
Information Flow Audit for Transparency and
Compliance in the Handling of Personal Data

Thomas F. J.-M. Pasquier
Computer Laboratory, University of Cambridge

Cambridge, United Kingdom
Email: tfjmp2@cam.ac.uk

David Eyers
Department of Computer Science, University of Otago

Dunedin, New Zealand
Email: dme@cs.otago.ac.nz

Abstract—The adoption of cloud computing is increasing and
its use is becoming widespread in many sectors. As the proportion
of services provided using cloud computing increases, legal and
regulatory issues are becoming more significant. In this paper we
explore how an Information Flow Audit (IFA) mechanism, that
provides key data regarding provenance, can be used to verify
compliance with regulatory and contractual duty, and survey
potential extensions. We explore the use of IFA for such a purpose
through a smart electricity metering use case derived from a
French Data Protection Agency recommendation.

I. INTRODUCTION

In a recent paper Singh et al. [1] explored the use of
Information Flow Control (IFC) as a data-centric means to
control data flows within the cloud in order to meet “civil,
administrative, and criminal law obligations and responsibil-
ities”. The enforcement of IFC is mandatory on every data
exchange between system components within and across ma-
chines. Through being data-centric, IFC enforcement is easier
to implement consistently than ad hoc access control checks
within software. Among other things, IFC can guarantee that
data disclosure constraints are respected [2], for example, that
medical data can only be used in authorised medical contexts.
It may also guarantee that proper procedures are followed
when transferring data across context domains, e.g. medical
data must receive consent for release and be anonymised before
it can be used in a research context.

Pasquier et al. [3] described a mechanism in which IFC can
be applied in a Platform as a Service (PaaS)1 cloud context.
The IFC enforcement mechanism is the responsibility of the
cloud provider, underlying yet being totally separated from
application logic. A properly implemented IFC mechanism
allows applications running on top of the enforcement mech-
anism to collaborate without requiring mutual trust [4]. The
only required trust relationship that must exist is between the
enforcement mechanism provider and individual applications.

However, while IFC enforcement is a step towards demon-
strating compliance with regulation requirements, a mechanism
to provide transparency over data usage and processing is
needed to complement IFC. Indeed, Bier [5] argues for the
integration of usage control and provenance. Information Flow
Control and Audit has been introduced by Pasquier et al. [6]

1PaaS is a category of cloud service allowing tenants to develop, run
and manage cloud applications. The cloud service provider manages the
complexity of building and maintaining the underlying infrastructure which is
abstracted from the tenants.

to complement IFC to facilitate insight into data provenance
[7] through visualisation and analysis of how information has
actually flowed across the system.

In this paper we explore how such a mechanism can be
developed as a tool to help in the understanding of issues
such as potential data leakage, or attributing responsibilities.
The paper aims to be intelligible by both computer scientists
and law scholars. In §II, we briefly discuss the legal context.
In §III, we briefly explain the concept of Information Flow
Control & Audit as well as pointing to the relevant technical
literature. In §IV, we explore the application of Information
Flow Audit to a electricity smart metering scenario. In §V,
we present related work, discuss open challenges and survey a
range of potential solutions in existing academic work. Finally
we summarise our conclusions in §VI.

II. MOTIVATION

It is important to understand the roles of the actor involved
in the handling of personal data. The UK Information Com-
missioner defines [8]: 1) the data controller as “a person who
(either alone or jointly or in common with other persons)
determines the purposes for which and the manner in which
any personal data are, or are to be processed”; 2) the data
processor as “in relation to personal data, means any person
(other than an employee of the data controller) who processes
the data on behalf of the data controller”; and 3) processing
as “obtaining, recording or holding the information or data
or carrying out any operation or set of operations on the
information or data”.

Data protection laws require the data controller to comply
with principles such as justifiable data processing or implemen-
tation of proper security measures. Further, some data may be
considered particularly sensitive, for example medical data that
requires explicit consent for it to be released for processing.2
The data controller must retain the responsibility for the proper
handling of data. The processor must only process the data in
the context specified by the controller and must not retain the
data beyond the time necessary for the purpose of processing.
Further, the data processor should contractually be required to
implement proper technical or organisational security/privacy
measures.

However, the lack of transparency of most cloud processing
offers make assessing the proper handling of data difficult.

