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Abstract 

Mitochondrial reactive oxygen species (ROS) production has emerged as an 

important pathological mechanism in myocardial ischemia/reperfusion (IR) injury. 

Attempts at targeting ROS by scavenging using antioxidants have however been 

clinically disappointing. This review will provide an overview of the current 

understanding of mitochondrial ROS in IR injury. We will outline novel therapeutic 

approaches designed to directly target the mitochondrial respiratory chain and 

prevent excessive ROS production and its associated pathology. This approach 

could lead to more effective interventions in an area where there is an urgent need 

for new treatments.  
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Introduction 

Mitochondria are an important source of reactive oxygen species (ROS) in 

mammalian cells and play a critical role in cardiac function. Under physiological 

conditions, low levels of ROS are produced as a by-product of mitochondrial 

respiration and act as essential cellular mediators in a variety of biological processes 

including regulation of the immune response and autophagy1–3. Stress or injury can 

however cause ROS to increase significantly, overwhelming endogenous antioxidant 

mechanisms and resulting in severe oxidative damage to cellular components such 

as lipids, proteins and DNA4. Mitochondrial ROS are now known to be key mediators 

of mitochondrial dysfunction and disease pathology in a range of cardiovascular 

conditions including atherosclerosis, cardiac hypertrophy, chronic heart failure, 

ventricular remodeling and ischemia/reperfusion (IR) injury5–7. Upon reperfusion of 

ischemic myocardium, the rapid re-introduction of oxygen into the cell leads to a 

burst of ROS generation that triggers opening of the mitochondrial permeability 

transition (mPTP) pore and myocardial cell death. Significant progress has been 

made in the field of inhibiting or scavenging ROS in an attempt to preserve 

mitochondrial and cardiomyocyte function. However despite the large body of 

evidence supporting the inhibition of oxidative stress as a valuable therapeutic 

strategy, treatment with antioxidants has failed to deliver clinically significant 

benefits8. In the present review we will discuss the role of mitochondrial ROS in 

cardiac IR injury, describing the current mechanisms that are thought to drive its 

production. Furthermore we will highlight current methods at targeting mitochondria 

ROS production with a particular focus on interventions that inhibit complexes I and 

II.  
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Ischemia/reperfusion injury  

IR injury remains a leading cause of death worldwide and the primary cause of 

chronic heart failure (CHF). While the past few decades have seen a marked 

improvement in outcomes in patients treated with early reperfusion therapy, currently 

one in four patients will die or present with heart failure within one year post-injury9. 

Reperfusion of the ischemic myocardium is essential in order to salvage viable tissue 

but paradoxically the rapid restoration of blood flow can induce injury beyond that of 

the initial ischemic insult. Known as reperfusion injury, studies have shown that it can 

account for up to 50% of the total tissue damage7 for which there is currently no 

effective therapy available in the clinic. The mechanisms underlying IR injury are 

multifactorial and have been extensively reviewed elsewhere7,10. However, it is 

generally accepted that mitochondrial dysfunction is central to the pathology of both 

IR injury and CHF with the mitochondrion not only being the main producer of ROS 

but also a primary target of ROS damage.  

Cardiac metabolism is predominantly aerobic. As such the maintenance of 

normal cardiac function and viability is highly dependent on the constant delivery of 

oxygen. During periods of severe myocardial ischemia profound disturbances in 

metabolism occur resulting in a shift towards anaerobic glycolysis. ATP depletion and 

lactic acidosis drive cytosolic sodium accumulation via the sodium/hydrogen 

exchanger and as a consequence excess Na+
 is extruded through the reverse action 

of the plasma membrane sodium/calcium exchanger11. Typical calcium (Ca2+) 

management by the sarcoplasmic reticulum Ca2+-ATPase (SERCA) is prevented, 

due to depletion of mitochondrially-derived ATP, resulting in cytosolic Ca2+ overload. 

