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Abstract 

Charge separation and recombination are key processes determining the performance of organic 

optoelectronic devices. Here we combine photoluminescence and photovoltaic characterisation 

of organic solar cell devices with ultrafast multi-pulse photocurrent spectroscopy to investigate 

charge generation mechanisms in the organic photovoltaic devices based on a blend of an 

alternating polyquinoxaline copolymer with fullerene. The combined use of these techniques 

enables the determination of the contributions of geminate and bimolecular processes to the 

solar cell performance. We observe that charge separation is not a temperature-activated 

process in the studied materials. At the same time, the generation of free charges shows a clear 

external-field and morphology dependence. This indicates that the critical step of charge 

separation involves the non-equilibrium state that is formed at early times after photoexcitation, 

when the polaronic localisation is not yet complete. This work reveals new aspects of molecular 

level charge dynamics in the organic light-conversion systems. 
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Introduction: 

Plastic solar cells, using a mixture of organic (macro)molecules as active element, hold 

the potential to yield a low-cost photovoltaic technology.1-4 Due to the solution processability 

of organic molecular systems, cost-efficient manufacturing techniques such as roll-to-roll 

processing or ink-jet printing can be applied.5 While the efficiency of plastic photovoltaic 

devices is constantly improving 6 with internal quantum efficiencies approaching and even 

exceeding 90%, the fundamental mechanism of free charge carrier generation in organic 

semiconducting materials is still under debate. 7-28 

In organic semiconductors the photoexcited electron remains strongly bound to the hole 

in the valence band thus forming a stable neutral excitonic state. The spontaneous dissociation 

probability of such an exciton into a charge pair is low. To enhance charge separation, for 

example for photovoltaic applications, heterojunctions of different materials are used. The 

differences in the energy levels of the molecular orbitals of these materials provide the driving 

potential for electron and hole separation. Recently it has become clear that long-range charge 

separation is a complex multistep process. After the initial electron transfer an intermolecular, 

so called, charge transfer (CT) state is composed of an electrostatically bound electron-hole pair 

with a very different dissociation probability in different molecular systems. The properties of 

CT states have been investigated in a range of experimental studies 12,14,29-37 addressing different 

aspects of CT phenomenon. These studies have spawned a variety of models explaining the 

process of electron and hole detachment in organic heterojunction systems. Initially, these 

models were semi-classical based on (i) the thermodynamic balance between the lowest CT 

state and ‘free’ separated charges (SC) energy levels, usually referred to as ‘cold’ dissociation 

9,23 and (ii) a kinetic model of the competition between thermalisation and dissociation 17-19,38 

referred to as ‘hot’ dissociation. An enchancement of the  local mobility 39-41 or dissociation 

during cooling (due to energetic disorder) has also been proposed to explain the efficient 

separation of charges.42 In parallel, a number of quantum mechanical models have been 

proposed in which the electronic dynamics is determined by delocalization 15,24,43 and vibronic 

44-47 effects. 

Each of the above charge-separation models relates to a specific dependence of the 

charge separation efficiency on temperature, local morphologies and external field. This has 

triggered a number of studies where the dissociation/recombination yield of CT states was 

investigated as a function of several parameters. Both time-resolved and steady-state 

measurements showed that for almost all organic material systems geminate CT state 
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dissociation is independent 8,9,20,23 or very weakly dependent 48 on temperature. On the opposite, 

the local morphology, particularly ordering and aggregation effects, seem to play a critical role 

for the efficiency of long-range charge separation. 24,49 There is less consensus on the field 

dependence of charge separation. While most ultrafast (sub-ns) studies reported minor effects 

of the applied electric field, 24 experiments on longer time scales demonstrated both strong and 

weak field influences on the charge separation.16,50,51 We note that this discrepancy can be 

explained from the fact that CT states can be generated directly from excitonic states and result 

from bimolecular recombination of separated charge carriers. Time-integrated measurements 

like CT PL cannot distinguish between those two pathways and would highly benefit from being 

complemented with time-resolved techniques. 

