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Abstract 
Base-isolated buildings, founded on steel springs or elastomeric bearings, have been employed since 

the 1960s in locations susceptible to groundborne vibration.  Examples exist across a wide range of 

buildings, from residential to commercial, and include specialist buildings such as concert halls and 

hospitals.  In all cases, the objective is to reduce internal levels of perceptible vibration and re-

radiated noise, with the most common sources of concern being nearby surface or underground 

railways.  Despite the extensive use of base isolation, there is a significant lack of guidance on all 

aspects of design, from the selection of bearing type and their location within a building, to questions 

such as how performance should be evaluated, and the most fundamental question of all: is isolation 

necessary?  This paper reviews current practice in base-isolation design, and highlights some of the 

challenges and future research efforts in moving towards a performance-based design approach for 

controlling groundborne vibration. 
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Notations List 

11
bH  frequency-response function matrix of the building 

11
fH  frequency-response function matrix of the foundation  

I identity matrix 

bfu  vector of displacements on the building-foundation interface in the presence of the building 

0bfu  equivalent to bfu  in the absence of the building, prior to construction 
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1. Introduction 

In general, modern structures are increasingly susceptible to vibration, as designs become more 

efficient.  Although strength is assured via standard design procedures, it is common for insufficient 

structural mass, stiffness and/or damping to lead to unacceptable levels of dynamic response (see 

Table 1).  This increased susceptibility to vibration has developed at the same time as pressure has 

grown to build on sites affected by groundborne vibration, primarily due to the presence of 

underground railways and urban tram networks but also as a result of increased road traffic.  As a 

result, groundborne vibration is a growing concern for practicing engineers, who also face increasingly 

stringent noise and vibration limits as part of wider design serviceability requirements. 

 

Table 1.  Traditional vs modern building design with regard to vibration sensitivity 

Traditional Modern 

Massive and stiff (masonry, bulk concrete) Light-weight and flexible (pre-stressed concrete, 
steel frames, strength-optimised design) 

Short (high frequency) spans (by necessity) Long (low frequency) spans (by design, e.g. open-
plan offices) 

Heavily damped (many joints / frictional 
interfaces) 

Lightly damped (fewer joints, reduced cracking, 
glazed facades, open-plan ‘minimalist’ interiors) 

 

Typical building vibration levels due to road and railway traffic lie in the range from 0.1 mm/s to 1.0 

mm/s, which is significantly below the level at which even light damage, such as the cracking of 

plaster, may be expected.  Nevertheless, the disturbance caused to building occupants, and the 

disruption caused in specialist buildings, such as hospitals and research facilities, can have significant 

social and economic consequences.  Disturbance may be caused in two ways: by unacceptable 

levels of structural vibration; and/or by re-radiated noise (sometimes known as structure-borne or 

groundborne noise), which radiates in the audible frequency range from vibrating elements of the 

building.  In the case of groundborne vibration due to railways, both structural vibration and re-

radiated noise tend to be most noticeable in the frequency range from approximately 25 Hz to 250 Hz, 

with the latter manifesting as a low-frequency ‘rumble’. 

 

1.1 Base Isolation 
Base isolation of buildings is well established as one of the most effective techniques for limiting the 

disturbance caused by groundborne vibration.  Since the first examples were built in the 1960s 

(Waller, 1969), base-isolated buildings have become commonplace in our major cities.  Examples 

exist across a wide range of buildings, from offices and apartments (Boxoen et al., 2010; Moss, 1982) 

to specialist buildings such as concert halls (Commins et al., 1990), cinemas (Henson and Charles, 

2000), hospitals (Grootenhuis, 1990) and broadcasting studios (Henson, 2009).  In all cases, the 

objective is to reduce vibration transmission into the building by incorporating isolation bearings within 

the primary structure.  For modern buildings, this usually involves inserting either elastomeric 

bearings or steel helical springs between the base of the primary structure and the foundation. 

