 

(Fig. 4d). These results indicate a direct correlation between the nucleation of endogenous AS and 
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apoptosis when exogenous monomeric AS is added to neurons alone, but not when seed fibrils are also 

present. It appears likely that free monomeric AS is rapidly sequestered by the added seed fibrils, thus 

reducing the levels of soluble protein and decreasing the propensity for de novo formation of 

aggregates. The process of transmission of toxicity-inducing species from cell to cell thus appears to 

be potentially more complex than the simple transmission of fibrillar aggregates.  

In conclusion, we have established a nanoscopic assay to track aggregation processes directly in 

neuronal cells which provides for a powerful tool to probe the links between specific mechanisms of AS 

amyloid fibril self-assembly and toxicity. In particular, we have shown that exogenously added fibrils can 

seed endogenous AS and that subsequent elongation of seed fibrils dominates over nucleation of 

endogenous AS. Moreover, exogenously added monomeric AS triggers aggregation of endogenous AS, 

and monomeric, but not fibrillar, AS added exogenously to neurons induces apoptosis. The latter effect 

however, can be counteracted by the addition of seed fibrils prior to exposure to monomeric AS, which 

may prevent the formation of small toxic species by reducing the excess monomeric protein pool. Taken 

together, our data suggest that the level of soluble AS is crucial to the development of AS pathology 

and that the relative concentrations of the different forms of AS are likely to play key role in the spreading 

of disease.  

 

Materials and Methods 

Wild-type human α-synuclein was recombinantly expressed and purified as described previously (19). 

Super-resolution imaging in vitro and in cells was performed using a dSTORM microscopy setup based 

on a Nikon Eclipse TE 300 inverted wide-field microscope and a 100x, 1.49 NA TIRF (total internal 

reflection fluorescence) objective lens (Nikon, UK Ltd.) as described in (18). The experiments were 

performed on both neuroblastoma cell cultures and on Ventral Mesencephalic (VM) neurons, dissected 

from rat embryos. Details on all the experimental protocols, methods and data analysis can be found in 

the Supplementary Information. 
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Figures: 

 

Figure 1: a) i) AFM (height and topographic profile) and ii) dSTORM images of AS seed fibrils labeled with AF568, 

formed and imaged in vitro, prior to addition to neuronal cell cultures. b) Histogram depicting the length distribution 

of such seed fibrils, determined by dSTORM imaging. 
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Figure 2: a) i) Overlaid differential interference contrast (DIC) and conventional fluorescence image of an SH-

SY5Y cell treated for 1 h with AF647-labeled (red) AS monomer followed by a 24 h incubation in AS-free medium. 

a) ii) and iii) Zoomed-in dSTORM images showing the nucleation of monomeric AS inside neuronal cells, after 

incubation for 1 h followed by incubation for 24 h in AS-free medium. Scale bars: 1 µm. The image in (a)(ii) 

corresponds to the aggregates in the area indicated by the white arrow in (a)(i). b) i) Overlaid DIC and conventional 

fluorescence image of an SH-SY5Y cell treated for 1 h with AF568-labeled (green) AS seeds and then for 1 h with 

AF647-labeled (red) AS monomers followed by a 24 h incubation in AS-free medium. b) ii) and iii) Zoomed-in 

dSTORM images showing the seeds elongated by exogenously added monomeric AS, after 24 h incubation in AS-

free medium (red, indicated by an arrow). Scale bars: 1 µm. The image in (b)(ii) corresponds to fibrils in the area 

indicated by the white arrow in (b)(i). c) Panels depicting different dSTORM images of monomeric AS after 24 h of 

incubation in vitro: no aggregation is observed. Scale bars: 500 nm. d) Quantification of the lengths of different AS 

species observed: monomeric AS after 24 h of incubation in vitro (light blue inverse triangles, panel c), aggregates 

formed of added monomeric AS after 24 h of incubation in cells that had been treated with monomeric AS only 

(purple circles, panel a), aggregates of added monomeric protein (AF647-labeled) in cells that do not co-localize 

with seeds after 24 h and indicated by an arrowhead in (b)(ii) and (iii) (red triangles, panel b), and the extent of 

seed elongation by addition of monomeric protein (AF647-labeled) in cells treated consecutively with seeds and 

monomeric AS after 24 h and indicated by an arrow in (b)(ii) and (iii) (dark blue squares, panel b). The statistical 
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analysis was performed using a one-way ANOVA: F(2, 713)=48.31 followed by a Tukey’s multiple comparison test. 

****: p<0.0001. 

 

 

Figure 3: a) i) and ii) Overlaid DIC and wide-field fluorescence images of ventral-mesencephalic (VM) cells treated 

for 1 h with AF568-labeled AS seed fibrils (green), incubated for 24 h in AS-free medium and immunostained for 

endogenous AS with a secondary antibody tagged with AF647 (red). b) Zoomed-in dSTORM images of hetero-

fibrils formed of exogenous seeds (green) elongated by endogenous AS (red, indicated by an arrow) in VM cells. 

The top two images correspond to fibrils located in the areas indicated by the white arrows in (a). Scale bars 

correspond to 500 nm. c) Zoomed-in dSTORM images of hetero-fibrils formed of exogenous seeds (green) 

elongated by endogenous AS (red, indicated by an arrow) in SH-SY5Y cells. d) Quantification of the extent of seed 

elongation by endogenous AS, such as this indicated by an arrow in (b) and (c) (“Seed  elongation’’) and of the 

size of aggregates consisting of endogenous AS only, as indicated by an arrowhead in (b) (“Nucleation’’). The 

statistical analysis was performed using an unpaired t-test. ***: p<0.001. The experiment was repeated 8 times in 

SH-SY5Y cells and 7 times in primary VM cell cultures and for each experiment at least 8 randomly chosen areas 

on the glass coverslip were imaged. 
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Figure 4: a) i) and b) i) Overlaid DIC and wide-field fluorescence images of VM cells immunostained for 

endogenous AS using a secondary antibody tagged with AF568 (green); either (a) treated for 1 h with monomeric 

AS labeled with AF647 (red), followed by a 24 h incubation in AS-free medium, or (b) untreated. a) ii) and b) ii) 

Zoomed-in dSTORM images in the areas indicated by white arrows. a) iii) and b) iii) Panels depicting zoomed-in 

dSTORM images of aggregates of the endogenous AS species (green) in both treated (a) and control cells (b); the 

scale bars indicate 500 nm. c) Size distribution of endogenous AS species formed in control cells compared with 

those in cells treated with monomeric AS. The statistical analysis was performed using an unpaired t-test. **: 

p<0.01. The experiment was repeated 7 times and for each time 10 randomly chosen areas were imaged at 

different locations on the glass coverslip. d) Percentage of apoptotic cells in control cells (blue), cells treated with 

monomer only (red), cells treated with seeds only (green) and cells treated consecutively with seeds and monomer 

(yellow). The statistical analysis was performed using a repeated measures ANOVA: F(3, 12) = 7.198 followed by 

a Tukey's multiple comparisons test. *: p<0.05; **:<0.01. The experiment was repeated 4 times and each time two 

samples per condition were analyzed. 

 