This contribution addresses the photophysics of charge separation in poly[2,3-bis-(3-

octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) : [6,6]-phenyl-C71-butyric 

acid methyl ester (PC71BM) (fig.1a) bulk heterojunction solar cells. These solar cells provide 

efficiencies up to 6% 52, and therefore represent a promising molecular system for the 

development of organic photovoltaics. We have investigated the morphology, temperature and 

external field dependence of these devices using CT PL, photocurrent, and pump-push 

photocurrent (PPP) spectroscopy. The combination of these three techniques allowed for a 

careful separation of geminate and bimolecular phenomena as well as crosschecks for the 

spectroscopic model (fig.1b) derived. We show that TQ1:PC71BM blends display temperature-

independent but strongly morphology-dependent charge generation, similar to what has been 

observed for other polymer fullerene systems. However, quite surprisingly, the quantum yield 

of CT relaxation/dissociation is observed to depend strongly on the applied electric field 

dependent in TQ1:PC71BM. The overall data set indicates that the early (sub-ps) charge 

dynamics, when the molecular system is far from equilibrium and polaronic reorganisation did 

not occur yet, is critical for charge separation in the studied material.  

Experimental: 

Materials and devices. TQ1 was synthesized according to previously published 

procedures,52 and PC71BM was purchased from Solenne Netherlands. For device preparation, 

PEDOT:PSS layer (40 nm) was spin-coated onto cleaned ITO (indium-tin-oxide) substrates, 

which were  subsequently annealed at 120 °C for 30 minutes before being transferred into a 

glovebox for further fabrication. TQ1 and PC71BM were dissolved in orthodichlorobenzene 

(oDCB) with a polymer concentration of 10 mg/ml. TQ1:PC71BM solutions were spin-coated 

onto the substrates to get films with a thickness of ~100 nm. We evaporated layers of 0.6 nm 
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of LiF and 100 nm of aluminum onto the active layer under high vacuum (10-6 mbar) conditions, 

and we used a shadow mask to define the active area of ~4.5 mm2.  

The AFM characterization of the film surfaces (see Supplementary Information) 

indicated morphology typical for similar polymer:fullerene material systems. At low PC71BM 

loading a homogeneous mixture is formed. At high concentration, signatures of fullerene 

crystallites are observed which are expected to improve long-range charge separation. 

PL measurements under external bias. The devices were mounted in a liquid-nitrogen 

cryostat and were kept in an atmosphere of low-pressure (~10 mbar) nitrogen during the 

measurements. PL emission spectra of the devices were recorded from the ITO side using an 

Oriel liquid light guide and a Shamrock SR 303i spectrograph coupled to a Newton EMCCD 

silicon detector. The transmission of the measuring system was radiometrically calibrated using 

an Optronic OL245 M standard spectral irradiance lamp. A blue CW 405 nm PMM-208G-VT 

laser with an intensity of 4 mW was employed to excite the samples from the ITO side. The 

bias was applied using a Keithley 2400 Source Measure Unit. 

Pump-push photocurrent spectroscopy. A regenerative 1 kHz Ti:Sapphire amplifier 

system (Coherent, Legend Elite Duo) was used to pump a broadband non-collinear optical 

amplifier (Clark) and a 2-stage home-built optical parametric amplifier (OPA) to generate 100-

fs visible  pump pulses (~540 nm central wavelength, ±20 nm bandwidth) and 70-fs infrared 

push pulses (2000±100 nm), respectively. We focused ~1 nJ visible pump and ~1 µJ infrared 

push pulses onto a ~1 mm2 spot on the device. The reference photocurrent from a photodiode 

was detected at a pump repetition frequency of 1 kHz using a lock-in amplifier. The push beam 

was mechanically chopped at ~370 Hz, and its effect on the photocurrent was also detected by 

a lock-in amplifier. The push pulse also induces a minor current in the device by itself due to 

absorption from sub-gap states and long-lived trapped charges. This current component does 

not depend on the delay with respect to the visible pump pulse and was subtracted from the 

presented measurements. In field-dependent PPP measurements the external bias was applied 

by a 9 V battery with a dividing resistor to minimize the voltage source noise. 
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Figure 1. (a) Structural formulas of the materials under study; (b) The diagram describing CT 

state relaxation and the experimental observables of this study to elucidate the CT dynamics  

(c) Absorption and PL spectra of TQ1, PC71BM and their blends. 

