
1

CamFlow: Managed Data-sharing
for Cloud Services

Thomas F. J.-M. Pasquier, Member, IEEE, Jatinder Singh, Member, IEEE, David Eyers, Member, IEEE
and Jean Bacon Fellow, IEEE,

Abstract—A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications
whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From
the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and
later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to
effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications,
often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on
a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services
within ‘Internet of Things’ architectures is driving the requirements for both protection and cross-application data sharing.
These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy
enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner’s control
by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow
control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners’ dataflow policy with
regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated
with IFC provides transparency, giving configurable system-wide visibility over data flows. This helps those responsible to meet their
data management obligations, providing evidence of compliance, and aids in the identification of policy errors and misconfigurations.
We present our IFC model and describe and evaluate our IFC architecture and implementation (CamFlow). This comprises an OS
level implementation of IFC with support for application management, together with an IFC-enabled middleware. Our contribution is to
demonstrate the feasibility of incorporating IFC into cloud services: we show how the incorporation of IFC into underlying IaaS or PaaS
provided OSs would address application sharing and protection requirements, and more generally, greatly enhance the trustworthiness
of cloud services at all levels, at little overhead, and transparently to tenants.

Keywords—Security, Audit, Cloud, Information Flow Control, Middleware, Provenance, Linux Security Module, PaaS, Data Management,
Compliance

F

1 INTRODUCTION AND MOTIVATION

A MODEL of cloud services is emerging whereby a
few trusted providers manage the underlying hard-

ware and communications infrastructure—datacenters
with worldwide replication to achieve high data integrity
and availability at low latency. Many companies build on
this infrastructure to offer higher level cloud services,
for example Heroku is a PaaS built on Amazon’s AWS,
above which SaaS offerings can be built (e.g. the LIFX
smart lightbulb cloud service on top of the Heroku
platform). From the start, protection was a paramount
concern for the cloud as infrastructure is shared between
tenants. Strong tenant isolation was provided by means
of totally separated virtual machines (VMs) [1], [2] and
more recently, isolated containers have been provided

• Thomas F. J.-M. Pasquier, Jatinder Singh and Jean Bacon are with the
Computer Laboratory, University of Cambridge, UK.
E-mail: firstname.lastname@cl.am.ac.uk

• David Eyers is with the Department of Computer Science, University of
Otago, New Zealand.
E-mail: dme@cs.otago.ac.nz

Manuscript received March 31st 2015.

that share a common OS kernel [3].
Increasingly, cloud-hosted applications may need not

only protection (and isolation) from other applications
but also have requirements for flexible data sharing, often
across VM and container boundaries. An example is the
UK GCloud1 initiative, a government platform designed
to encourage small companies to provide cloud-hosted
applications. These applications need to be composed
and made to interoperate to support citizens’ needs for
online services. Similarly, the Massachusetts Open Cloud
[4] is a marketplace (Open Cloud Exchange (OCX)) to
encourage small businesses. Solutions are open and one
may build on the services of another. The aim is to create
a catalyst for the economic development of business
clusters.

Users of cloud services still need to be assured that
their data is protected from other cloud users and from
leakage by their cloud hosts due to software bugs or
misconfigurations, also safeguarded to the extent pos-
sible against insider attacks and external threats. But
increasingly, they also need to be able to access their own

1. https://www.gov.uk/digital-marketplace

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/35280704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.gov.uk/digital-marketplace

2

data across applications and to share their data with oth-
ers, according to the policies they specify. Containment
mechanisms, such as VMs and containers, provide strong
isolation and do not support these sharing requirements.
The incorporation of cloud services within ‘Internet of
Things’ (IoT) architectures [5] is another driver of the
requirement for both protection and cross-application
data sharing, given these IoT architectures’ strong em-
phasis on (safe) interaction. For example, a patient being
monitored at home may store sensor-gathered medical
data in the cloud and share it with selected carers,
medical practitioners, and medical research (big-data)
repositories, via cloud-hosted and mediated services.
Once data has left users’ homes for cloud services, they
need to be assured that it is only accessed as they specify.

Traditional access control tends to be principal/role
specific, and apply only within the context of a partic-
ular application/service. Controls are applied at policy
enforcement points, after which there is no subsequent
control over where data flows. Once data has left the
direct control of its owner, for example, after being
shared with others, it is difficult using traditional access
controls to ensure and demonstrate that it is not leaked.
If a leak is suspected, it generally cannot be established
whether this is a breach of confidentiality by a person or
due to buggy or misconfigured cloud service software.