 

Despite the extensive use of base isolation, there is a significant lack of either national or international 

guidance on all aspects of design.  The only standard of direct relevance to base isolation is the 
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British Standard BS 6177 (1982), which was formally withdrawn in 2013.  This deals specifically with 

elastomeric bearings and is concerned principally with safety and practical aspects, such as bearing 

construction, stability, stiffness testing, etc.  A useful appendix lists factors to be considered in the 

overall isolation design but no theoretical background or quantitative guidance is provided concerning 

the effectiveness of bearings as vibration isolators.  Other publications, such as the American FTA 

guidelines (Hanson et al., 2006), provide more general guidance on the measurement and 

assessment of groundborne vibration but none provide specific guidance on the design and 

evaluation of base-isolation systems.  Fundamental questions remain, ranging from the selection of 

bearing type and their location within a building, to questions such as how performance should be 

evaluated, and the most fundamental question of all: is isolation necessary? 

 

1.2 Fundamental Principles 
In broad terms, the fundamental principles underlying base-isolation against groundborne vibration 

are similar to those underlying base-isolation against earthquakes: both involve a dynamic decoupling 

of the building from its foundation (Naeim and Kelly, 1999).  However, both the governing theory and 

the practical implementation differ in detail due to the nature of the ground motion, which, in the case 

of groundborne vibration, is several orders of magnitude lower in amplitude, and with a broader and 

higher frequency content. 

 

The principles of base isolation are often introduced by reference to the single-degree-of-freedom 

(SDOF) model, which represents the building as a rigid mass supported on some form of spring-

damper element to represent the isolation bearing (see Figure 1).  The performance of the base 

isolation is described simply by the ratio of the displacement amplitude of the mass to that of the 

imposed ground motion at the base.  The precise expression describing the frequency dependence of 

this ratio depends on the nature of the damping model used but the essential features are the same in 

all cases: (1) the bearings act to amplify any low-frequency vibration, and this is greatest at the 

(natural) isolation frequency; (2) the bearings are only effective for frequencies greater than 2  

times the isolation frequency, above which the isolation improves with frequency; and (3) damping 

acts to limit the resonance amplitude but reduces the isolation performance.   

 

These features of the SDOF model may suggest some guiding design principles but the model is far 

too simplistic for making any useful predictions of isolation performance.  Indeed, the model may be 

regarded as being so simplistic as to be misleading.  There are a number of key shortcomings. 

 

• Whilst a SDOF representation of the building may be acceptable in seismic design, where the 

response is often dominated by a single, low-frequency global vibration mode, this is clearly an 

oversimplification when dealing with the response to groundborne vibration.  Within the frequency 

range of groundborne vibration, the modal density in the building is relatively high and the 

response comprises many higher vibration modes, all of which tend to reduce the effectiveness of 

the isolation relative to the SDOF prediction. 
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Figure 1.  The SDOF model of a base-isolated building, where the rigid mass M represents the 

building and the linear spring k represents the isolation bearing.  Damping may be accounted for by 

(a) a viscous dashpot or (b) a complex (hysteretic) spring stiffness. 

 

• The focus on a SDOF suggests that only one direction of motion is significant, and potentially 

leads to the effects of multiple vibration inputs being overlooked.  This is less of a concern in 

seismic design because the dominant input motion often acts horizontally and, due to the 

wavelengths involved, uniformly across a foundation. 

 
• The absence of any representation of the foundation and surrounding ground ignores the effects of 

soil-structure interaction.  This has been known for some time as being significant in the seismic 

response of buildings but its significance with regard to groundborne vibration has only begun to 

be recognised relatively recently. 

 

At least some of these shortcomings are generally recognised, and the SDOF model is rarely used as 

the sole basis for predicting isolation performance.  More comprehensive models are required in 

practice, as discussed below.  