Furthermore, there is an accumulation of metabolic end-products, including 

hypoxanthine, xanthine and succinate12–14, and the formation of pro-inflammatory 

mediators that promote the infiltration and activation of neutrophils. All these events 

are thought to ‘prime’ the heart for the large burst of ROS generation upon 

reperfusion. Re-oxygenation of the cell at reperfusion and rapid restoration of the 

mitochondrial membrane potential (Ψm) results in a large Ca2+ influx into 

mitochondria. Together with a burst of ROS production 15 and normalization of pH16, 

opening of the mPTP is induced17. The prolonged opening of the mPTP is now 

generally agreed to be decisive in committing cells to death upon reperfusion. The 

mPTP is a highly conducting channel in the mitochondrial inner membrane. While the 

exact nature of the pore is under debate, recent evidence suggests that the FoF1-

ATP synthase is a major component18,19. While the low pH present during ischemia 
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prevents formation of the mPTP, the normalization of pH at reperfusion results in 

mPTP formation and subsequent collapse of Ψm, cytochrome c release, ATP 

depletion and cellular death. Opening of the mPTP is therefore a critical component 

in reperfusion injury pathology10,19–21. 

The mitochondrial electron transport chain is an important source of ROS 

during IR injury but several other sources can also contribute. They include 

monoamine oxidase (MAO) on the surface of the mitochondrial outer membrane, 

xanthine oxidases, NAD(P)H oxidases, and uncoupled nitric oxide synthases22–24. 

The contribution of these enzymes to total IR induced ROS production is however 

thought to be lower than that of mitochondria and to occur later in the IR injury 

process, so will not be discussed further in this review.   

 

The mitochondrial respiratory chain 

 Since this review is aimed at a general audience, a brief primer on 

mitochondrial respiratory activity is provided here, and is illustrated in Figure 1. 

Substrates (pyruvate from glycolysis or acetyl-CoA from β-oxidation) are 

decarboxylated in the tricarboxylic acid (TCA) cycle to yield reducing equivalents 

NADH and FADH2. Electrons are then passed onto complexes I or II respectively, 

and then to the mobile electron carrier co-enzyme Q10 (ubiquinone), reducing it to 

ubiquinol. Ubiquinol is re-oxidized by complex III, passing electrons to cytochrome c 

then cytochrome oxidase and finally oxygen, generating H2O. The respiratory 

complexes are electron-driven proton pumps, such that this passage of electrons is 

coupled to the generation of a trans-membrane proton electrochemical potential 

gradient (positive outside). The electrochemical energy in this gradient is then used 

by the FoF1-ATP synthase to generate ATP.  It is important to note that the sharing of 

Co-Q as a common electron carrier by complexes I, II, and III is what permits these 

complexes to exist in multiple configurations, such that electrons can flow from I to 

III, II to III, I to II, and II to I, as is shown in Figure 2. 

 

Central role of mitochondria  

Mitochondria are essential organelles for normal cellular function. Occupying up to 

30% of total cardiomyocyte volume, they are the main source of ATP for the 

contracting cell through oxidative phosphorylation25. Mitochondria are also a key 

source of cellular ROS production with oxygen being converted by mitochondria to 

superoxide at complexes I and III26, however while the amounts of superoxide 

produced by isolated mitochondria can be readily estimated, the amount produced in 

vivo and the factors that regulate this production remain obscure. The superoxide 
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produced in the mitochondrial matrix is then largely dismutated to hydrogen peroxide 

(H2O2) by manganese superoxide dismutase (Mn-SOD)27.  While several other 

sources of ROS within mitochondria have been documented (e.g. -ketoglutarate 

dehydrogenase, monoamine oxidase, ETF-QOR of -oxidation, -glycoerophosphate 

dehydrogenase28,29, their relative importance under in vivo conditions is poorly 

understood. Thus, the rest of this review will focus primarily on complex I, as this 

appears to be quantitatively the most important source of ROS in the setting of 

ischemia reperfusion injury4.  

 

In the context of IR pathology elevated mitochondrial ROS levels drive 

oxidative damage to mitochondria, which results in disruption of the respiratory 

machinery and ATP generation. Additionally, in conjunction with dysregulated 

calcium levels, mitochondrial ROS lead to induction of the mPTP, contributing to both 

apoptotic and necrotic cell death due to IR. Because of the central role of 

mitochondrial ROS in IR pathology, many investigations have focused on 

characterizing the pathways that underlie their generation. In the past decade such 

studies have increasingly highlighted a central role for mitochondrial complex I as the 

most significant superoxide source during IR30,31. More recently, it has been shown 

that generation of superoxide from complex I during IR is dependent on electron 

supply from the mitochondrial citric acid cycle (CAC) intermediate succinate14. 