Results: 

Figure 1a presents the structural formulas of the used materials. Figure 1c shows 

absorption and photoluminescence (PL) spectra of the pure TQ1 and PC71BM and of the blends 

used in this study.The peaks at 710-780 nm in the PL emission correspond to the overlapping 

PL emission bands of TQ1 and PC71BM. The peak at 880 nm appears only in the blends and is 
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associated with the emission from intermolecular CT states. The CT PL contribution can be de-

convoluted from the total PL spectrum with a reasonable accuracy, which makes this 

contribution a sensitive probe for carrier recombination occurring at the donor-acceptor 

interface.53 The relative amplitude of the CT PL emission depends on the acceptor concentration 

which demonstrates that the charge separation in TQ1:PC71BM blends has a clear composition 

and morphology dependence. Same time, the actual energy of CT state when estimated from 

the peak of CT PL emission was observed to be the same for different morphologies and biases 

within 0.03eV error bar. The shift of CT PL emission peak with temperature did not exceed 

0.05eV in agreement with previous studies. 54 

To study the  device-relevant photophysics of TQ1:PC71BM bulk heterojunctions in 

detail, we fabricated a set of photovoltaic devices and investigated these using CT PL, 

photocurrent and PPP spectroscopic methods. In addition to the morphology/composition 

variation we also varied the temperature and the applied external field. Below we first address 

composition, temperature, and field dependences separately and then discuss all the results 

together to elucidate the charge generation mechanism TQ1:PC71BM molecular system.   

Morphology effect 

Figure 2a illustrates the photovoltaic characterization of OPVs. The two devices show 

a significant difference in short-circuit current (Jsc) and fill factor (FF). When increasing the 

PC71BM concentration from 25% (3:1 blend) to ~70% (2:5 blend), Jsc increases from 0.96 to 

8.8 mA/cm2, and the FF increases from 23% to 57%. The increase in the efficiency correlates 

well with the decrease of the CT PL emission as shown in figure 2b. Based on previous 

studies,24 we associate the acceptor concentration dependence of the photovoltaic performance 

and charge separation with the modification of the local morphology. It has been found that 

with increasing amount of PC71BM ~10-50 nm acceptor domains 55 are formed in the active 

layer, which is highly favorable for the overall device performance. The effect of morphology  

may have two possible origins. The quantum efficiency may be increased due to (i) a more 

efficient charge separation promoted by the delocalization of carriers 24,43 or (ii) an improved 

charge transport through the device. The observed change in the PL emission from the CT states 

as a function of material composition points at the former mechanism. On the other hand, CT 

PL may also occur as a result of bimolecular recombination of non-geminate pairs. Hence, the 

decrease in CT PL may also be due to non-geminate recombination associated with a better 

transport of the electrons and holes through the device.  
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Figure 2. (a) I-V characteristics for the devices with different relative concentration of TQ1 

and PC71BM. (b) The amplitude of CT PL for devices with a different TQ1:PC71BM 

concentrations. (c) PPP transients for TQ1:PCBM 3:1 and 2:5 devices at room temperature 

and short-circuit conditions. Solid lines are exponential guides-to-the-eye convoluted with the 

experimental setup response function. 

