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Improving current models and hypothese of cellular pathways is
one of the major challenges of systems biology and functional ge-
nomics. There is a need for methods to build on established expert
knowledge and reconcile it with results of high-throughput studies.
Moreover, the available data sources are heterogeneous and need to
be combined in a way specific for the part of the pathway in which
they are most informative. Here, we present a compartment specific
strategy to integrate edge, node and path data for the refinement of a
network hypothesis. Specifically, we use a local-move Gibbs sampler
for refining pathway hypotheses from a compendium of heterogeneous
data sources, including novel methodology for integrating protein at-
tributes. We demonstrate the utility of this approach in a case study
of the pheromone response MAPK pathway in the yeast S. cerevisiae.

1. Introduction. Cellular mechanisms are driven by interactions be-
tween DNA, RNA, and proteins working together in cellular pathways.
However, the current knowledge of information flow in the cell is still very
incomplete (Kirouac et al., 2012). Even in well established signaling path-
ways studied for decades in model organisms, newer approaches can discover
novel components (Müller et al., 2005) or cross-talk with other pathways
(McClean et al., 2007; Vaga et al., 2014). In cancer, finding pathways un-
derlying disease development can lead to new drug targets (Balbin et al.,
2013). This makes the dissection of cellular pathways one of the major chal-
lenges of systems biology and functional genomics. We can represent cellular
pathways using a network, in which edges represent conditional dependence
between molecule abundances and non-edges represent conditional indepen-
dence. Thus, the challenge is to infer or refine a hypothesis about the edges
in pathway model.
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Signalling pathways. In this paper, we focus on signalling pathways, which
are of particular importance because they encode how cell to reacts to ex-
ternal stimuli (Alberts et al., 2002). Starting from receptor proteins in the
cell membrane these pathways traverse the cytoplasm by relaying the signal
from one protein to the next, often by phosphorylation in so called MAPK
cascades. At the end of these cascades lie transcription factors, which are
specialized proteins that move from the cytoplasm into the cell nucleus,
bind there to DNA and regulate gene expression as a response to the ex-
ternal stimulus. Signaling pathways thus traverse and connect the major
compartments of the cell: the membrane, cytoplasm and the nucleus.

Inferring signalling pathways from data. One of the main obstacles to uti-
lize high-throughput data in refining known pathway models is the gap
between the relatively unbiased and hypothesis-free nature of generating
genome-scale datasets and the need for very focused, hypothesis-driven re-
search to test biological models in small or medium scale experiments (Hibbs
et al., 2008). While researchers in computational biology usually start with a
collection of data and reconstruct pathways from it, experimental biologists
often start with a specific network hypothesis in mind and try to reconcile
it with the evidence from high-throughput screens.

Our approach. Here, we contribute to bridging this gap by introducing a
comprehensive data integration strategy to refine a given network hypothe-
sis. Our approach is characterized by three key features, which set it apart
from previous approaches: First, we start with a specific pathway model (rep-
resented by a network) and assess how well it is supported in a collection of
complementary data sets. These data sets are heterogeneous and informative
for distinct cellular locations. Second, we exploit this fact by introducing a
compartment-specific probabilistic model, which distinguishes different cel-
lular locations (the membrane, cytoplasm and nucleus) and where data types
are only used for reconstructing the parts of the network they are informa-
tive about. Third, we explicitly include node properties in our model. This
allows us to use data on the properties of the molecules like protein phos-
phorylation states or protein domains, which have so far been under-utilized
for pathway structure learning (Ryan et al., 2013).

In this paper we show that our modeling approach can assist experimen-
talists in planning future studies by assessing which parts of a biological
model are not well supported by data, and by proposing testable extensions
and refinements of a given pathway hypotheses. We demonstrate the power
of our approach in a case study in the yeast S. cerevisiae.

Related work. Pathway reconstruction is a well established field in compu-
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tational biology and statistics (Hyduke and Palsson, 2010; Markowetz and
Spang, 2007). Several features distinguish our pathway refinement method-
ology from existing network reconstruction methods.

Comprehensive data integration strategies on large data collections were
shown to be very successful in predicting protein function and interactions
(Guan et al., 2012; Llewellyn and Eisenberg, 2008; Guan et al., 2008; My-
ers et al., 2005). These methods are very helpful for describing the global
landscape of protein function, but offer less insight into individual molec-
ular mechanisms and pathways. Our approach differs from methods to re-
fine pathway hypotheses from expression profiles of down-stream regulated
genes (Gat-Viks and Shamir, 2007), because we integrate heterogeneous data
sources in a compartment-specific way.

We also differ from previous research on de-novo pathway reconstruction.
These methods can be classified by how they use information about edges,
paths and nodes in the pathway diagram for structure learning.

• Edges: Most approaches incorporate evidence for individual edges in the
network using correlation measures (Mulder et al., 2012; Wang et al.,
2012; Li et al., 2013) or higher-order graphical models (Schäfer and
Strimmer, 2005a; Friedman, 2004; Segal et al., 2003), sometimes inte-
grating additional data sources into the model (Bernard and Hartemink,
2005; Werhli and Husmeier, 2007; Balbin et al., 2013; Gitter et al., 2013;
Nariai et al., 2004; Segal et al., 2003).