Succinate, which accumulates significantly during ischemia through the reverse 

action of complex II, is rapidly oxidized in the first minutes of reperfusion. This rapid 

oxidation drives reverse electron transport (RET) at complex I, in which electrons are 

forced from reduced Coenzyme Q (CoQ) back to complex I generating large 

amounts of superoxide. This process can be described as a ‘yin-yang’ formation in 

which during ischemia QH2 generated by complex I working forward, is oxidized by 

complex II working in reverse. At reperfusion, complex II acting in forward mode 

consumes the accumulated succinate driving RET at complex I (Figure 2). Most 

interestingly, from a therapeutic perspective, it has been shown that this generation 

of damaging ROS upon reperfusion can be inhibited, either by preventing the 

accumulation of succinate during ischemia, or by inhibiting the succinate-dependent 

superoxide production by transient inactivation of complex I14,32. Both approaches will 

be discussed further below.  

 

“Good” versus “bad” ROS 
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An intriguing aspect to ROS production in the heart is that depending on the 

circumstances and context, it can be considered either “good” or “bad”. That is, not 

all amounts of ROS are damaging and only when levels reach beyond the capacity of 

endogenous antioxidant mechanisms will ROS become detrimental to cell function 

and contribute to IR pathology. Conversely ROS production has also been found to 

be a trigger for protection against IR injury particularly through the activation of 

survival programs during ischemic pre- (IPC) and post-conditioning (IPost)33,34. IPC, 

first demonstrated by Murray in 198635, is a phenomenon in which brief cycles of IR 

protect the heart from reperfusion injury after a prolonged ischemic insult. ROS 

generated from these IR cycles are recognized as triggers for a cascade of signaling 

events that result in reduced tissue damage with the mitochondrion considered a 

primary source36. Pre-treating isolated rabbit hearts with oxygen radicals can 

reproduce the beneficial effect of IPC on infarct size37 while giving ROS scavengers 

prior to ischemia abolishes IPC-induced protection34. The most straightforward 

interpretation of this intriguing observation is that while low levels of ROS can be 

beneficial by up-regulating protective mechanisms, a larger amount of ROS amount 

has detrimental effects. This counter-balance between ‘good’ and ‘bad’ levels, known 

as “mitohormesis”2, is supported by an increasing body of work in which low levels of 

ROS are thought to act as signaling molecules to promote health and extend 

lifespan2. In the context of IR injury a small increase in ROS, sufficient to lead to 

transient mPTP opening, has been shown to be protective against subsequent IR 

injury38. On the other hand, prolonged ROS exposure leading to sustained mPTP 

opening inevitably leads to irreversible mitochondrial damage and ultimately cell 

death. The threshold at which ROS production transitions from being protective to 

becoming harmful may be modulated by a variety of factors such as diabetes, sex 

and age; risk factors which are already established to affect the efficacy of 

cardioprotective strategies39. For example, one way in which sex may determine the 

mPTP response to ROS, is in the levels of nitric oxide (NO).  It is known that eNOS is 

regulated by estrogen40, and this may directly impact ROS levels, in addition to NO 

being a direct inhibitor of the pore41. Similarly for aging, the sensitivity of the 

Keap1/Nrf2 signaling axis, a key genetic response to oxidative stress, is known to 

decline with age42. 

Another hypothesis explaining the protean roles of ROS could be ascribed to 

the spatial distribution of its sites of production. It is well established that for many 

signaling pathways the intracellular location of the signal plays a crucial role, for 

example the compartmentalization of the cGMP – guanylate cyclase pathway43. 

Unfortunately, the details of the localization of ROS signaling are difficult to assess in 
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vivo. However, given that different classes of mitochondria exist in the heart 

(subsarcolemmal versus intrafibrillar populations) behave differently during ischemic 

pre- and post-conditioning44,45, it seems likely that the spatial distribution of 

mitochondrial ROS generation may also be a key variable. Finally, the timing of ROS 

generation could be important during IR with ROS being beneficial as a trigger of 

preconditioning-like signaling before a prolonged period of ischemia, while the large 

ROS burst at reperfusion induces many detrimental downstream effects. 