To identify the early-time dynamics of CT states we use pump-push photocurrent (PPP) 

spectroscopy.56 This optoelectronic method was initially developed in the visible spectral 

region by Frankevich and co-workers to study charge dissociation in organic semiconductors57, 

and was recently extended58 to the infrared 10 and applied to new classes of materials49,59,60. The 

PPP technique measures the amount of ‘bound’ charge carriers (e.g. bound CT states) as a 

function of time delay with respect to their generation. Normally the bound charge carriers do 

not contribute to the photocurrent and they vanish due to the geminate recombination but, with 
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the help of the extra energy provided by the IR push pulse, the bound charges are (re)activated 

and converted to free charge carriers. Thereby they can contribute to the photocurrent (fig.1b). 

The ratio of the IR-induced current J  and the normally (without push) extracted current 

J , defines the ratio between bound and free charges in the device: 

𝛿𝐽

𝐽
(𝑉) =

𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑉)×(𝑁𝑏𝑜𝑢𝑛𝑑(𝑉)×𝑃𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 )

𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑉)×𝑁𝑓𝑟𝑒𝑒(𝑉)
= 𝑃𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ×

𝑁𝑏𝑜𝑢𝑛𝑑

𝑁𝑓𝑟𝑒𝑒
(𝑉)~

𝑁𝑏𝑜𝑢𝑛𝑑

𝑁𝑓𝑟𝑒𝑒
(𝑉)      (1) 

Where Nbound and Nfree are the concentrations of bound and free carriers, Pactivation is the 

probability to activate a bound carrier (e.g.to dissociate a bound CT state) with the IR pulse, 

and Pextraction is the probability for a free charge to escape bimolecular recombination and to be 

collected at the electrode. 

Figure 2c shows PPP transients measured for TQ1:PC71BM 3:1 and 2:5 devices at room 

temperature and at short-circuit conditions. For both material compositions, the effect of the 

push pulse builds-up fast (within ~200 fs time resolution) at time zero, which is a clear 

indication of the bound CT state formation happening at the ultrafast time scale as observed by 

others before.61  After this, the PPP response decays on a time scale of ~500 ps, which we assign 

with the loss of bound CT states. Because this process occurs at the fast (sub-ns) timescale and 

does not depend on the pump we associate it with the geminate recombination of 

photogenerated species.21 Within the experimental accuracy, the CT generation/relaxation rates 

were similar for both blends. However, the relative amount of bound CT states is ~10 times 

higher for the 3:1 blend. This difference is similar to the increase in Jsc upon increasing the 

PC71BM concentration and qualitatively agrees with the photocurrent and CT PL data. Both 

correlations show that CT states form an important loss mechanism in TQ1:PC71BM devices. 

To obtain more quantitative information on the recombination pathways in the device we have 

studied the field-dependence of charge separation process using CT PL measurements, steady-

state photocurrent, and ultrafast PPP spectroscopy of CT state dynamics. 

External field effect 

Figures 3a and 3b present steady-state CT PL as a function of the applied external bias 

for TQ1:PC71BM devices of different composition. For all devices the application of a negative 

bias leads to a suppression of the CT PL signal, indicative of a suppression of the recombination 

probability of CT states. The decay is much steeper for the fullerene-rich blend, which points 

towards a lower CT binding energy in phase-segregated material. However, again there are two 

different scenarios that can explain the bias-dependent CT PL quenching. The first is the 

dissociation of geminate CT states by the external field immediately after photoexcitation. The 
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second, is the field enhanced charge transport and extraction, which would decrease 

bimolecular regeneration and the recombination of CT states at longer time scales. To 

discriminate between those two effects and to acquire additional information about the geminate 

CT state dynamics, we performed PPP experiments on the devices under external bias. 

Figure 3c presents the results of PPP measurements on a TQ1:PC71BM 3:1 solar cell as 

a function of applied bias. Both the amplitude and the time evolution of the signal changes with 

the external voltage, which indicates that the yield of bound CT states and their geminate 

recombination time are effected by the external field. This agrees with the CT PL results and 

indicates that the bias decreases the early-time recombination probability in TQ1:PC71BM. We 

note that in the most efficient material at longer times we observe minor negative PPP effect 

which we previously associated with push-induced bimolecular recombination. 10 For this 

reason only the maximum value of short-term kinetics will be used for analysis below. To 

quantitatively analyze the field dependence of the PPP and CT PL signals, equation (1) can be 

rewritten under the assumption of field/independent IR activation: 