2Article 29 Data Protection Working Party 2015 – European Commission

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/35280792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Traditional audit trails are provided by legacy applications
and tend to focus exclusively on the internal working of said
application [9]. In such a scenario it becomes difficult to
understand how an individual data item has been handled
and if it complies with regulation. Moreover, relationships
involving subcontracts and other forms of interaction across
multiple parties complicate the problem further. Audit must
be data-centric and cross-application, providing information on
the flow of a particular data item during its whole life cycle,
allowing assessment of where responsibility for that data item
lies. This audit trail represents the actions performed on data
and the entities that are responsible for those actions [10].

III. INFORMATION FLOW CONTROL & AUDIT

The early days of the Internet with its prevalent, simple,
client-server architecture are long gone. Most applications are
composed of multiple services interacting through Application
Programming Interfaces (APIs). Furthermore, applications may
exchange information to deliver services to the end-user. The
different services and applications may fall under different
management regimes and legislatures. However, much of the
underlying complexity of these software systems is not made
explicit, and is thus poorly understood by most end-users. This
can lead to significant issues in certain cases. For example,
the personal data of EU citizens is required to be stored
on infrastructure within the EU or in certain specified Safe
Harbours,3 therefore a complex chain—often undisclosed, or
with details only implicitly specified—of third-parties may
expose a company to legal pursuit if it has failed to implement
proper handling of such personal data. What is needed is
a mechanism for control and auditing that applies across
application and service boundaries.

A. Information Flow Control

Information Flow Control (IFC) is such a mechanism. IFC
is a data-centric, mandatory access control mechanism that
guarantees non-interference across security contexts. IFC is
continuously enforced during interactions at every information
exchange. When enforced at the Operating System (OS) level,
every system call is checked for IFC conformance, e.g. reading
or writing a file.

It has been demonstrated that IFC helps in reducing the
size of the Trusted Computing Base (TCB) [4]. When IFC is
in place, there is no need to trust applications running above
the level of IFC enforcement for proper data usage to be
guaranteed [2]. For example, in the case of enforcement at the
OS level, applications running on the OS need not be trusted
[4]. A tamperproof mechanism enforcing IFC policy (be it
the compiler, the kernel, etc.) controls every data exchange
between entities, guaranteeing that data do not leave their
designated security contexts.4 The privilege to transfer data
across security contexts is limited to a well defined number of
trusted entities called declassifiers and endorsers, as illustrated

3The notion of Safe Harbour itself is currently under review by the
European Commission, following Maximillian Schrems v Data Protection
Commissioner 23/09/2015 http://curia.europa.eu/juris/document/document.
jsf?text=&docid=157862&pageIndex=0&doclang=EN&mode=req&dir=
&occ=first&part=1&cid=191188.

4Trust in the enforcement can be achieved through review of the enforce-
ment mechanism and remote attestation—this is discussed in [11].

E1 E2

D

Ei D

Security Context A Security Context B

Entity i Declassifier

Disallowed Flow Permitted Flow

Fig. 1. Transferring data across security contexts through a Declassifier (or
Endorser, not shown).

in Fig. 1. The TCB is limited to the enforcement mechanism
and to a lesser extent, to the declassifier/endorser, to transfer
data to and from well-defined security contexts.

A large number of regulations relating to data management
can be expressed as constraints over the flow of information
within a system. Such constraints can be enforced by aug-
menting access control, encryption and containment with IFC.
However, we believe that this is not yet sufficient to meet the
needs of regulated sectors. There is a need for transparency
when demonstrating compliance, which can be achieved by
capturing and recording information flows. The record of such
flows may allow us to demonstrate consistent application of
regulations and policies, and to understand the chains of events
that might lead to a system releasing data in a manner that is
contrary to regulation.

Current application-centric logging mechanisms fail to
provide such transparency. Indeed, those data logs tend to be
composed of legacy and/or service-specific logging systems.
Such logs typically focus on a specific software component
of the system—for example, relating to a web server or a
database—rather than providing an overview of the system
behaviour with respect to its intended uses. They are difficult
to interpret system-wide, as they tend to select for logging
only those events relevant to the particular system component,
and the log record is in component-specific terms. Aggregation
mechanisms have been provided to process logs from several
applications and several layers of the software stack. However,
none can give satisfactory results in a cloud computing context,
as the logged data are heterogeneous and often fail to capture
information on specific items of data [9]. Given that we
argued that enforcement of integrity and confidentiality issues
should take a data-centric approach, a data-centric approach
to audit and logging seems appropriate for the demonstration
of compliance with data regulations. We believe that such a
mechanism could emerge from provenance research.