 

Therapeutic implications: Preventing excessive ROS generation  

The compelling body of evidence linking reperfusion-induced ROS production to 

cardiac pathology has not surprisingly led to the testing of a wide range of anti-

oxidant approaches to mitigate the detrimental effects of oxidative stress upon 

reperfusion. While many antioxidant strategies have shown benefit when applied to 

in vitro and in vivo model systems, only a tiny fraction has translated to 

improvements in major clinical end-points in human trials46. For example, 

antioxidants including Vitamin C, Vitamin E, Edavarone and Coenzyme Q10 have 

shown disappointing or conflicting outcomes in patients8. Many possible reasons for 

these poor results have been considered; the dosage of drug may not be optimal to 

achieve sufficient myocardial levels at reperfusion, the timing of the intervention in 

relation to the onset of ischemia or point of reperfusion may be incorrect and pre-

clinical models used may not be appropriate for screening new compounds for 

human use47,48. The development of mitochondria-targeted antioxidants in which 

compounds are localized to the mitochondrion by conjugation to a 

triphenylphosphonium (TPP+) cation may address some of difficulties inherent in 

using un-targeted antioxidants that do not accumulate in mitochondria49. MitoQ is a 

TPP+
 modified ubiquinol that upon delivery to mitochondria decreases oxidative 

damage and has been shown to be protective against both cardiac50 and liver IR 

injury51 in vivo as well as protecting against oxidative damage in a murine model of 

heart transplantation52. The potential benefit of these targeted compounds against IR 

injury in humans has yet to be determined. A further consideration is that a more 

effective strategy may be to block the excessive ROS production that occurs upon 

reperfusion at its source, rather than scavenge it after it has been produced. 

Moreover, this approach could in principle allow the blockade of ROS production only 

when it becomes pathological, avoiding the potential disruption to cellular 

homeostasis by altering physiologically important cellular signals by “good” ROS 

through chronic antioxidant treatment. Given that the mitochondrial respiratory chain 

is a critical source of ROS upon reperfusion, it has become a major target for novel 
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compounds aimed at ameliorating IR injury and this strategy will be discussed in the 

next section.  

 

Pharmacologic inhibitors of the respiratory chain as therapeutics for IR injury. 

Despite the lack of oxygen during ischemia or hypoxia leading to inhibition of the 

respiratory chain, a wide variety of respiratory inhibitors have been demonstrated to 

afford protection against IR injury. Table 1 lists several such inhibitors and their sites 

of action within the respiratory chain. Until recently, it was thought the mechanism of 

action for these respiratory inhibitors was centered around the “gradual wake up” 

hypothesis of reperfusion therapy53. In this paradigm, a rapid reestablishment of 

respiratory activity at reperfusion leads to a surge of mitochondrial Ca2+ uptake and 

ROS generation which contribute to mPTP opening. It was hypothesized that the 

wash-out of a respiratory inhibitor present at reperfusion would permit a more 

gradual wake up of metabolism, thus avoiding these pathogenic effects. However, 

the recent identification of the source of ROS at reperfusion, namely the reverse 

electron transfer at complex I, forces a further focusing of this paradigm14. Namely it 

cannot go un-noticed that ~85% of the protective respiratory inhibitors listed in Table 

1 act at the level of complex I or II.  While the prevalence of agents hitting a given 

pharmacologic target cannot be taken as evidence of the central biological 

importance of the target, it is notable that there are well known inhibitors of other 

parts of the respiratory chain (e.g. cyanide for complex IV, myxothiazol for complex 

III) that have not been found useful in a therapeutic setting. Furthermore, while many 

of the molecules in Table 1 act at a pleiotropic level, there are some exquisitely 

specific drugs targeted at complexes I and II (e.g. rotenone and atpenin A5), which 

are most likely mediating their effects via these complexes and not through off-target 

mechanisms. We will now discuss these complexes in turn and the current evidence 

for their modulation in protecting the myocardium during IR injury.  