• Paths: Cause-effect relationships indicating paths from perturbed genes
to observed effects are exploited in methods like SPINE (Ourfali et al.,
2007), physical network models (Yeang et al., 2005), nested effects models
(Wang et al., 2014; Markowetz et al., 2007; Tresch and Markowetz, 2008;
Fröhlich et al., 2007, 2008) and others (Lo et al., 2012; Yip et al., 2010),
with applications including DNA damage repair (Workman et al., 2006)
and cancer signalling (Knapp and Kaderali, 2013; Stelniec-Klotz et al.,
2012).

• Nodes: Features of individual proteins or genes provide data for nodes
and have been found useful for predicting that a protein contributes to a
pathway (Hahne et al., 2008; Fröhlich et al., 2008) but have so far been
under-utilized in reconstructing pathway structure (Ryan et al., 2013).

Our method differs from existing methods in several important aspects:
First of all, we are the first to integrate data about edges and paths as well
as nodes in the pathway diagram. Additionally, in contrast to de-novo net-
work reconstruction we start with a hypothesis network and identify which
hypothesized edges are supported by the data. We also differ from other
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methods which evaluate formal one and two sample network hypothesis tests
(Yates and Mukhopadhyay, 2013). Our goal is not to explicitly determine
whether our initial hypothesis is “correct”– on the contrary we assume a
priori that any initial hypothesis can be further refined and improved upon.
We provide a list of edge probabilities that can assist experimentalists in
their future studies. We assess which parts of an existing biological model
are not well supported by a data as well as suggesting new edges which are
supported by the data but which are not part of the original hypothesis.

Overview. We describe a compartment-specific probabilistic graphical model
for posterior inference on cellular pathways in section 2, which can be used
to extend and refine a given biological model and predict novel parts of
the pathway graph. Our model comprehensively integrates the three general
types of data on edges, paths, and nodes. We demonstrate the utility of our
methods in a case study in S. Cerevisae (section 3) by first exploring how
informative different data sources are individually (section 3.1) and then
evaluating results of posterior draws using both full data and leave-one-out
data (section 2).

2. An integrative model of a cellular pathway. Given a set of a
gene products, i.e., putative pathway members, we infer an undirected net-
work model using a local-move Gibbs sampler. The network model, is defined
in terms of N nodes and the edges between these pairs of nodes, (n,m). The
edges are encoded by a binary random variable, Xnm. The collection of edge-
specific random variables defines the adjacency matrix, X, of the pathway
model.

Parameter estimation and posterior inference. The adjacency matrix X
corresponding to the pathway model is latent since we cannot directly ob-
serve the edges, though we have strong prior belief about many edges. Thus,
the primary goal of our analysis is to do posterior inference on the adjacency
matrix, X, from a collection of K data sets, Y1:K and an initial pathway hy-
pothesis. Although we treat X as latent, we differ from de-novo pathway
reconstruction by incorporating this informative hypothesis pathway which
we use to train the models for data sets Y1:K (see Section 3).

By Bayes rule, the posterior distribution on a pathway model,

(2.1) P (X | Y1:K,Θ) ∝ P (X | Θ) · P (Y1:K | X,Θ),

is proportional to the prior distribution on the pathway with the likelihood of
the data. Here, Θ is a collection of parameters for the data models introduced
below.
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We use a local Gibbs sampling strategy to sample pathway models from
posterior distribution in Equation 2.1. The sampler explores the space of
pathway models by adding or removing edges in turn, one at a time. Specif-
ically, the edge Xnm between gene products (n,m) is sampled according to
a Bernoulli distribution, with probability of success

(2.2) P (Xnm | X(−nm), Y1:K,Θ),

where X(−nm) represents the set of edges without Xnm.

2.1. Context-specific data contributions through a compartment map. We
use five complementary data types: physical binding of protein pairs (includ-
ing yeast-two hybrid, mass spectrometry, and literature-curated data), tran-
scription factor-DNA binding assays, gene knockout data, gene co-expression
data, and node information (including protein domains and differential phos-
phorylation arrays).

Importantly, different data sets can be very informative in specific cellular
locations while completely uninformative in others. Thus, before we define
the data likelihoods in section 2.2, it is essential to exploit this fact in our
model.

To instantiate the notion that different data are informative in different
cellular locations, we introduce an additional modeling element: the com-
partment map, which contains three conceptual pathway compartments di-
rectly based on the organisation of the cell (Alberts et al., 2002): First, the
cell membrane, where receptor proteins sense signals from outside the cell;
second, the cytoplasm, where protein cascades relay these signals to tran-
scription factor proteins that enter the third compartment, the nucleus, to
regulate the activity of target genes. The compartment map, C, is a 5 × 3
binary matrix that associates the three pathway compartments with the
five data types to indicate which data type is informative about molecular
interactions in which compartments (see Table 1).

In particular, each data set is described by a pair Dk = (Yk, Tk), where
Yk denotes the collection of measurements, and Tk is five-level factor that
denotes the data type (and indexes the relevant row of C). We can now revise
the form of the conditional distributions in Equation 2.2,

P (Xnm | X(−nm), D1:K, C,Θ) =(2.3)

=
L(Xnm = 1, X(−nm) | D1:K, C,Θ)

L(Xnm = 1, X(−nm)|D1:K, C,Θ) + L(Xnm = 0, X(−nm)|D1:K, C,Θ)
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Overloading notation, we let Ct(n,m) be an indicator reflecting whether
data type t is informative for the protein pair (n,m), based on the com-
partment map and the localizations of proteins n and m. This leads to the
following likelihood specification:

L(Xnm, X(−nm) | D1:K, C,Θ) ∝(2.4)

=
K∏
k

[
P (Yk | Xnm, X(−nm), Tk = t,Θ)Ct(n,m)

× P (Yk | X(−nm), Tk = t,Θ)1−Ct(n,m)
]

(2.5)

where the role of the indicator is to discard data collections from data types
that are expected to carry little information about the protein pair of inter-
est, according to information in C. That is, for any pair (n,m), Ct(n,m) = 0
implies data set Yk is conditionally independent of edge (n,m) given the rest
of the pathway. In this case, the data in Yk have no effect on the conditional
posterior probability of Xnm.