𝑃𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑉) = 𝑐𝑜𝑛𝑠𝑡;        (2) 

In this case, the results of PPP experiments can be directly compared to the results of 

steady state CT PL and the photocurrent measurements. Assuming that the probability for 

emissive CT state relaxation PL does not depend on the external field, one can write: 

 
𝑃𝐿𝐶𝑇

𝐽𝑐𝑤
(𝑉) =

𝜎𝑃𝐿×𝑁𝑏𝑜𝑢𝑛𝑑(𝑉)

𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑉)×𝑁𝑓𝑟𝑒𝑒(𝑉)
~𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑉) −1  

𝑁𝑏𝑜𝑢𝑛𝑑

𝑁𝑓𝑟𝑒𝑒
(𝑉)   (3) 

In case the field-dependent charge extraction (and bimolecular recombination) would play a 

significant role in the photophysics, the right hand parts of equations (1) and (3) will not be 

equal. However, if the main loss mechanism is geminate CT state relaxation, the extraction 

efficiency will not play a big role and can be presumed field independent 𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑉) =

𝑐𝑜𝑛𝑠𝑡. In this case combining (1), (2), and (3) we obtain: 

𝑃𝐿𝐶𝑇

𝐽𝑐𝑤
(𝑉)~

𝑁𝑏𝑜𝑢𝑛𝑑

𝑁𝑓𝑟𝑒𝑒
(𝑉)~ 

𝛿𝐽

𝐽
(𝑉)     (4) 

 Equation (4) provides a simple experimental criterion for identifying the origin of CT 

PL. When it is fulfilled, the observed CT PL emission mostly results from geminate 

recombination. This is also an indication that CT state formation and relaxation is the dominant 

loss channel limiting the device performance. Charge extraction in this case is field independent 

and relatively efficient; therefore, bimolecular recombination does not form a major 
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contribution to the current losses. If (4) is not fulfilled, long time charge dynamics, transport 

and bimolecular recombination constitute the dominant loss channel. 

 

 

Figure 3. (a) Field-dependent PL in a TQ1:PC71BM 3:1 device. (b) Field-dependent CT PL in 

TQ1:PC71BM devices of different donor-acceptor composition. (c) Pump-push photocurrent 

transients for TQ1:PC71BM 3:1 solar cell at different external biases applied. Solid lines are 

multi-exponential guides to the eye after convolution with the setup response function.  
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 Figure 4 applies the criterion (4) to the steady-state PL, photocurrent and PPP 

experimental results for a TQ1:PC71BM 3:1 photovoltaic device. We note that number of bound 

CT states in 2:5 blend is too low (see figure.2c) to perform field dependent measurement on 

this material system. The blue circles represent the CT PL to photocurrent ratio for 

TQ1:PC71BM 3:1, while the red crosses represent the amplitude of the corresponding PPP 

transients. The two parameters demonstrate a very similar external bias dependence, which 

quantitatively confirms that the geminate recombination of CT states forms the major loss 

channel in the studied system. There are two more conclusions to be drawn from these results. 

First, the observation that charge extraction and bimolecular recombination does not limit the 

efficiency in 3:1 TQ1:PC71BM blend can be generalised also to the TQ1:PC71BM blend 

compositions with higher acceptor concentrations and with better morphologies. It is well 

known that in a majority of polymer/fullerene blends,24 including TQ1:PC71BM,52 an increase 

of the acceptor fraction has a positive effect on the local morphology and charge extraction. 

Second, steady state CT PL in TQ1:PC71BM probes mostly the geminate recombination of CT 

states and has a negligible contribution from bimolecular CT recombination. Based on these 

results, we studied the temperature dependence of the charge separation only with steady-state 

methods applied to the high efficiency 2:5 device only. 