 

2. Current Design Practice 

There are a number of generic, practical aspects associated with the specification and design of 

base-isolation systems that must be considered in any project.  Examples include: settlement of the 

building on its bearings, either during construction or subsequently through creep in the bearings; fire 
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proofing of the bearings, and designing failsafe measures for the unlikely event of a collapsed 

bearing.  Care must also be taken not to ‘bridge’ the isolation by, for example, staircases, building 

services, construction debris or acoustic coupling.  Such aspects are now generally understood and 

incorporated into established design practice; many are covered in BS 6177 and have been reported 

in a number of design case-studies (e.g. Henson and Charles, 2000).   

 

This paper is concerned with designing a system to achieve a specified isolation performance, and 

the common challenges that this involves.  There are two fundamental stages: developing the 

specification, in terms of serviceability limits on the level of disturbance within the particular building; 

and designing a system to meet these, given the particular nature of the vibration at the site in 

question.   

 

2.1 Serviceability Limits 
In certain buildings, such as specialist manufacturing or research facilities, design serviceability limits 

on structural vibration are dictated by the presence of sensitive equipment (Gordon, 1991).  These 

limits, which usually lie below the threshold of human perception, are relatively straightforward to 

define as there are no human factors involved.  Once the vibration becomes perceptible, the level that 

may be considered acceptable is dependent upon many factors, such as the duration and nature of 

the vibration, the type of building and the activities of its occupants (Griffin, 1990).   

 

Several standards aim to provide guidance on acceptable levels of perceptible vibration in buildings, 

such as the commonly encountered British and German standards BS 6472-1 (2008) and DIN 4150-2 

(1999), and the international standard ISO 2631-2 (2003).  One of these standards typically forms the 

basis of serviceability limits on vibration for most base-isolated building projects.  However, in most 

cases, the overriding concern is not perceptible vibration but rather re-radiated noise; simply because 

this usually reaches unacceptable levels before the vibration itself.  This is unfortunate because there 

is even less agreement on re-radiated noise limits than there is on those governing vibration.  There 

are no internationally agreed limits for re-radiated noise, and recommended national limits vary 

significantly (Elias and Villot, 2012).  Commonly encountered limits are those published by the 

American FTA (Hanson et al., 2006), whilst some of the most stringent to date are those adopted in 

the UK for London Underground (Transport for London, 2012). 

 

A comprehensive commentary on serviceability limits, for either vibration or re-radiated noise, is 

beyond the scope of this paper: full details, including the particular metrics used, are available in the 

above references.  The important point to emphasise here is the level of uncertainty faced by the 

practicing engineer, with significant differences between adopted limits and significant uncertainty 

over their robustness, human nature being what it is.  Even the most robust criteria are based on 

human dose-response studies, which only indicate the average level of community annoyance.  It is 

therefore important that, whatever limits are adopted for a particular project, this uncertainty is 

recognised formally from the outset and borne in mind throughout the design process.   
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One final comment, applicable to both noise and vibration limits, concerns the common use of the 

logarithmic, decibel scale.  This is such that a difference of 3 dB, in either noise or vibration levels, is 

equivalent to a factor of two in energy, whilst 10 dB is equivalent to an order of magnitude.  Although 

the human perception of such differences can be complex, this relationship between decibel level and 

energy is worth remembering, for example, when assessing model prediction accuracy or the 

effectiveness of vibration mitigation techniques. 

 

Whatever the adopted limits, in practice, the decision on whether or not to base-isolate a building is 

usually based on a combination of prior experience, site vibration measurements, some form of 

modelling to predict noise and vibration levels in the completed building, and the perceived risk of 

disturbance. 

 

2.2 Site Measurements 
Site measurements are invaluable in design because they may be used, in combination with an 

appropriate building model, to reduce the significant uncertainties inherent in modelling a particular 

vibration source.  For a particular site, it is usual to characterise the vibration in terms of its magnitude 

and frequency content, as measured on the free surface of the ground at salient locations within the 

footprint of the proposed building.  Ideally, measurements should be made following the demolition 

and removal of any redundant structures but prior to the new construction, since these can both 

modify the ground vibration field.   