Encryption offers protection by restricting access to
intelligible data, even beyond the boundary of one’s
technical control. However, encryption hinders flexible,
nuanced data sharing, in that key management (dis-
tribution, revocation) is difficult. Further, traceability is
limited, as being mathematically based there is generally
no feedback as to when/where decryption occurs; and a
compromised key or broken encryption scheme at any
time in the future places data at risk. As such, it is
important that data flows are managed and audited,
even if data items are encrypted.

Although contracts exist between cloud providers and
tenants, and cloud services are increasingly subject to
regulation [6], there is at present no way to establish
continuously that providers are in compliance with these
agreements and requirements. Also, there are often re-
quirements that data should pass through certain pro-
cesses, e.g., encryption or anonymisation. There is cur-
rently no clear mechanism to express such requirements
and demonstrate they have been consistently enforced.

Information Flow Control (IFC) augments traditional
access control by offering system-wide, end-to-end, flow
control based on properties of the data—for example,
“medical data may only be used for research purposes af-
ter going through consent checking and anonymisation”.
IFC allows such data to be tagged after these processes
have been carried out as, e.g., consenting, anonymised
(Fig. 2). The tags are metadata, inseparable from the
data for its lifetime, system-wide. Another example is
that Bob’s sensor-gathered medical data may be tagged
medical, bob-private, and these tags stick to the data after
sharing, thus allowing tight control over any subsequent

transfers of the data. We have experience of collaborat-
ing in the healthcare domain [7] and use this for our
examples.

In this paper we present CamFlow (Cambridge Flow
Control Architecture). We outline CamFlow’s IFC model
and implementation which comprises a new operating
system (OS) level implementation of IFC as a Linux
Security Module (LSM), with support for application
management, together with an IFC-enabled middleware.
IFC tags are checked on OS system calls and on message
passing through the middleware, to determine whether
data flows are permissible. Log records can be made of
all flows efficiently, whether permitted or rejected, and
this log is a basis for audit, data provenance and compli-
ance checking. By this means it can be checked whether
application level policy has been enforced and whether
cloud service provision has complied with contractual
obligations.

We argue that incorporating IFC into the underlying
IaaS or PaaS provided OSs, as a small, trusted comput-
ing base would greatly enhance the trustworthiness of
cloud services, whether public or private, and hence all
their hosted services/applications. Our evaluation shows
that IFC would incur acceptable overhead and our IFC
model is designed to ensure that application developers
need not be aware of IFC, although some application
providers may wish to take explicit advantage of IFC.
We demonstrate the feasibility of our approach via an
IFC-enabled framework for web services, see §7.
Contributions: Our main contribution is to demonstrate
the feasibility of providing IFC as part of cloud software
infrastructure and showing how IFC can be made to
work end-to-end, system-wide. In addition to discussing
the ’big picture’, in this paper we also present a new
kernel implementation of IFC and a new audit func-
tion. Our approach enables: (1) protection of applica-
tions from each other (non-interference); (2) flexible,
managed data sharing across isolation boundaries; (3)
prevention of data leakage due to bugs/misconfigura-
tions; (4) extension of access control beyond application
boundaries; (5) increased data flow transparency, aiding
data management, the identification of policy errors/
misconfigurations, and providing evidence for compli-
ance with contractual/regulatory requirements.
§2 gives background in protection and IFC then §3

presents the essentials of the CamFlow IFC model,
with examples. §4 and §5 describe our new OS-level
implementation of IFC as a LSM and its integration
via trusted processes with an IFC-enabled middleware,
storage services, etc. §6 emphasises that audit in IFC
systems produces logs capable of being processed by
‘big-data’ analytics tools. Audit is central to establishing
provenance and for providers to demonstrate compliance
with contract and regulation. §7 shows how standard
web services are supported transparently by the Cam-
Flow architecture: only a privileged application manage-
ment framework need be aware of IFC and unprivileged
application instances can run unchanged. In all cases,

3

evaluation is included within the section. §8 summarises,
concludes and suggests future work.

2 BACKGROUND

We first define the scope of current isolation mech-
anisms, highlighting the need for flexible data shar-
ing at application-level granularity, i.e. where applications
manage their own security concerns, as well as strong
isolation between tenants and/or applications. As an
introduction to IFC we outline the evolution of IFC
models. Related work on IFC implementation at the OS
level and within distributed systems is given with the
relevant sections. We end with a brief comparison of IFC
with taint tracking (TT).