B. Provenance Systems

Data provenance (sometimes called lineage), can be un-
derstood as a means to describe where, when, how and by
whom data was generated or manipulated. Provenance data are
generally used for verification of data quality, generation of
replication recipes, attribution of ownership, understanding of
context, determination of resource usage, and analysis of error
in data generation [12]. Some of these uses of provenance can
be directly associated with legal requirements.



F1

F2

F3

F4

F5

P1

P2

P3 F6

Fi

Pj

File i

Process j

Fig. 2. Representing the relationship between information flows and entities
(each File i and Process j) as a directed graph.

Provenance metadata is intended to represent how the data
contained in a given entity was generated and how it relates
to other entities in the system. This metadata is generally
represented and analysed as a directed graph, as illustrated
in Fig. 2.

System provenance was traditionally a focus of databases
or data storage systems. For example, Muniswamy-Reddy et
al. [13] record interactions between files and processes in the
Linux OS. However, this fails to capture a certain number of
important interactions in a complex real-life system. In order
to understand how information is manipulated or generated,
it is not sufficient only to monitor the interaction between a
process and persistent data, but also requires the additional
collection of data that captures the interactions of processes,
inter-process communication mechanisms and the OS kernel
via system calls. This has led to the emergence of whole-
system provenance [14].

C. From Provenance to Information Flow Audit

Whole-system provenance [14], [15] and IFC OS-level
enforcement often use the same mechanism to track exchanges
of information between processes and other kernel objects.
Furthermore, key concepts, vocabulary and understanding of
the system are extremely similar.

During the enforcement of IFC, the data logged about
the system behaviour allows a provenance graph to be built.
Furthermore, as the enforcement mechanism and the audit
mechanism are tightly coupled, the data captured can be
tailored to focus on and meet the requirements of the policy
being enforced. One of the main problems with provenance
is the large storage overhead introduced by provenance data
[16]. By focusing the information logged to that relevant to,
and selected for some purpose, we can significantly reduce this
storage overhead.

Information Flow Audit allows us to verify compliance by
performing queries over the audit graph. A simple example
would be a query verifying that there is no path from a medical
database to a research database that does not pass through an
entity that anonymises the data. In the case of data leakage,
studying the paths from the data source may allow users to
understand how data leaked, and to attribute responsibilities
accordingly. We believe that Information Flow Audit can help

in demonstrating compliance, assigning responsibility, helping
investigation and generally improving transparency.

Further, in addition to active entities (e.g. a computer
process) and passive entities (e.g. files, sockets, pipes etc.),
audit records may also represent agents (i.e. a contextual entity
acting as an enabler, catalyst, controller of a process execution)
and artefacts (i.e. immutable digital or physical objects) as
defined by the Open Provenance Model [17]. This allows
the audit graph to represent interactions between natural5 or
legal6 persons (i.e. agents), virtual entities and physical objects
(i.e. artefacts). These relationships may help determine, for
example, the ownership of a physical object or items of data,
as well as who is controlling a particular computer process.

D. Cost of adoption

Any enforcement mechanism comes with an associated
cost. Is it realistic to expect the adoption of techniques similar
to those described in this paper? In terms of the performance
of whole-system provenance, enforced at the operating system
level, application performance overheads as low as 2.5% [14]
and 2.7% [15] have been reported. Our implementation of
IFC&A introduces a performance overhead of 3.6% [6]. Fur-
ther, as discussed in [3], our proposed IFC&A implementation
within the Linux kernel is transparent to most applications
and supports legacy software without any reengineering effort.
However, there is a cost incurred for the data storage that
records captured audit data which, depending on the amount
of sensitive data flow that needs to be tracked, may prove
significant. This particular issue is further discussed in §V-D.