 

General guidance is readily available on the practical aspects of vibration measurement (Association 

of Noise Consultants, 2012) but there are some particular aspects of relevance to base-isolated 

buildings that are often overlooked.  The first point worth stressing is the repeatability of any 

measurements.  Usually, the source is a nearby road or railway, with significant variability in 

magnitude, and possibly frequency content, between vehicle passages.  It is therefore essential that 

the vibration is characterised in a statistical sense, with a mean source spectrum and some indication 

of the variance.  The signal processing required for this analysis is itself a potential source of error 

and must be undertaken carefully (Newland, 1993). 

 

Perhaps due to a combination of the legacy of the SDOF model and the practicalities of making 

multiple tri-axial measurements, it remains common practice to measure only vertical vibration of the 

ground.  However, in general, the structural elements at the base of a building – the footings or the 

pile caps – exhibit a combination of vertical, horizontal and rotational vibration.  Theoretical evidence 

suggests that connected building columns can amplify apparently insignificant levels in these other 

directions, through the excitation of flexural vibration, which subsequently couples to vibration of floors 

and walls located higher up the building (Talbot and Hunt, 2003a).  Further research is required in this 

area but, nevertheless, it is good practice to measure and attempt some form of assessment of the 

significance of these other directions. 

 



Structures & Buildings *** Issue SB*        Base-Isolated buildings: towards performance-based design         Talbot 
 
 
 

A more difficult aspect to assess is the degree of correlation in vibration levels across a site.  This can 

vary from being well correlated, particularly at low frequencies (long wavelengths), to substantially 

uncorrelated.  Again, further research is required but it is clear from theoretical models that the 

predicted building response can vary significantly depending on whether or not correlated inputs are 

assumed (Hunt, 1996).  

 
2.3 Design Evaluation 

Any design requires evaluation in terms of its ability to meet the specified serviceability limits.  This 

usually requires some form of absolute prediction of the isolation performance, that is, predictions of 

vibration and/or re-radiated noise levels in the completed building.  In principle, such predictions may 

be attempted using either empirical models, based on a database of measurements, or theoretical 

models based on physical laws.  The former can rapidly provide valuable reference data and some 

indication of the levels of disturbance that may be expected (Hanson et al., 2006).  However, it is 

important to highlight the high degree of uncertainty associated with such predictions, which treat 

each part of the vibration transmission path independently.  In particular, the use of measured 

‘ground-to-building’ transfer functions, which aim to predict how vibration propagates from the ground 

into a building, do not represent the coupled nature of the soil-structure interaction between a building 

and its foundation.  Furthermore, all buildings are to some extent unique, and it is unlikely that any 

historical database is sufficiently comprehensive to cover precisely the particular combination of 

source, transmission path and building in question.  Empirical models are therefore not ideal for 

assisting with the design of a particular base-isolated building; they are best reserved for high-level 

‘scoping’ assessments, such as those undertaken for more general environmental impact studies. 

 

The alternative, theoretical approach has the advantage that models may be tailored to the particular 

project, at least in principle, including as much physical detail as necessary from the vibration source 

to the receiving building (Lopez et al., 2014; Fiala et al., 2007).  For practicing engineers, the natural 

approach is to use a commercial finite-element code, since these are readily available and often 

already employed in the structural (static) design.  However, although modern numerical methods 

now enable comprehensive ‘source-to-receiver’ models, these remain computationally expensive and 

are research-oriented rather than design-oriented.  They too suffer from significant levels of 

uncertainty. 