2.1 Protection via VMs and Containers

Isolation of tenants in cloud platforms is through
hypervisor-supported virtual machines [1], [2] or OS-
provided containers [3]. However, flexible sharing mech-
anisms are also required to manage data exchange be-
tween applications contributing to more complex sys-
tems, or to achieve end-user goals. For example, govern-
ment applications might access citizens’ records for var-
ious purposes; a user’s data from different applications
might together contribute to evidence related to health
or wellbeing.

At present, the sharing of information between appli-
cations tends to involve a binary decision (i.e. to share or
not), as for example in Google pod (containers).2 Whole
resources can be shared, but no control over data usage
between application is provided. Furthermore, there are
no means for preventing leakage outside of the mech-
anisms implemented by the individual applications/
services.

Solutions have been proposed to provide intra-
application sandboxes (down to individual end-users)
[8], but such schemes are difficult to scale, require
changes in application logic, and still do not provide
control beyond isolation boundaries (i.e. again, loss of
control once the data is shared).

IFC has been proposed to guarantee the proper usage
of data by social network applications [9], by running
them in VMs constrained by IFC, at the granularity
of whole VMs. The aim is to provide purpose-based
disclosure via IFC [10] between VMs, thus guaranteeing
that shared data can only be used for a well-defined and
agreed-upon purpose.

We propose a solution that offers flexible, scalable
isolation; from that of individual parametrisable roles
within a system composed of several applications (see §7)
to system-wide policy (e.g. legal location requirements
[11]). Note that IFC is by no means proposed as a
replacement for access control, VMs or containers, but
rather as a complement to those techniques to provide
flexible, managed data-sharing. IFC would allow ten-
ants and end-users to maintain control (within an IFC-

2. https://cloud.google.com/container-engine/docs/pods/

enforcing world) and define policy applying to their
data consistently and beyond isolation and application
borders.

2.2 IFC Models

In 1976, Denning [12] proposed a Mandatory Access
Control (MAC) model to track and enforce rules on
information flow in computer systems. In this model,
entities are associated with security classes. The flow of
information from an entity a to an entity b is allowed
only if the security class of b (denoted b) is equal to or
higher than a. This allows the no-read up, no-write down
principle of Bell and LaPadula [13] to be implemented
to enforce secrecy. By this means a traditional military
classification public, secret, top secret can be implemented.
A second security class can be associated with each
entity to track and enforce integrity (quality of data);
no read down, no write up, as proposed by Biba [14]. A
current example might allow input of information from
a government website in the .gov.uk domain but forbid
that from “Joe’s Blog”. Using this model we are able
to control and monitor information flow to ensure data
secrecy and integrity.

In 1997 Myers [15] introduced a Decentralised IFC
model (DIFC) that has inspired most later work. This
model was designed to meet the changing needs of
systems from global, static, hierarchical security levels
to a more flexible system, able to capture the needs
of different applications. In this model each entity is
associated with two labels: a secrecy label and an integrity
label, to capture respectively the privacy/confidentiality
of the data and the reliability of a source of data. Each
label comprises a set of tags, each of which represents
some security concern. Data is allowed to flow if the
security label of the sender is a subset of the label of the
receiver, and conversely for integrity.

2.3 Taint Tracking (TT) Systems

Runtime, dynamic TT is similar to IFC but with less func-
tionality. TT systems use one tag type “taint” instead of
secrecy and integrity tags. Tags propagate with data and
data flows may be logged. An entity that inputs tagged
data acquires the data’s tag(s). Data flow constraints
are only enforced at specified sink points, for example,
when data attempts to leave a mobile phone [16]. Policy
is applied at sink points such as preventing private,
unanonymised or unencrypted data from flowing or
strictly controlling to where data may flow.

An example of TT used for integrity purposes is to
taint data from untrusted sources, e.g., user input from
a TCP stream in a web application environment, and
enforce that it is sanitised before being processed [17].
This simple mechanism prevents injection attacks that
plague badly designed web applications. An example of
TT used for confidentiality purposes is to taint sensitive
information, e.g., a list of contacts in a mobile phone, and
track it through this closed system [16]. Data leaving the
system (i.e. the phone) is analysed to ensure it does not

4

Alice Record
S(A) = {alice,medical}

I(A) = {hosp.-dev., consent}

Bob Record
S(B) = {bob,medical}

I(B) = {hosp.-dev., consent}

Alice’s app. instance
S(C) = {alice,medical}

I(C) = {consent}Allowed Flow
Prevented Flow

Fig. 1: Allowed safe flow example.

contain sensitive information. Data containing sensitive
information should only leave to a number of closely
controlled destinations, such as the cloud backup contact
list. This approach aids the detection of malicious appli-
cations attempting to steal user-sensitive information and
send it to third parties. Equally, this type of concern can
be captured through the use of IFC policies.