IV. USE-CASE

We explore the use of Information Flow Audit for demon-
strating compliance by looking at a use case derived from a
CNIL7 report. The report8 describes best practice for smart
metering services for electricity supply, including those me-
diated by the cloud. We focus on the IN → OUT and
IN → OUT → IN scenarios. In the first scenario data are
collected and processed in the cloud to provide services to
the customer. In the second scenario, in addition, actuation
commands may be sent to devices situated in the customer’s
house in order to control energy consumption. These scenarios
and best practices would apply to products such as Nest
thermostat devices.9

We extract four recommendations from the report:

1) anonymous data can be freely transferred to a third
party;

2) personal data can be transmitted with explicit con-
sent;

3) when a contract is terminated, data must be deleted,
anonymised or archived (archiving is for litigation
purposes and limited to a duration specified by law,

5i.e. a “real” human being.
6i.e. a private or public organisation.
7French National Commission on Information and Liberty.
8Pack de conformité sur les compteurs communicants, published in May

2014, available at http://www.cnil.fr/fileadmin/documents/Vos responsabilites/
Packs/Compteurs/Pack de Conformite COMPTEURS COMMUNICANTS.
pdf.

9https://nest.com/



... ...AnonymisationProcessing ProcessingData Third
Party

Fig. 3. Disclosure path to third party.

and archived data should not be used in a commercial
endeavour);

4) detailed consumption and actuation data can be con-
served for three years, but must be aggregated after
this period.

IFC enforcement in the context of regulation enforcement
has been discussed in previous publications [1], [18]. Here we
focus on the audit aspect, and how querying an Information
Flow Audit graph may be used retrospectively to verify com-
pliance with regulation. Implementation of the enforcement
and audit collection mechanism is discussed in detail in [6]. We
assume that compliance data is stored in a graph database akin
to Neo4J10 and can be queried using a declarative language
such as Cypher11 or through a traversal API,12 for example,
to obtain paths between sources and destinations. Technical
details are discussed in the aforementioned publications.

Recommendation 1: the sources are the customer devices,
and the destinations are third party services. Verifying compli-
ance with the first recommendation is equivalent to writing
a query to find a path between a customer device and a
third party service, that does not have on it an anonymisation
process. If such a path exists, the data processor is in violation
of the recommendations. An illustration of a path following the
recommendation is presented in Fig. 3.

Recommendation 2: As discussed in [1], consent verification
can be handled by a specific component. Again, if a path
that does not contain a component to verify consent exists,
then the data processor is potentially in violation of the
recommendation. However, in some circumstances it may be
difficult to reach an authoritative decision and the system may
also in addition to true or false provide the response that it
cannot say. In such situations, policy local to the decision-
making component will need to determine whether to act
cautiously, or prioritise potentially riskier data release.

Recommendation 3 and 4: queries can be made to verify
that data used after three years are only in their aggregated
form (i.e. there is no path between a commercial process and
a data source older than three years without an aggregation
process). Similarly, the use of data after contract termination
can be verified, given the date of the termination is known.

The audit graph built by IFC&A can be exploited further
in a number of scenarios. For example, as the ‘Heartbleed’
vulnerability [19] demonstrated, no implementation is guaran-
teed to be error proof, even if it is widely deployed, tested and
examined. Regulators often stipulate that best practice and a
state-of-the-art approach must be used, as appropriate to the
sensitivity of the data. As an example, this may mean verifying
that no software library version impacted by the Heartbleed

10http://neo4j.com/
11http://neo4j.com/developer/cypher-query-language/
12http://neo4j.com/docs/stable/tutorial-traversal-java-api.html

...ProcessingTherm. Heating

Processing

Processing

Det.
DataData Data

Fire

...

Service Provider 2

Service Provider 3 Service Provider 4

Service Provider 1

ManagesManages

Installed

Manages

Installed

Installed

Fig. 4. Partial graph leading to a command causing a fire (red edge).

vulnerability is loaded by applications, after a reasonable
period of time following publication of the vulnerability.

In the current use-case this could mean that, in addition to
the existence of the anonymisation procedure, we may want to
verify the algorithm and implementation version that it uses.
For example, in the case of a software vulnerability being
published, the compromised implementation should not be in
use after a reasonable delay. Further, the graph may facilitate
the identification of data that has been processed by the buggy
implementation, and determination of the customers impacted
by the vulnerability. The data processor may then notify them,
as for example, is mandated in the US-CERT guidelines.13

Events in the system are represented by edges in the audit
graph. For example, an actuation command is a flow (or a suc-
cession of flows) between some entity and another. If an actu-
ation command causes physical or financial damage it may be
necessary to determine who is responsible. Was the algorithm
used to issue the command erroneous? Were the data captured
to reach the decision inaccurate? Were errors introduced in
the chain between the decision to actuate and actuation? In
order to answer such questions, it is first necessary to identify
the system components and person involved in the process. In
the presence of a complex ecosystem, where multiple devices’
manufacturers and service providers interact, this may not be a
trivial task. Indeed, an actuation command should not be seen
in isolation, but as the result of a potentially complex chain of
events linked by causal relationships. Query of the audit graph
allows this complex chain to be visualised and understood, and
can help in determining where responsibility lies.