 

In discussing their extensive numerical model for predicting building vibration and re-radiated noise 

due to surface railways, Fiala et al. (2007) acknowledge that the practical application of such a model 

is limited by the availability and uncertainty of data on material properties, structural details, soil 

inhomogeneity, etc.  Gupta et al. (2009a) present a parametric study on the determining factors for 

vibration from underground railways, as predicted by a similar numerical model.  Amongst their 

conclusions they report variations of between 4 dB and 6 dB in the maximum RMS surface vibration 

levels due to a 50 % variation in the soil shear modulus; similar variations are reported due to a 50 % 

variation in the soil damping ratio.  Such variations in these important model input parameters are 
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commonly measured in practice.  A related numerical investigation by Jones et al. (2012) considered 

six commonly disregarded aspects of the underground railway environment and their effects on 

vibration prediction: a second (twin) tunnel, piled foundations, track with discontinuous slabs, soil 

inhomogeneity, inclined soil layers, and irregular contact at the tunnel–soil interface.  The results 

suggest that each of these simplifying assumptions can result in vibration predictions that vary from 

the simplified cases by at least 5 dB and potentially up to 20 dB. 

 

These theoretical findings are supported by measurements.  Gupta et al. (2009b) report on the 

validation of an extensive numerical model using a comprehensive set of vibration measurements 

made on London Underground, covering the vehicle, tunnel and free field, both at the surface and at 

depth.  They conclude that it is difficult to achieve a source-to-receiver prediction accuracy of better 

than 10 dB. 

 

In the light of this significant modelling uncertainty – the level of which is comparable to vibration 

reductions achievable with typical mitigation techniques, including base isolation – the value of 

deterministic modelling as the sole basis of design evaluation is clearly limited.  At best, current 

models must be regarded as suitable for guiding design only, by predicting the relative performance of 

different design options, rather than producing reliable predictions of absolute performance.  

Guidance can indeed be obtained by modelling alone, and there are examples of case studies where 

this has been invaluable (e.g. Talbot and Hunt, 2003b).  However, it is clear that, wherever possible, 

site measurements should be used to support modelling and reduce uncertainty, in particular, to 

characterise the vibration source and thereby avoid the need to model this, and the associated 

transmission path, explicitly.  One example application of such a hybrid approach, based on structural 

models in combination with in-situ source measurements, is reported by Francois et al. (2014). 

 

3. Towards a Performance-Based Design Approach 

The lack of guidance on all aspects of base-isolated building design is a matter of significant concern 

for practicing engineers.  There is a real need for an efficient, evidence-based design approach, 

based on robust engineering science that acknowledges the levels of uncertainty and specific 

practical constraints encountered in practice.  Again, parallels may be drawn in the field of seismic 

engineering, within which, over the last decade or so, significant efforts have been made to develop 

new design procedures and guidelines that lead to structures of predictable seismic performance 

(Ghobarah, 2001).  This is being achieved by adopting a performance-based design approach, in 

which structural design criteria are expressed in terms of achieving specific performance objectives 

(Becker and Foliente, 2005).  In the context of base-isolated buildings, the main steps in such an 

approach may be summarised as follows: 

 

• identify and formulate the relevant User Requirements based on building occupancy and usage; 
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• transform the User Requirements into Performance Objectives, that is, noise and vibration 

serviceability limits; 

 

• use reliable design and evaluation methods to assess whether proposed solutions meet the 

specified limits at a satisfactory level. 

 
There are several challenges to be addressed before the above steps may be formally defined within 

new design guidance.  As indicated in Section 2, there remains significant uncertainty over the 

definition of performance objectives, particularly with regard to serviceability limits covering human 

disturbance.  Further work is clearly required in this area, to consolidate previous research and 

practical experience, with a view to establishing universal agreement on limits for both perceptible 

vibration and re-radiated noise in buildings.  Such limits are required in terms of the probability of 

disturbance, to formally quantify the inherent uncertainties associated with human response. 

 

In the area of design evaluation, a significant amount of further research is required to develop 

generic methods based on numerical models that are versatile, robust and efficient.  Some research 

priorities are discussed below. 