 

Complex I  

Complex I (NADH ubiquinone oxidoreductase) is the primary point of electron entry 

within mitochondria responsible for the oxidation of NADH, derived from glycolysis, 

the CAC and the β-oxidation of fatty acids. Complex I transfers electrons to CoQ and 

protons are transported across the inner membrane contributing to the mitochondrial 

proton motive force. In addition it is an important site for ROS generation with 

complex I producing large amounts of superoxide in the presence of a high 

NADH/NAD+ ratio where oxygen reacts with a fully reduced flavin mononucleotide 
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(FMN) site4. Complex I can also produce a large amount of ROS during RET where, 

in the presence of a highly reduced CoQ pool and a close to maximal proton motive 

force, electrons are pushed backward from CoQH2 through complex I reducing NAD+ 

to NADH and also producing superoxide54,55. While the physiological relevance of 

RET in vivo is only now being elucidated it produces the largest rate of mitochondrial 

ROS production known to occur within mitochondria. Furthermore, this process of 

superoxide production by RET at complex I seems to be the major source of ROS 

early during IR injury14. 

During prolonged ischemia, when complex I is not oxidizing NADH due to the 

lack of oxygen, the protein converts to a ‘deactive’ state56,57. Reperfusion of the 

tissue results in the rapid re-activation of complex I and the generation of large 

amounts of cytotoxic ROS by RET14. Inhibitors of complex I including rotenone31 and 

amobarbital58 have found to be protective when given during cardiac IR injury 

indicating that preventing the reactivation of complex I upon reperfusion is a 

promising potential therapeutic strategy. Of course, the use of irreversible complex I 

inhibitors is not viable as a therapy, but interestingly when complex I undergoes the 

‘deactive’ transition a critical cysteine, cysteine 39 on the ND3 subunit becomes 

exposed to modification56,57. This residue can be reversibly inhibited by its S-

nitrosation by S-nitrosothiols such as SNO-MPG59 or MitoSNO32. Further supporting 

a role for this cysteine residue in cardioprotection, recent work has shown that 

damage protection during IR, IPC and IPost correlates highly with the persistent S-

nitrosation of mitochondrial protein thiols, with complex I as a chief target32,60–62. One 

example of this protective mechanism is MitoSNO, a mitochondria-targeted drug that 

prevents ROS production from complex I during early reperfusion following IR 

injury32. MitoSNO is a mitochondria-targeted S-nitrosothiol based on the NO donor S-

nitroso-N-acetylpenicillamine (SNAP) coupled to the TPP+ cation which leads to its 

rapid, several hundred-fold accumulation, driven by both the plasma and 

mitochondrial membrane potentials, into the mitochondrial matrix where it 

accumulates within minutes of intravenous injection63,64. Upon uptake into 

mitochondria MitoSNO reacts rapidly with intra-mitochondrial thiols and S-nitrosates 

cysteine 39 on subunit ND3 of complex I “locking” the enzyme in its de-active form at 

reperfusion and thereby preventing the excessive burst of ROS upon reperfusion32. 

The modification is reversed with a half-life of ~5 min by the endogenous 

mitochondrial glutathione and thioredoxin systems, allowing complex I to return to full 

levels of activity a few minutes after reperfusion14. Our studies have shown that 

MitoSNO not only protected against IR injury in vivo32 but also greatly enhanced 

long-term cardiac function post-IR injury65. 
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Complex II  

Complex II (succinate dehydrogenase) catalyzes the oxidation of succinate to 

fumarate resulting in the donation of electrons to the respiratory chain via the 

reduction of FAD to FADH2. Unlike the other respiratory complexes, it does not pump 

protons across the inner membrane but instead acts to maintain a reduced CoQ pool 

which has been largely considered to be its primary function66. This sequence also 

creates a direct link between two major mitochondrial pathways, the CAC and the 

respiratory chain. Several roles for complex II have however also been recently 

proposed that expand beyond this with evidence now for direct complex II-mediated 

ROS generation67 as well as a mechanistic link with the putative mitochondrial ATP-

sensitive potassium channel (mtKATP)68. Complex II is also now recognized as a key 

modulator of mitochondrial ROS production by other respiratory complexes, 

particularly complex I.  