Fig. 4 presents a partial graph leading to a command that
caused a fire, damaging the customer’s property. While in itself
it may not be sufficient to determine responsibility, it allows
all parties involved to be identified and their participation in
the chain of events to be explored. This has great potential in
facilitating the investigation.

V. DISCUSSION & OPEN CHALLENGES

Sakka et al. [20] discuss provenance in a cloud relat-
ing to document lifecycles. The context is banking under
French regulation,14 to ensure the probative value of electronic

13https://www.us-cert.gov/incident-notification-guidelines
14Code Civil Article 1316-1.



Fig. 5. Visualisation as provided by our current prototype.

documents. This requires the emitter of any document to
be identified and guarantees its integrity, which is achieved
through provenance in a particular closed system. Curbera et
al. [21] proposed to use provenance to demonstrate compliance
of businesses with regulation such as the Sarbanes-Oxley Act
or HIPAA. Contrary to our approach, which captures whole-
system provenance and does not require trust in involved ap-
plications, the above approaches require existing applications
to be instrumented.

It is important to distinguish between observed and dis-
closed provenance [22]. Disclosed provenance requires ap-
plications to disclose to the audit service the data that flow
through those applications. Therefore, this requires the ap-
plications to be trusted, which in the case of multi-party
interaction may prove to be difficult. On the other hand,
observed provenance does not require the involvement of the
monitored applications and therefore trust need only be placed
in the platform, making the capture (i.e. in the present work
the cloud provider). However, the quality of the provenance
information being captured is highly dependent on what can
be observed. Earlier systems were not capable of capturing
enough information to monitor all possible flows and therefore
only provided a partial view of the data flow within the
operating system. This may prove to be a crucial pitfall when
the provenance data is to be used to demonstrate compliance.
Therefore, Pohly et al. [14] proposed whole-system provenance
to ensure that all data exchange between kernel objects could
be observed. They leverage the Linux Security Module15 [23]
framework to provide such guarantees. A number of issues
remain to be addressed: we discussed some of these issues
in [6] and elaborate further on a selection of them below.

A. Data visualisation and abstraction

Fig. 5 shows how information flow audit data can be visu-
alised in our current prototype. This figure represents different
interactions (e.g. creation, change of security context, write to,
read from, etc.) between entities constituting the system (e.g.
processes, files, sockets, etc.). In particular it shows two IFC-
constrained processes writing to a pipe, and manipulating their
own security contexts. A more detailed description is available
in [6]. Further information is displayed when hovering over
the objects (including disclosed provenance information as
reported by applications). While this may be understandable

15The Linux Security Module framework allows additional security mech-
anisms to be built into the Linux kernel.

by a system engineer it may not convey any directly useful
information to an end user or an auditor wishing to examine in
which context a certain item of data is being used. Mechanisms
need to be developed to abstract the audit graph in a manner
relevant to a particular user. The generation of super-nodes
[22] is such a mechanism. Super nodes abstract a cluster of
nodes into a single node, representing a higher-level system,
meaningful within the context of the policy for which the
compliance is investigated. Borkin et al. [24], explored the
representation of provenance as a graph or a radial plot (across
multiple criteria). It is an open problem how best to represent
data, so as to help users to investigate compliance through
understanding the complex relationship between the entities in
a system and their interactions.

B. Representing legal relationships

The IFA data model currently allows the data flows be-
tween software components to be represented. In a legal
context it may also be useful to be able to represent contractual
relationships as edges, thus linking legal or natural persons
to each other, with system components, and with software
and hardware artefacts. This may prove useful in improving
transparency and helping customers navigate the complex ser-
vice provision model introduced by the cloud and the Internet
of Things [25], especially in scenarios where relationships
can be established in a purely ad hoc fashion. Further, the
representation of the audit data should help in understanding
how interactions between entities in the system relate, or
violate legal relationships. We believe that it is important to
develop a way to visually understand interactions within a
legal framework, and also how laws and regulations could be
expressed in terms of data flow [1].