 
3.1 Soil-Structure Interaction 
An outline deterministic approach to modelling for the prediction of base-isolation performance, which 

is independent of the particular methods used, is presented by Talbot (2007).  Given the 

predominantly linear (low strain) and steady-state nature of groundborne vibration response, the 

approach is formulated in the frequency domain.  This is generally more efficient than working in the 

time domain and may be readily extended to include a formal treatment of response statistics.  A key 

equation allows the final displacements at locations on the building-foundation interface, in the 

presence of the building, bfu , to be calculated from those prior to its construction, 0bfu : 

 

(1)      
1111 11

0bf f b bf

−−  = +    
u I H H u  

 

where 11
fH  and 11

bH  are the frequency-response function matrices of the foundation and building that 

relate displacements and forces on the building-foundation interface, I  being the identity matrix. 

 

The important point to note here is that 0bf bf≠u u : the construction of a building, in general, modifies 

the ground vibration field.  This is the effect of soil-structure interaction (SSI) highlighted earlier.  It has 

been known for some time as being significant in the seismic response of buildings but its significance 

with regard to groundborne vibration has only begun to be recognised relatively recently with the 

development of more comprehensive models (Talbot, 2007; Hussein et al., 2013; Coulier et al., 2014).  

In the design of base-isolated buildings, it is common to evaluate the absolute performance of the 
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proposed isolation by taking vibration levels measured at the proposed site, prior to any construction 

work, and applying these to the base of a building model in an attempt to predict the final vibration 

levels in the completed building.  This is often done without any reference to the ground or building 

foundation – a fundamentally flawed approach because it fails to account for some important effects 

of SSI.  There are two primary effects: (1) the soil provides significant radiation damping to the 

building structure, through the geometric spreading of vibration wavefronts; and (2) the coupling of a 

structure to the soil acts to modify the free-field vibration.  Importantly, both effects are such that 

ignoring them tends to over-predict vibration levels in the completed building, and by a margin – up to 

approximately 10 dB, according to current models (Coulier et al., 2014; Talbot et al., 2014) – that in 

many cases could render isolation unnecessary.  There is little doubt that the widespread practice of 

ignoring SSI is likely to produce conservative but potentially inefficient designs. 

 

The incorporation of SSI into formalised design evaluation methods is therefore a key priority.  Further 

consideration must be given not just to the interaction between a building and its foundation, as 

expressed by Equation 1, but also to the interaction between a foundation and the free-field.  

 

It is worth noting that the formulation encapsulated in Equation 1, whilst accounting fully for the 

coupling (SSI) between the building and its foundation, neglects that between the building and the 

vibration source.  The source is assumed to generate an incident wave field that interacts with the 

building and its foundation but without this interaction influencing the mechanisms of vibration 

generation at the source.  This assumption is supported by recent theoretical evidence that suggests 

building-source coupling is indeed weak, and may be ignored provided the distance between the two 

is sufficiently large (Coulier et al., 2014). 

 

3.2 Non-structural Cladding and Partitions 
Typical building models naturally focus on the primary structure – the steel or concrete portal frame 

and its floors – since this is the focus of the static design.  It is rare that consideration is given to non-

structural elements, such as the exterior cladding and internal partitions.  Whilst some account may 

be taken of non-structural mass (for example, by increasing the density of elements representing floor 

slabs), the associated stiffness and damping is usually ignored. 

 

Measurements made for assessing the low-frequency footfall response of floors suggest that the 

additional stiffness due to both exterior cladding and internal partitions may indeed be significant.  

Devin et al. (2015) measured a 30 % increase in the fundamental natural frequencies of two floor 

slabs, together with associated changes in modal properties, as a result of the addition of such 

elements to a concrete-framed building.  Similar measurements have indicated that, at the small 

strain levels concerned, friction acting along the joint with a façade can apply significant constraint to 

the edges of a floor slab (Willford and Young, 2006; Smith et al., 2009). 
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Although these effects are significant when attempting to predict footfall induced vibration, the modal 

density in the building at groundborne frequencies is much higher, and the overall effects of changes 

to a few low-frequency modes are currently uncertain.  The significance of non-structural elements 

within the higher frequency range of groundborne vibration therefore remains to be established. 