In Algorithm 1 we outline the steps of the local-move Gibbs sampler.
First, we use the initial pathway hypothesis to learn model parameters for
the likelihoods described in Section 2.2. These parameters are learned from
the hypothesis pathway or another held-out training pathway. For instance,
for pheromone pathway inference (Section 3) we can infer these parameters
using the hypothesis pheromone pathway or the osmolarity, hypotonic or
starvation sub-pathways (Section 3.3). A summary of all data model pa-
rameters can be found in Table 1.

After inferring these data parameters, we proceed with the main pathway
refinement algorithm. For each pair of vertices in the network (in a ran-
domly chosen order), we sample the presence or absence of an edge from
the conditional distribution, given all other edges. As described above, the
conditional distribution is a based only on the informative data types for
the proposed vertices which are determined by the compartment map and
cellular locations of the relevant genes.

2.2. Likelihoods for high-throughput data on edges, paths and nodes. Data
of different types need to be modeled differently. We focus on modeling
five main data types: protein interaction data, protein-DNA binding data,
gene co-expression data, gene perturbation data, and node attribute data
(differential phosphorylation and protein domains). Below, we describe the
likelihood functions corresponding to the main data types of interest and
methods of inference. For all data models, we use the hypothesis pathway
to learn the relevant parameters.
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Pathway inference via Gibbs sampling
1. Infer model parameters using initial pathway hypothesis
2. Initialize X to the pathway hypothesis.
for desired number of samples do

for n,m in 1:N do
3. Identify informative data types, t ∈ T , using Ct(n,m)
4. Compute L(Xnm = 1, X(−nm)|·) and L(Xnm = 0, X(−nm)|·) using
Equation 2.4.
5. Accept the pathway with Xnm = 1 according to Equation 2.3

Algorithm 1: Local-move Gibbs sampler

Likelihood for protein interaction data. Here, we consider a single data
set YN×N aimed at measuring physical protein binding events (PPI). We
reduce the likelihood of the data, Y , to a function the false positive and false
negative rates, α and β. Given the pathway, X, we evaluate

(2.6) Lppi(Y | X,α, β) = αS10(1− α)S11βS01(1− β)S00 ,

where Sxy counts the number of edges for which Xnm = x and Ynm = y. For
instance, S10 is the number of false positives. We estimate α and β as the
maximum likelihood estimates of the appropriate binomial likelihood, e.g.
α̂ = S10

S10+S11
and β̂ = S01

S01+S00
where S can come from the target hypothesis

pathway or a different training network.

Likelihood for protein-DNA binding data. Here, we consider a single data
set YN×M aimed at measuring transcription factor-DNA binding events
(TF) of N genes on M < N transcription factors. Rather than hybridiza-
tion levels (for ChIP-chip) or peaks (for ChIP-seq), we model the p-values
corresponding to binding events, which makes our model independent of the
technology used to detect the binding event. We develop a mixture model
for the p-values, directly. Given the pathway, X, we expect to see a small
p-value for protein n binding nucleotide sequence m whenever the edge Xnm

is present. On the contrary, the p-values are uniformly distributed under the
null hypothesis of no binding events, Xnm = 0. We evaluate

Ltf (Y | X, γ) =
∏
n,m

[
Uniform (Ynm) · 1(Xnm = 0)

+ Beta (Ynm | γ, 1) · 1(Xnm = 1)
]
,(2.7)

where 0 < Ynm < 1 (p-value), and 0 < γ < 1. See a related beta-uniform
mixture model introduced by Pounds and Morris (2003) in the context of
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multiple testing for differential expression. For pathway refinement, we take
γ to be the maximum likelihood estimate derived from the set of p-values
corresponding to edges in the training pathway.

Likelihood for knock-out data. Here we consider a data set YN×M with
M < N knockouts, where Ymn is the log-two-fold change in expression of
gene n, when gene s is knocked out. Let Zmn be a binary variable represent-
ing the existence of a directed path from gene n to gene m, through a tran-
scription factor. While we consider the set of undirected pathway models,
we temporarily impute directionality using the fact that the cellular signal
should flow from the cytoplasm to the nucleus. We model the knockout data
as a mixture of normals:

Lko(Y | X,σ0, σ1) =(2.8)

=
∏
n,m

Normal (Y |0, σ1) 1[Zmn] + Normal (Y |0, σ0) 1(1− Zmn)

The standard deviations for change in expression are represented by σ0

(when there is no path between the knockout and a target) and σ1 (there
is a path). Empirically σ1 > σ0 since there is generally a larger change in
expression of a node, n, for knockout m when n and m are connected in the
pathway. We take σ1 to be the maximum likelihood estimate based on the
set of log-two-fold changes for which there is a direct pathway between the
knockout and target in the hypothesis / training pathway. Similarly, we take
σ2 to be the maximum likelihood estimate based on the set data for which
there is no path between knockout and target.