C. Provenance-based policy

As seen in the use case (§IV), some compliance require-
ments cannot be fully captured from simple IFC primitives
(e.g. constraints applying after certain periods of time). One
solution is to allow the application to specify provenance-based
access control policy [26]. However, as with access control, the
policy will only be enforced at a particular point in the system
and it is hard to guarantee that no other path exists.

A possible solution is to force data that is destined for
a third party to first flow through an element that enforces
AC, using an appropriate composition of IFC enforcers/de-
classifiers. AC decisions could be made based on queries over
the provenance engine, or by applying reasoning techniques
to metadata, such as the ‘baggage’ used in the Pivot system
[27]. The notion of ‘baggage’ can be seen as an extended
version of taint tracking [28], where instead of simple taint,
more complex metadata are attached to data items and flow
with them through the system. This may improve performance,
as no query over the provenance graph is required, but would
necessitate prior knowledge of the metadata required to make
policy decisions, which may prove difficult in a number of
scenarios.

D. Addressing storage issues

A central challenge for the management of provenance-
like audit data is their size. As previously discussed, storage



comes with a cost that has the potential to hinder adoption of
techniques similar to those proposed in this paper. As every
flow in the system may potentially be recorded, the size of
the provenance data tends to grow very quickly. Approaches
for pruning the data according to security policy have been
proposed, based on SELinux policies [16], or our current
method based on IFC policy [6]. In these two papers, data
protected via policies are considered sensitive. Audit data are
only captured for such entities, removing the “noise” generated
by irrelevant, routine system operations. However, this may yet
not be sufficient to make the storage cost acceptable. Further
pruning techniques [13] may be used, such as deleting the
audit data of an entity with no descendant when this entity
is deleted, or compressing a long chain into a single node
(the super node as described in [22]). Effective pruning would
require application of research from information flow analyses
and programming language ‘garbage collection’ techniques
within this particular area. Braun et al. [22] suggest that
irrelevant attributes could be deleted. Those attributes need to
be identified, based on the specific context of the application.
However, pruning techniques may delete information that
would have proved useful for certain investigations. Therefore,
such techniques need to be considered with care, especially
in the context of compliance demonstration, and a balance
between utility and cost needs to be established.

VI. CONCLUSION

In this paper we illustrated how extending Information
Flow Control with provenance-like data collection can help in
demonstrating compliance with regulations. We illustrated this
through a realistic example provided by the French data pro-
tection agency CNIL, pointed to relevant literature on technical
details, and surveyed possible approaches to extend this work.
We believe Information Flow Control when augmented with
an audit capability is a step towards building more transparent
and trustworthy cloud services in heavily regulated sectors.
We further discussed open challenges and potential candidate
solutions to address them.

Acknowledgement

This work was supported by UK Engineering and Physical Sci-
ences Research Council grant EP/K011510 CloudSafetyNet:
End-to-End Application Security in the Cloud. We acknowl-
edge the support of Microsoft through the Microsoft Cloud
Computing Research Centre.

REFERENCES
[1] J. Singh, J. Powles, T. Pasquier, and J. Bacon, “Data Flow Manage-

ment and Compliance in Cloud Computing,” IEEE Cloud Computing
Magazine, SI on Legal Clouds, 2015.

[2] N. Kumar and R. Shyamasundar, “Realizing Purpose-Based Privacy
Policies Succinctly via Information-Flow Labels,” in Big Data and
Cloud Computing (BDCloud’14). IEEE, 2014, pp. 753–760.

[3] T. Pasquier, J. Singh, D. Eyers, and J. Bacon, “CamFlow: Managed
Data-Sharing for Cloud Services,” IEEE Transactions on Cloud Com-
puting, 2015.

[4] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information Flow Control for Standard OS Abstrac-
tions,” in Symposium on Operating Systems Principles. ACM, 2007,
pp. 321–334.

[5] C. Bier, “How usage control and provenance tracking get together-a
data protection perspective,” in Security and Privacy Workshops (SPW),
2013 IEEE. IEEE, 2013, pp. 13–17.

[6] T. Pasquier, J. Singh, , J. Bacon, and D. Eyers, “Information Flow Audit
for PaaS clouds,” in International Conference on Cloud Engineering
(IC2E). IEEE, 2016.