The accumulation of excessive ischemic succinate, via the reverse action of 

complex II, is considered a critical driver of ROS formation at reperfusion. Preventing 

either its build-up during ischemia or its rapid oxidation at reperfusion are therefore 

potential valuable therapeutic strategies to reduce detrimental ROS generation and 

protect against IR injury. In agreement with this an extensive body of work exists 

demonstrating the inhibition of respiration at complex II can decrease ROS 

production69. Inhibitors such as dimethyl malonate, diazoxide and atpenin A5 all 

protect against IR injury when given prior to ischemia14,70–72. Moreover protection 

afforded by dimethyl malonate in vivo was attributed directly to the attenuation of 

ischemic levels of succinate and inhibition of mitochondrial ROS generation at 

reperfusion14. There is also some evidence that malonate itself may act as an 

endogenous protector against IR with the compound being generated endogenously 

in mitochondria under conditions mimicking IPC73. However whether these 

compounds exert cardioprotective effects solely via complex II inhibition and ROS 

generation or if the mtKATP channel is involved remains a controversially and actively 

discussed issue. Moreover, while these strategies may be highly useful in situations 

of predictable ischemia, including elective surgery and organ transplantation, they 

are not clinically appropriate given patients undergoing an myocardial infarction (MI) 

arrive at hospital with an already occluded artery. Succinate accumulation during 

ischemia only becomes pathological upon its rapid oxidation at reperfusion in which it 

drives RET-mediated ROS production through complex I. By suppressing succinate 

oxidation at the point of reperfusion through complex II inhibition, compounds such 

as dimethyl malonate could be potentially cardioprotective. It is therefore essential to 
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determine if complex II inhibitors are as equally effective at ameliorating cardiac 

injury when used later in IR such as just prior to reperfusion. Indeed recent work in 

the isolated mouse heart has demonstrated that the administration of malonate 

during the first 15 min of reperfusion only was cardioprotective through the inhibition 

of succinate re-oxidation and the reduction in ROS production and mPTP opening74. 

Whether this important result can be translated to in vivo models however remains to 

be determined.  

 

Future Perspectives & Translational Significance  

An important consideration for the potential future use of respiratory inhibition as a 

therapy for IR injury is the timing of delivery. While clearly the inhibition of complexes 

I or II at early reperfusion would be anticipated to minimize ROS generation from 

RET, it is not immediately clear that inhibition of these complexes during ischemia 

itself would be beneficial. This is because of the yin-yang nature of complexes I and 

II during ischemia in which complex I continues to operate as a proton pump allowing 

to some extent the ∆Ψm to be maintained. As such, inhibition of complex I during 

ischemia may have unforeseen detrimental effects by removing this important 

function. A further consideration in moving such molecules into a clinical setting is 

their ease of wash-out, i.e. their tightness of binding to their targets. In the case of 

rotenone and other tight-binding lipophilic molecules, inhibition would be expected to 

reverse rather slowly, if at all, while the complex II inhibitor, 3-nitropropionate, is a 

“suicide inhibitor” that covalently modifies complex II potentially resulting in long term 

toxic effects on organ function75. Furthermore, currently available inhibitors of 

mitochondrial respiratory complexes are not tissue specific and are therefore present 

in other important tissues such as the brain. Consequently the chronic delivery of a 

respiratory inhibitor would be expected to elicit toxic side effects such as 

neurodegenerative disease. Specifically, long-term inhibition of complex I is 

associated with Parkinson’s disease, complex II Huntington’s disease, and complex 

IV Alzheimer’s disease76,77. In this regard, another advantage to nitric oxide donors 

and other short-lived species such as MitoSNO as mitochondrial respiratory 

inhibitors, is their short time of action and rapid metabolism, which would permit re-

establishment of “normal” mitochondrial function once the initial early-reperfusion 

danger-period has passed. 

Recently, it has been shown that treatment with a P2Y12 inhibitor, such as 

clopidogrel or ticagrelor, was highly protective in animal models of acute MI as well 

as in small human studies, and that many conditioning strategies, such as ischemic 

postconditioning do not offer additional benefits in reducing infarct size78,79. This 
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evidence could very well be the reason for the failures of many recent clinical trials of 

either ischemic postconditioning or interventions mimicking conditioning. In order to 

translate any of the above-mentioned compounds targeting complex I or III it is 

therefore crucial to test whether they have additive effects on top of an effective 

treatment with P2Y12 inhibitors80.  Further aspects on how to translate preclinical 

findings into patient care and the challenges especially in acute MI have been 

extensively reviewed elsewhere81. 