Likelihood for gene co-expression data. Here, we consider a single data
set YN×N aimed at measuring gene expression. Rather than hybridization
levels (for microarrays) or the number of reads (for mRNA sequencing), we
model correlations among the profiles of pairs of genes, which again makes
our model independent of the details of the measurement technology. We
develop a mixture model for the correlations, directly. Given the pathway,
X, we expect to see correlation between the expression profiles of two genes
whenever they are co-regulated. Similarly to Schäfer and Strimmer (2005b),
we use a mixture model for the distribution of the sample correlation coef-
ficient ρ̂ = y of the form

Lexpr(Y | X, δ, κ) =
∏
n<m

[
P0(Ynm | κ) · 1(Xnm = 0) +

P1(Ynm | δ, 1) · 1(Xnm = 1)
]

(2.9)
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When Xnm = 0, we expect the two gene profiles to be uncorrelated. Differ-
ently from Schäfer and Strimmer (2005b), however, we chose a distribution
that puts more emphasis on higher correlation if we see an edge in the model,
Xnm = 1, using a one-parameter beta distribution,

(2.10) P1(y|δ) = Beta (y | δ, 1).

As in the model for protein-DNA binding data, we estimate δ using max-
imum likelihood on the set of gene pairs which share a transcription factor
in the hypothesis / training pathway.

Likelihood for node attributes data. Here, we consider a single data set
YN that lists node-specific attributes such as protein domains from PFAM
(Punta et al., 2012) and SMART (Schultz et al., 1998; Letunic et al., 2012)
databases, and differential phosphorylation data (Gruhler et al., 2005). We
develop novel techniques to model protein attributes. Specifically, we model
the likelihood of an attribute conditional on the given pathway X. We term
our models for node attributes “relation regression.” For differential phos-
phorylation data, YN×1,

Lnode(Y | X,λ, σ) =(2.11)

=
∏
n

Normal

(
Yn | λ0 + λ1

∑
m 6=n Ym1(Xnm = 1)∑
m 6=n 1(Xnm = 1)

, σ2
N

)

In other words, the differential phosphorylation, Yn, is assumed to be linearly
related to the mean differential phosphorylation of the neighbors of node n.
Similarly, for the protein domain data, DN×S , we use an auto-logistic re-
gression to model the data. Specifically, for Dns, a binary variable indicating
the presence of domain s in protein n,

(2.12) Lnode(D | X,λ) =
∏
ns

PDns
ns (1− Pns)

(1−Dns)

where

Pns = logit−1

λ0 +
∑
j

λj1

∑
m6=n

Dmj1(Xnm = 1) > 0


Here, logit(Pns) is linearly related to the presence of domains in neighboring
genes. In both the normal and logistic regressions, we again fit the parame-
ters ~λ, using training / initial hypothesis pathway. In the logistic model, we
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Data type Parameters

protein interaction α, β
protein-DNA binding γ
gene knock-out σ0, σ1

gene co-expression κ, δ
node attributes λ, σ2

N

Table 1
List of learned parameters for high-throughput data. Prior to pathway refinement, we

first infer all parameters using the hypothesis pathway or a distinct “training pathway”.

use a weakly-informative Cauchy prior for the coefficients (Gelman, 2008).
This controls for any overfitting and separation problems.

Prior distribution on the space of pathway models. In this study our focus
lies on assessing the extent to which the data support a pathway model X.
We choose a block model prior P (X) over binary matrices of size N × N
with edge density fixed by compartment. In general, any informative prior
distribution on graphs could be used here to encode biological knowledge
(Isci et al., 2013; Mukherjee and Speed, 2008).

3. Case study: Pheromone Response Pathway in S. cerevisiae.
To demonstrate the efficacy of our approach, we examine the pheromone
response MAPK pathway in the yeast S. cerevisiae. It offers the opportunity
to combine a large collection of datasets with a solid understanding of the
pathway structure. The pheromone pathway is the subject of intense research
efforts in computational biology as well as experimental biology (Hara et al.,
2012; Scott et al., 2006; Kofahl and Klipp, 2004) and shows cross-talk to
other MAPK pathways (Nagiec and Dohlman, 2012; McClean et al., 2007;
Gat-Viks and Shamir, 2007).

Initial pathway construction. To start our analysis in a way relevant to
refining and extending existing knowledge of signaling pathways, we ex-
tracted a model of the pheromone response pathway from the summary of
MAPK pathways (sce04010) in the database KEGG (Kanehisa and Goto,
2000) and combined it with known transcription factor (TF) targets from
two independent studies (Simon et al., 2001; Ren et al., 2000).

We split the pathway into three parts: the membrane compartment con-
taining the receptor proteins, the cytoplasm compartment containing the
MAPK cascade to activate the transcription factors (TF), and the nuclear
compartment containing the TFs and their targets. Figure 1-A depicts the
pathway hypothesis. Proteins mediating between two compartments (like
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TFs) are contained in two sub-graphs and marked by grey boxes. TF tar-
gets that are also members of other compartments are indicated in bold.

3.1. Exploratory data analysis of individual data sources. Before infer-
ring the full model from all data, we explored the information content in
each type of data individually (Figure 1-B,C,D).