[7] L. Carata, S. Akoush, N. Balakrishnan, T. Bytheway, R. Sohan, M. Sel-
ter, and A. Hopper, “A primer on provenance,” Communications of the
ACM, vol. 57, no. 5, pp. 52–60, 2014.

[8] UK Information Commissioner’s Office, “Data controllers and data
processors: what the difference is and what the governance implications
are,” pp. 4–5, May 2014.

[9] R. K. Ko, M. Kirchberg, and B. S. Lee, “From System-centric to Data-
centric Logging-accountability, Trust & Security in Cloud Computing,”
in Defense Science Research Conference and Expo (DSR), 2011. IEEE,
2011, pp. 1–4.

[10] Y. S. Tan, R. K. Ko, and G. Holmes, “Security and data accountability in
distributed systems: A provenance survey,” in High Performance Com-
puting and Communications & 2013 IEEE International Conference on
Embedded and Ubiquitous Computing (HPCC EUC), 2013 IEEE 10th
International Conference on. IEEE, 2013, pp. 1571–1578.

[11] T. F. J.-M. Pasquier, J. Singh, and J. Bacon, “Clouds of Things
need Information Flow Control with Hardware Roots of Trust,” in
International Conference on Cloud Computing Technology and Science
(CloudCom’15). IEEE, 2015.

[12] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data Provenance
in e-Science,” ACM SIGMOD Record, vol. 34, no. 3, pp. 31–36, 2005.

[13] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems.” in USENIX Annual Technical
Conference, 2006, pp. 43–56.

[14] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi:
Collecting High-Fidelity whole-system provenance,” in Proceedings of
the 28th Annual Computer Security Applications Conference. ACM,
2012, pp. 259–268.

[15] A. Bates, D. Tian, K. Butler, and T. Moyer, “Trustworthy Whole-System
Provenance for the Linux Kernel,” in Proceedings of 24th USENIX
Security Symposium on USENIX Security Symposium, 2015.

[16] A. Bates, K. R. Butler, and T. Moyer, “Take only what you need: lever-
aging mandatory access control policy to reduce provenance storage
costs,” in Conference on Theory and Practice of Provenance. USENIX,
2015, pp. 7–7.

[17] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers et al., “The Open Provenance
Model Core Specification (v1. 1),” Future Generation Computer Sys-
tems, vol. 27, no. 6, pp. 743–756, 2011.

[18] T. Pasquier and J. Powles, “Expressing and Enforcing Location Require-
ments in the Cloud using Information Flow Control,” in IC2E Interna-
tional Workshop on Legal and Technical Issues in Cloud Computing
(CLaw’15). IEEE, 2015.

[19] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The matter
of Heartbleed,” in Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 2014, pp. 475–488.

[20] M. A. Sakka, B. Defude, and J. Tellez, “Document provenance in
the cloud: constraints and challenges,” in Networked Services and
Applications-Engineering, Control and Management. Springer, 2010,
pp. 107–117.

[21] F. Curbera, Y. Doganata, A. Martens, N. K. Mukhi, and A. Slominski,
“Business provenance–a technology to increase traceability of end-to-
end operations,” in On the Move to Meaningful Internet Systems: OTM
2008. Springer, 2008, pp. 100–119.

[22] U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy,
and M. I. Seltzer, “Issues in automatic provenance collection,” in
Provenance and annotation of data. Springer, 2006, pp. 171–183.

[23] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,
“Linux Security Modules: General security support for the Linux
kernel,” in Foundations of Intrusion Tolerant Systems. IEEE, 2003,
pp. 213–213.

[24] M. Borkin, C. S. Yeh, M. Boyd, P. Macko, K. Z. Gajos, M. Seltzer,
H. Pfister et al., “Evaluation of filesystem provenance visualization
tools,” Visualization and Computer Graphics, IEEE Transactions on,
vol. 19, no. 12, pp. 2476–2485, 2013.

[25] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty security
considerations for cloud-supported Internet of Things,” IEEE Internet
of Things Journal, 2015.

[26] A. Bates, B. Mood, M. Valafar, and K. Butler, “Towards secure
provenance-based access control in cloud environments,” in Proceedings
of the third ACM conference on Data and application security and
privacy. ACM, 2013, pp. 277–284.

[27] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in 25th Symposium on Operating
Systems Principles (SOSP ’15). ACM, 2015.

[28] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in Conference on
Operating systems design and implementation (OSDI’10). USENIX,
2010, pp. 1–6.