 

Summary 

There is a pressing need for therapeutic approaches to be applied in conjunction with 

reperfusion therapy to reduce infarction injury and long-term outcome in MI patients. 

Modulation of the respiratory chain through inhibiting complex I and II are important 

emerging strategies. These interventions can now be considered as potential rational 

therapies, arising from the view that the initial burst of ROS from complex I upon 

reperfusion is due to the accumulation of succinate by the reversal of complex II 

during ischemia, that then drives the initial burst of ROS at reperfusion by RET at 

complex I. The reversible inhibition of complexes I and II would therefore prevent this 

burst of ROS and protect against infarction. Currently, approaches that prevent the 

accumulation of succinate during ischemia, such as dimethyl malonate, or stabilize 

the deactive form of complex I by S-nitrosation, such as MitoSNO, have been shown 

to be effective in animal models. Whether these results will translate into the clinic 

remains to be seen. Certainly the next stages are to see if it is possible to extend and 

optimize these targets with new and better drugs. However the model of succinate-

driven ROS production mediated by complex I and II should facilitate the future 

development of novel targeted therapies against the generation of excessive 

mitochondrial ROS in a range of pathologies such as myocardial infarction and 

stroke. 
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Table 1 - Mitochondrial respiratory inhibitors that have been shown to protect 

the heart or brain from IR injury, and their sites of action. Note, some references 

are paired such that the phenomenon of a molecule inhibiting a respiratory complex, 

and the phenomenon of it being protective in IR injury, are not necessarily co-

observed in the same experimental system.  Inclusion of a molecule in this table 

should not be misconstrued as claiming that the mechanism of its protection is 

dependent on its effects on a given respiratory complex. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Site of action Inhibitor References 

Complex I Rotenone 31 

 Amobarbital 58 

 S-nitrosothiols 59,63,82,83  

 Nitrite 84,85  

 Metformin 86–89  

 Capsaicin 90,91 

 Isoflurane 92,93 

 
 

Ranolazine 94 

Complex II Atpenin A5 72 

 Diazoxide   71,95 

 Malonate 14,70,73  

 Nitroxyl 96,97 

 3-nitropropionate 98 
 
 

Nitro-alkenes 99 

Complex III 
 

Antimycin A 100 

Complex IV Nitric Oxide 101  

 Carbon Monoxide 102 

 Hydrogen Sulfide 103–105 
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Figure 1. The mitochondrial electron transport chain. Electrons derived from the 

oxidation of NADH and FADH2 enter the electron transport chain at complexes I 

(NADH ubiquinone oxidoreductase) and II (Succinate dehydrogenase). They are 

then funneled through the electron carriers, Coenzyme Q and complex III (Ubiquinol 

cytochrome c oxidoreductase), until they reach complex IV (cytochrome c oxidase) 

where they are used to reduce molecular oxygen to water. This transfer of electrons 

is coupled to the extrusion of protons at complexes I, III and IV generating an 

electrochemical gradient across the mitochondrial membrane. Protons in the 

intermembrane space are then used to drive the synthesis of ATP at complex V (ATP 

synthase). C = cytochrome c. Dashed arrows indicates path of electrons.  
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Figure 2. Respiratory Complex I & II “Yin-Yang” during ischemia & reperfusion. 

Under normoxic conditions, both complex I (red) and complex II (blue) work in the 

forward direction (dashed grey line indicates direction of electron flow), taking 

electrons from NADH and succinate respectively, and reducing ubiquinone (Q) to 

ubiquinol (QH2). Electrons are eventually passed down the respiratory chain to O2, 

and complex I pumps protons to generate a trans-membrane ΔpH. During ischemia, 

QH2 generated by complex I working forward, is oxidized by complex II working in 

reverse. In this “Yin-Yang” formation, fumarate acts as an electron acceptor, resulting 

in accumulation of succinate. This process allows complex I to continue pumping 

protons during ischemia. At reperfusion, the rapid consumption of accumulated 

succinate generates too much QH2 for the re-oxygenated terminal respiratory chain 

to handle (dotted line). Coupled with residual acidic pH from ischemia, this drives 

reverse electron transfer in complex I, resulting in the generation of significant 

amounts of ROS.  

 