Protein-protein interactions (PPI). We compared data from several com-
plementary high-throughput assays, all available from BioGRID (Stark et al.,
2006) as well as a literature-curated dataset (Reguly et al., 2006). We an-
alyzed the overlap between the protein interactions and the pathway hy-
pothesis of Fig 1-A. None of the datasets are informative for the membrane
and nuclear compartments. Surprisingly, in the cytoplasm compartment we
found that all of the high-throughput datasets show only ≤ 3 interactions
between any of the proteins in the pathway. The situation was very different
for the literature-curated data. Here, 45 interactions in the cytoplasm com-
partment covered 22 out of the 28 edges there (sensitivity > 78%, specificity
> 87%, see Fig 1-B1).

TF-DNA binding data. We used the transcription factor binding data of
(Harbison et al., 2004), which was not used to define the TF targets in the
pathways hypothesis. However, the ROC in Figure 1-B4 shows this data
contains a very clear signal that distinguishes the targets posited in the
biological model from all other pathway genes.

Co-expression data. For gene expression data, we examined datasets in
which the pathway genes showed a significant difference in correlation struc-
ture from all other yeast genes (using the SPELL algorithm of (Hibbs et al.,
2007)) resulting in 20 datasets from 15 publications (including Roberts et al.,
2000; Gasch et al., 2000; Brem and Kruglyak, 2005). Figure 1-B2 shows
ROCs for predicting edges in the nuclear compartment for all datasets (grey
lines) and the concatenated data (black line). No curve improves much on
random prediction (the main diagonal). The reason is biological: Because
expression data are a poor surrogate for protein activity, TFs are often
less well correlated to their targets than the targets are between each other
(Figure 1-B3). For STE12, which regulates itself, all correlation coefficients
exhibit a strong trend towards high positive correlation. Whereas MCM1,
which is not self-regulating, is far less strongly correlated to its targets than
the targets are between each other. Thus, in general it is more informative
to use the correlation between targets for inference, which is consistently
high whether or not a TF is transcriptionally regulated itself.
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Gene perturbation data. Paths in the graph are visible in cause-effect
datasets (Hughes et al., 2000; Roberts et al., 2000). We find only very small
effects of perturbations in the pathway on the expression of members of the
membrane and cytoplasm compartment including TFs. Figure 1-C summa-
rizes this result for the Roberts et al. (2000) data. Very similar results were
found for the Hughes et al. (2000) data. The four boxes correspond to the
three compartments plus TFs. In each box, a vertical line corresponds to
a perturbation in the pathway (some replicated). The dots show the fold-
changes of the pathway genes in this compartment. Only in the nuclear
compartment are wide-spread large fold-changes visible. This observation
motivates the construction of our likelihood around the presence of paths
between the knockout and genes in the nuclear compartment (see section 2).
In this way, when the knockout is far enough upstream, there is information
about edges in the cytoplasm as well, even if the proteins there show no
effect on the transcriptional level.

Protein phosphorylation. A first example of node information is protein
phosphorylation. The study of Gruhler et al. (2005) assessed differential
phosphorylation of proteins in response to pheromone. Figure 1-D1 shows
the log-ratios between the pheromone treated and untreated conditions. Al-
most all proteins of the pheromone pathway measured by Gruhler et al.
(2005) are up-regulated, which makes sense for a kinase cascade. The phos-
phorylation we observe for proteins corresponding to genes only attributed
to the nuclear compartment in our model must be due to other kinase path-
ways in the cell. We further assessed to what extent the differential phos-
phorylation is correlated with the pathway model by fitting an auto-logistic
regression. As a measure of correlation we computed the variance explained,
R2 = 0.76, using the bootstrap . The variance explained by the auto-logistic
regression was found statistically significant, when compared to the cor-
relation of differential phosphorylation with randomized pathway models,
p ≈ 0.062, and with randomized protein permutations on the true pathway
model, p ≈ 0.059.

Protein domains. A second example of node information are protein do-
mains. We retrieved protein domains from PFAM (Punta et al., 2012) and
SMART (Letunic et al., 2012). First, we sought to quantify which domains,
if any, were over-represented in the set of proteins involved in the complete
pheromone response pathway as well as in each compartment, in turn. Fig-
ure 1-D2 lists the domains that were found to be over-represented in the
complete pathway and in the cytoplasm; darker shades of gray indicate a
more significant p-value for the over-representation test.
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Second, we sought to quantify to what extent the presence or absence of
specific protein domains in proteins interacting with a given protein, P , was
informative about the presence or absence of the same domain in such pro-
tein, P . This analysis was carried out using auto-logistic models, which sum-
marize the informativeness of protein domains between interacting proteins
on average, across all proteins in a given pathway. We fit auto-logistic regres-
sions using each protein P in the cytoplasm compartment of the pheromone
response pathway as data point, and the presence or absence of domains
D1:K in any one protein among those interacting with P as covariates.

We fit multivariate models, which assume that the presence or absence of
either the same or complementary domains is a factor that facilitates protein
physical interactions. The two tables in 1-D3 summarize the goodness of
fit of the multivariate models, and report bootstrap p-values to assess the
significance of the AIC scores. Figure 1-D3 shows the p-values obtained
by fitting the multivariate auto-logistic regression to randomized pathway
models. The domains identified by the multivariate models as putatively
carrying signal about the pheromone pathway in the cytoplasm overlap with
the domains identified by the over-representation analysis above; namely,
P21 rho-binding domains, S-TKc domains, and tyrosine-specific catalytic
domains.