 

3.3 Quantifying Uncertainty and the Application of Energy-Based Methods 

The application of deterministic modelling in the design of base-isolated buildings is likely to remain 

limited to making relative predictions of isolation performance, to guide design development and 

optimise chosen solutions.  To establish a reliable approach to absolute performance prediction, 

methods must be developed that express performance in probabilistic terms, such as the expected 

mean vibration levels and their variance.  Only then can predictions be compared sensibly against 

vibration serviceability limits to provide an overall probability of disturbance. 

 

Further research is required to establish which modelling parameters are most significant in the 

prediction of building vibration, and to quantify the inherent uncertainties.  As part of this work, new 

performance metrics are being used based on vibration energy rather than vibration amplitude.  

Insertion gain (IG) is typically used to describe the performance of base-isolated buildings, by 

comparing building vibration amplitudes with and without isolation bearings in position.  However, 

being based on amplitude, IG varies with direction and position within a building, and it is unsuitable 

for providing an overall measure of performance (Talbot and Hunt, 2000).  Power-flow insertion gain 

(PFIG), based on the mean vibrational power flowing into a building, is a more useful measure 

because it provides a single frequency-dependent metric that also accounts for multidirectional 

vibration at multiple inputs and is insensitive to the spatial distribution of vibration levels (Talbot and 

Hunt, 2003a).  It is particularly effective for assessing model sensitivity, as illustrated in recent work 

on the significance of building-source coupling (Coulier et al., 2014).  Once a reliable model is 

established, it is also effective for guiding design, since a reduction in PFIG is guaranteed to reduce 

the average noise and vibration levels within a building.  Power flow analysis, in general, provides 

greater insight than one based on vibration amplitude, for example, by enabling the dominant 

vibration transmission paths to be established (Talbot and Hunt, 2003b; Heaton and Talbot, 2015) 

(see Figure 2).  Such energy-based methods are expected to be invaluable in developing future 

approaches to base-isolation design.  

 

4. Conclusions 
Base isolation of buildings is well established as one of the most effective techniques for limiting the 

disturbance caused by groundborne vibration.  Despite this, the lack of guidance on all aspects of 

design is a matter of significant concern for practicing engineers, with current designs being 

developed using a combination of prior experience, site vibration measurements, limited theoretical 

modelling and engineering judgement.  There is a real need for an efficient, evidence-based design 

approach, based on robust engineering science that acknowledges the levels of uncertainty and 

specific practical constraints encountered in practice. 
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Figure 2.  An example application of power flow analysis to investigate partial base-isolation.  The 

dominant vibration transmission paths within a portal-framed building model, excited by surface 

Rayleigh waves, are seen to change with frequency: top, 25 Hz; bottom, 100 Hz. 

 

Just as a performance-based design approach is leading to structures of predictable seismic 

performance, so too, it is hoped, will a similar approach lead to buildings with predictable isolation 

performance against groundborne vibration.  Achieving this requires a concerted effort to address a 

number of challenges, in particular, to: 

 

• consolidate previous research and practical experience, with a view to establishing universal 

agreement on serviceability limits for both perceptible vibration and re-radiated noise in buildings; 

 

• develop generic, design evaluation methods that are versatile, robust and efficient, which account 

for essential dynamic behaviour, such as soil-structure interaction, and, wherever possible, make 

effective use of site vibration measurements to support modelling and reduce uncertainty; 

 

• introduce a new probabilistic approach to design evaluation, to quantify the inherent uncertainties 

associated with, not just the physical system, but also human response. 

 

By systematically addressing the above challenges, by developing models and taking advantage of 

measurement opportunities whenever they arise, researchers and practicing engineers may together 

develop the required procedures and guidelines.  Significant research and development remains but 

work is in progress. 
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