 

 

Figure 4. The ratio between the recombined and free charges as measured by CT PL and pump-

push spectroscopy. The match between steady-state and PPP observables evidences that CT PL 

is representative for geminate charge recombination 
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Temperature effect 

Figure 5a shows the CT PL signal as a function of bias for a TQ1:PC71BM 2:5 device 

at different temperatures. It is clear that the temperature dependencies are very similar which 

indicates that the molecular mechanism of charge separation does not change with temperature. 

This result is consistent with our recent finding that for efficient polymer:fullerene blends 

(including the blend TQ1:PC71BM 2:5), charge separation is efficient above cryogenic 

temperatures.62 Very similar behaviour was observed for TQ1:PC71BM 3:1 material system (see 

Supplementary Information) confirming that mechanism of charge separation in it is very 

similar. The independence of charge separation on temperature in this blend provides strong 

evidence that the influence of the external field is most important at early times after the photo-

excitation, when CT state thermalisation is not yet completed.  

Figure 5b shows the steady state photocurrent as a function of bias in the same 2:5 device 

at different temperatures. In contrast to CT PL, the photocurrent dependence is clearly getting 

less steep when the temperature goes down. This implies that charge extraction and bimolecular 

recombination are much more temperature-dependent processes than charge separation. It is 

likely that the extraction becomes the performance-limiting process at low <190 K temperatures, 

when the initial CT state dissociation is still very efficient. 

 

Discussion 

By combining steady-state photoluminescence, electrical characterisation and ultrafast optical-

photocurrent spectroscopy, we demonstrate that charge separation in TQ1:PC71BM OPVs is 

highly morphology- and field-dependent, but temperature-independent (above cryogenic 

temperatures). The field dependence of the charge separation has been debated, due to 

difficulties in disentangling field-dependent charge separation from charge extraction. Here we 

compare the ratio between the recombined and free charges as measured by CT PL and pump-

push spectroscopy. The good match between the steady-state and PPP observables provides 

strong evidence that CT PL is representative for geminate charge recombination, and thus we 

demonstrate that the electric field strongly affects charge separation in the studied systems.  
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Figure 5. (a) The field dependence of CT PL quenching at different temperatures for the 

TQ1:PC71BM 2:5 blend. (b) The field dependence of steady state photocurrent at different 

temperature for TQ1:PC71BM 2:5 blend. Grey solid curve is an average of CT PL quenching 

dependences panel (a). All curves are normalised to the maximum value reached at -12V. 

 

Since temperature has a negligible effect on charge separation in a wide temperature range 

(from 80 K to room temperature), the influence of the external field and morphology on charge 

separation is most important at early stages of charge dynamics, when CT state thermalization 

has not yet occurred. This conclusion is further confirmed by pump-push spectroscopy, where 

both morphology- and field-dependent PPP signals indicate that the push effect is relevant at 

the time scale of 0.1-100 ps. Our results question the thermodynamic model, that proposes that 

there is a balance between lowest CT state and separated charges. Instead, the results agree well 
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with both the dissociation during cooling model 42 and the quantum mechanical model 24,41, that 

emphasize the importance of energetic disorder or charge delocalization in the charge 

separation process. With increasing fullerene content (from the 3:1 to the 2:5), an increasing 

amount of charge carriers delocalizes in the fullerene clusters, contributing to the enhanced 

device performance.   

Conclusions 

We combined photoluminescence and electrical characterisation of organic photovoltaic 

devices with ultrafast optical-photocurrent spectroscopy to investigate the charge generation in 

TQ1:PC71BM material. Applying this range of techniques to the same set of devices at similar 

experimental conditions allowed us to disentangle the influences of geminate and bimolecular 

recombination to the device performance. We observe that charge separation in these materials 

shows a strong external-field and morphology dependence, and little temperature dependence. 

This indicates that the critical step of charge separation takes place at early times after photo-

excitation when the system is far from equilibrium and polaronic reorganisation has not yet 

occurred. While the observed behaviour is specific for TQ1:PC71BM solar cells, it is likely 

illustrative for molecular level charge dynamics in organic light-conversion systems. 
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