In summary, node attributes of the proteins involved in the pheromone
response pathways are informative about mechanistic elements of the kinase
cascade, across cellular localizations and in the cytoplasm. These findings
suggest that integrating node attributes such as protein domains and cellular
localization should increase the likelihood of pathway models that encode
real biological signal about the inner working of a target pathway.

Data Integration. The previous results suggest that some datasets are
indeed more informative in certain cellular locations. For example, protein
interactions can explain wide parts of the kinase cascade in the cytoplasm,
while co-expression is very strong for TF targets. However, no dataset is
informative in all compartments: Neither protein interactions nor knockout
data can explain a complete pathway. The pheromone response pathway is
an archetypical MAPK pathway, so we expect these observations also to be
valid for other MAPK and signaling pathways. These results suggest that
the compartment-specific modeling approach we take here is sensible.

As a proof of concept, we use the results of exploratory data analysis to
construct the compartment map, C (Table 2). That is, we fix the compart-
ment map based on basic biological principles and the above exploratory
analysis (see Figure 1). We briefly explore a sensitivity analysis on the com-
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partment map in the supplementary results (Figure 6).

3.2. Validation of the integrative pathway refinement strategy. We eval-
uated how well the joint model, which combines all the complementary data
types discussed above, supports the pathway hypothesis in Section 3 by
sampling 1000 possible pathways using MCMC and tabulating the posterior
probabilities over the edges. We demonstrate reasonable MCMC convergence
in Figure 5.

Note that the logistic regression model for domain data may be subject
to over-fitting and separation. This can occur since there are many different
protein domains present, yet the frequency of any single domain is fairly low.
To mitigate this issue, we used a Cauchy prior on the coefficients for the suto-
logistic regression, which is a sensible default prior for this model (Gelman,
2008). Since the domain information in the pheromone pathway is relatively
sparse, we also collected protein domain data from other MAPK pathways
and used the hypothesized structure of those pathways to help learn the
regression coefficients. Figure 1A includes the posterior probabilities for the
edges in our initial hypothesis.

Further, we used a leave-one-out strategy to evaluate the predictive power
of our model. We evaluated 37 separate fits where each node was in turn
left out of the training pathway. The edges connected to this node were
propagated to the neighboring nodes of the left-out node. We left out the
nodes rather than edges, because specifically leaving out edges is equivalent
to assuming that we know there is no edge present. We needed to construct
our model in a way that encodes ignorance about the presence of an edge.
Leaving out the nodes, instead of the edges, is one way of being agnostic
about the presence of edges attached to that node. Only the coefficients in
the auto-logistic regression were learned from the pathway hypothesis, so
only the node likelihoods were affected. Table 3 shows the posterior prob-
abilities for edges (under simulations in which a node was removed from

Table 2
The compartment map, C, associates pathway compartments with those data types that

are informative for such compartments. Prior information is informative for all
compartments.

Membrane Cytoplasm Nucleus

PPI 1 1 0
TF 0 0 1

Expr 0 0 1
Kout 0 1 1
Node 0 1 0

Prior 1 1 1
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the prior hypothesis pathway). This table presents posterior probabilities
for edges involved in knockout experiments.

For comparison, we also fit the model to in silico data. We constructed the
“true pathway” to match the hypothesized MAPK pheromone pathway of
Figure 1A. That is, we fixed a pathway with the matching nodes and edges.
We then generated in silico datasets from the models specified in Section 2.
The one exception is the data generation for the node data.

Here, we generate the presence of domains in a way such that short chains
in the pathway are more likely to share domains than are random non-
neighboring nodes. Specifically, we randomly chose chains of length 1 to 4
and added a common “domain” to every node in that chain. In this way,
the domain data realistically reflect the notion that genes sharing common
protein domains are more likely to interact.

The in silico leave-one-out results are also given in Table 3 beside the
results for the true data. Figure 2 shows the precision-recall curve aver-
aged over 30 simulated datasets. As in the true data analysis, the results
demonstrate high precision and recall, especially in the “nucleus” and “cyto-
plasm”. The “membrane” shows the worst precision-recall because we have
the fewest informative data types there, but when simulating from the true

Table 3
Posterior edge probabilities for leave-one-out trials involving edges in knockout

experiments. Since we use a leave-node-out scheme, there are two posterior probabilities
for an edge (corresponding to which of the two node endpoints were left out for that

particular simulation).

Real data In Silico
Min Average Max Min Average Max

STE11/STE7 0.01 0.01 0.01 0.26 .31 0.36
MCM1/STE2 0.00 0.01 0.02 0.03 0.12 0.2
MF(ALPHA)1/STE2 0.00 0.00 0.01 0.01 0.19 0.36
FUS1/STE12 0.80 0.83 0.87 0.39 0.66 0.92
CDC42/STE18 0.00 0.00 0.00 0.00 0.16 0.31
FUS3/STE12 0.01 0.01 0.01 0.01 0.10 0.19
STE5/STE7 0.13 0.13 0.13 0.00 0.14 0.27
BNI1/CDC42 0.49 0.55 0.61 0.20 0.24 0.28
FAR1/MCM1 0.00 0.00 0.00 0.24 0.26 0.27
FAR1/STE12 0.00 0.00 0.00 0.00 0.37 0.73
STE12/CHS1 0.80 0.82 0.83 0.01 0.02 0.03
STE12/FIG2 0.84 0.84 0.85 0.04 0.24 0.43
MCM1/AGA1 0.10 0.23 0.37 0.07 0.17 0.27
STE12/FIG1 0.00 0.00 0.00 0.42 0.70 0.98
STE12/CIK1 0.83 0.84 0.85 0.94 0.96 0.98
STE12/KAR5 0.83 0.83 0.84 0.23 0.30 0.37
STE12/GIC2 0.83 0.83 0.84 0.12 0.54 0.95
MCM1/SWI4 0.00 0.00 0.00 0.16 0.29 0.41
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data generating process, we still do quite well.
Finally, Figure 2 shows the precision-recall curve for our model, by com-

partment. For the membrane compartment, only the PPI data is informative,
and weakly so. Thus, it performs the most poorly, although there are also
by far the fewest genes in this compartment. By contrast, the nuclear and
cytoplasm compartments both have high precision and recall.

Fig 2: Precision/Recall curves overall and by compartment for the MAPK pathway (left)
and simulated data (right). Thresholds are set on the posterior mean probability of an
edge. In truth, the membrane compartment, which has the fewest genes, performs poorly
because only the PPI dataset is (weakly) informative there. The simulated data reflects
the average Precision/Recall over 30 simulated datasets (Section ).

3.3. Inferring cross-talk with other pathways. With our model, we are
also able to identify possible cross-talk between pathways. In this paper, we
focus on the pheromone response pathway, but our model can easily be used
on other pathways, as long as we specify the relevant genes and transcription
factors, and their corresponding cellular locations.

For instance, the MAPK pathway consists of the pheromone sub-pathway,
as well as hypotonic shock, osmolarity and starvation sub-pathways. The
degree of interaction between components of these MAPK pathways is not
currently known. To identify cross-talk between the pheromone pathway and
other MAPK pathways, we can simply include a new set of genes from the
other sub pathways and fit the model as usual. The results for the cross-talk
evaluations are displayed in Table 4.

4. Discussion. The proposed methodology achieves fairly strong pre-
dictive power by integrating data in a compartment specific way. Impor-
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Table 4
Number of inferred edges between the pheromone pathway and one of the other three

sub-pathways with posterior probabilities above 0.3.

osmolarity hypotonic starvation

cytoplasm-cytoplasm 16 25 11
cytoplasm-membrane 12 17 8
cytoplasm-nucleus 22 17 3
cytoplasm-tf 0 2 3
membrane-membrane 2 2 2
membrane-nucleus 19 13 3
membrane-tf 0 1 2
nucleus-nucleus 4 7 0
nucleus-tf 1 6 10
tf-tf 0 0 2

tantly, we are able to evaluate how each data type contributes to the overall
likelihood of any edge. Since each data type independently contributes to the
probability of an edge, we can compute the fraction of the overall likelihood
difference (between an edge and no edge) that is due to a particular data
type. In this way our framework provides information about which parts of
a pathway hypothesis are not well supported by available data (see Figure
3).

In addition, our methodology can identify if a particular data type tends
to disagree with the other data types for sets of edges. This could indicate
whether or not a data type is at all useful for modeling edges in a particular
cellular location. A sensitivity analysis on the compartment map (Supple-
ment) shows that indeed precision/recall degrades when non-informative
data types are used to infer edges in certain cellular locations. Thus, it may
be possible to do inference on the compartment map from Table 2, rather
than fix it a priori. Alternatively, we could put a probabilistic prior over the
entries in the compartment map which reflect any subjective uncertainty
about where types are informative. Finally we could use this information
can be used to check the validity of the individual data models of Section 2.

There are some open statistical issues that could be addressed in future
work. For instance, one of the major challenges of pathway modeling is that
typically we only track evidence for known edges and rarely record evidence
for a lack of interaction. This makes supervised pathway inference very diffi-
cult. In our framework, we have strong a priori evidence for the presence of
some edges edges, but no a priori evidence about the presence of non-edges.
For this reason, in future work it may be a good idea to treat all edges
without prior evidence of an interaction as missing data rather than a “true
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zero”. Better documentation of experimentally verified non-interactions be-
tween gene products would also be very useful in future analyses.

Another problem relates to the sparsity of the protein domain data. While
there is evidence of signal here, there may be an over-fitting problem. With
more domain data, or perhaps broader domain categories, we may be able

Fig 3: Percentages of differential likelihood (presence vs. absence of an edge)
due to specific data types, by compartment. Node data contribute the most
in the cytoplasm (center), whereas TF-DNA binding data contribute the
most in the nucleus (bottom).
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to learn more from the prior pathway. If this was the case, the leave-one-out
results in the cytoplasm might improve significantly. This is evident from our
results which show how borrowing domain information from other MAPK
sub-pathways significantly improved the posterior probabilities of edges in
the leave-one-out simulations.

We also noticed that most of the knockouts in the gene perturbation
data set we used were generally downstream. If the knockouts were further
upstream from perturbed genes in the nucleus, then we could learn about
the possible presence of edges in a path between the knockout and other
genes.

Lastly, we divided the pathway into its three main compartments: mem-
brane, cytoplasm and nucleus. However, in future work, we hope to divide
the pathway more finely into the over two dozen cellular components speci-
fied by the gene ontology (GO) for the yeast S. Cerevisae. By dividing the
pathway into more compartments, we would also have a greater degree of
control over which data types are used in various parts of the cell.

4.1. Concluding remarks. In this paper we introduced a technique for
refining cellular pathway models by integrating heterogeneous data sources
in a compartment specific way and explicitly included node properties in
our model. Our case-study results indicate that this model can be useful for
discovering new components or cross-talk with other pathways. Our pow-
erful and flexible pathway modeling framework can be easily extended and
modified to include additional and novel datasets.

APPENDIX A: SUPPLEMENTARY RESULTS

In this appendix we present convergence diagnostics for some network
statistics, briefly explore sensitivity of the compartment map and present
more details about the simulation results.
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Fig 4: Log posterior probabilities for edges that were not in the hypothesis pathway. The
vast majority of non-edges have small posterior probability (third quantile at 0.02). How-
ever, there are a few highly probable edges, which may indicate previously undiscovered
interactions.
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Fig 5: Convergence diagnostics from the fit to the MAPK pheromone re-
sponse pathway. We initialize the sampler at the hypothesis pathway and
find convergence to a stationary distribution at a local optima is achieved.
a) Traceplot of kernel smoothed estimates of edge probabilities. b) Autocor-
relation function for a select edge. c) Traceplot for total number of edges in
the network. We calculate the Gelman-Rubin statistics for all parameters
and find a potential scale reduction factor of less than 1.1 for all inferred
edges. The effective sample size for the total number of edges in the network
is about 500 (per 1000 saved samples) and the effective sample size for the
presence of any individual edge in the network is closer to 100 (per 1000
samples).
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Fig 6: Precision/Recall curve for pathway inference using a prior on differ-
ent compartment map initializations. The space of possible compartment
initializations are constrained by basic biological principles and the models
used in Section 3. However, within this space we posit a uniform prior on the
compartment map. The results are comparable to those in Figure 1 although
the precision and recall is generally slightly lower. This suggests that some
map specifications actually add noise relative to the map chosen for the full
analysis (Table 2)
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Gene 1 Gene 2 Prob
1 STE12 DIG2 0.60
2 STE12 FUS1 0.39
3 STE12 FUS3 0.01
4 STE12 FAR1 0.00
5 STE12 MCM1 0.00
6 STE12 FIG2 0.43
7 STE12 FIG1 0.42
8 STE12 CIK1 0.98
9 STE12 GIC2 0.12

10 STE12 AFR1 0.01
11 STE12 KAR5 0.23
12 STE12 CHS1 0.03
13 STE12 AGA1 0.27
14 DIG2 STE12 0.68
15 DIG2 FUS3 0.00
16 STE7 STE11 0.26
17 STE7 STE5 0.21
18 STE7 FUS3 0.26
19 STE11 STE7 0.36
20 STE11 STE20 0.24
21 STE11 STE5 0.00
22 STE20 STE11 0.00
23 STE20 CDC42 0.31
24 STE20 BEM1 0.08
25 STE20 STE5 0.00
26 CDC42 STE20 0.00
27 CDC42 BNI1 0.28
28 CDC42 STE4 0.24
29 CDC42 STE18 0.31
30 CDC42 BEM1 0.47
31 CDC42 CDC24 0.50
32 FUS1 STE12 0.98
33 BNI1 CDC42 0.20
34 MFA1 STE3 0.34
35 MFA1 MCM1 0.07
36 STE2 MF(ALPHA)2 0.01
37 STE2 GPA1 0.35
38 STE2 MCM1 0.20
39 STE3 MFA1 0.30
40 STE3 GPA1 0.13
41 MF(ALPHA)2 STE2 0.36
42 GPA1 STE2 0.01
43 GPA1 STE3 0.14
44 GPA1 STE4 0.14
45 GPA1 STE18 0.12
46 STE4 CDC42 0.22
47 STE4 GPA1 0.14
48 STE18 CDC42 0.00
49 STE18 GPA1 0.13
50 BEM1 STE20 0.36
51 BEM1 CDC42 0.18
52 CDC24 CDC42 0.18
53 STE5 STE7 0.00
54 STE5 STE11 0.00
55 STE5 STE20 0.00
56 STE5 FUS3 0.00
57 FUS3 STE12 0.19
58 FUS3 DIG2 0.21
59 FUS3 STE7 0.22
60 FUS3 STE5 0.05

Gene 1 Gene 2 Prob
61 FUS3 MSG5 0.05
62 FUS3 FAR1 0.00
63 MSG5 FUS3 0.00
64 FAR1 STE12 0.73
65 FAR1 FUS3 0.27
66 FAR1 MCM1 0.27
67 MCM1 STE12 0.00
68 MCM1 MFA1 0.15
69 MCM1 STE2 0.03
70 MCM1 FAR1 0.24
71 MCM1 SWI4 0.41
72 MCM1 MFA2 0.20
73 MCM1 AGA1 0.27
74 MCM1 ALK1 0.15
75 MCM1 SWI5 0.38
76 MCM1 CDC20 0.34
77 SWI4 MCM1 0.16
78 MFA2 MCM1 0.19
79 FIG2 STE12 0.04
80 FIG1 STE12 0.98
81 CIK1 STE12 0.94
82 GIC2 STE12 0.95
83 AFR1 STE12 0.02
84 KAR5 STE12 0.37
85 CHS1 STE12 0.01
86 AGA1 STE12 0.00
87 AGA1 MCM1 0.07
88 ALK1 MCM1 0.24
89 SWI5 MCM1 0.13
90 CDC20 MCM1 0.18

Table 5
Posterior edge probabilities.
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