One concern with TT systems is that there is a gap in
time between the occurrence of the issue (e.g. a leak,
an attack) and when it is detected [18] i.e. problems
become evident only when the tainted data reaches a
sink (enforcement point). Depending on the degree of
isolation between the different parts of the system, and
the number of system components involved, this tainted
data may have ‘contaminated’ much of the system. While
this can be managed in smaller, closed-environments,
it is less appropriate for cloud services in general. IFC
policies present the clear advantage to prevent problems
as they occur and to stop their effects propagating to a
potentially large part of the system.

Some argue that TT is simpler to use than IFC, and
incurs lower overhead, but when the enforcement is
systemic and the granularity identical the overheads
are similar (compare [16] and the evaluation in §4 and
§5). Indeed, the complexity of verifying IFC policy (see
§3) is comparable to the cost of propagating taint. For
both techniques, most of the overhead comes from the
mechanism for intercepting data-exchange.

3 CAMFLOW-MODEL: IFC FOR THE CLOUD

IFC operates to ensure that only permitted flows of
information can occur, by enforcing data flow policy
dynamically, end-to-end, within and across applications/
services. Entities to which IFC constraints are applied
can include cloud web applications [19], a MapReduce
worker instance [20], a file, a database entry [21], etc. IFC
is applied continuously, typically on every system call
for an IFC-enabled OS, and on communication mecha-
nisms for enforcement across applications/runtime en-
vironments. IFC policy should therefore be as simple
as possible, to allow verification, human understanding
and to minimise runtime overhead. Indeed, there is no
need for IFC to encapsulate every possible policy; rather,
it augments other control mechanisms, and can help
enforce their policies.

3.1 Tags and Labels

We define tags that are tokens, each representing some
security concern over secrecy or integrity. The tag

bob-private could for example represent Bob’s personal
data. We associate every entity in the system with two
labels (sets of tags): an entity A has a secrecy label S(A)
and an integrity label I(A). The state of these labels is
the security context of the entity.
Example – secrecy: Suppose a patient, Bob is discharged
from hospital to be medically monitored at home. The
data streams from his sensors are transferred to a cloud
service and are to be shared with his medical team at
the hospital. The data from his devices is tagged with
medical, bob-private in their secrecy labels.
Example – integrity: The cloud-based home monitoring
support service needs to be assured that the data it
receives is from a hospital-issued device. Each sensing
device is checked and issued with the tag hospital-device
in its integrity label.

3.2 Decentralised Privileges and Security Contexts

In decentralised IFC (DIFC) any active entity can cre-
ate new tags. When an active entity creates a new tag
either for secrecy or integrity, this process is given the
corresponding privilege to add and remove this to its
secrecy or integrity label respectively. If an active entity
A has a privilege to add t to its secrecy label, we denote
this t ∈ P+

S (A), and to remove t from its secrecy label:
t ∈ P−S (A) (and similarly P+

I (A) and P−I (A) are the
privileges for integrity).

In general, application instances will be set up in
security contexts, without the privileges to change them.
An example is given in §7.

3.3 Creating a New Entity

We define A ⇒ B as the operation of the entity A
creating the entity B. An example is creating a process
in a Unix-style OS by clone. We have the following rules
for creation:

if A⇒ B, then
{
S(B) := S(A)

I(B) := I(A)

These rules force the creating entity to explicitly change
its security context to that required for the entity to be
created. We motivate this below in §3.4.2. Note that only
labels pass to the created entity; privileges have to be
passed explicitly.

3.4 Security

The purpose of IFC models is to regulate flows between
entities, and effect label changes and privilege delega-
tion.

Definition 1. A system is secure in the CamFlow model if
and only if all allowed messages are safe (Definition 2), all
allowed label changes are safe (Definition 3) and all privilege
delegation is safe (Definitions 4 and 5).

3.4.1 Safe Messages

IFC prevents data leakage by controlling the exchange
of information. We follow the classic pattern for IFC-

5

Medical Record
S = {personal}

I = ∅

Consent Checker

S = {personal}
I = {cons.}

Anonymiser

S = {research}
I = {cons., anon.} Research Database

S = {research}
I = {cons., anon.}

Researcher Portal
S = {research}

I = {cons., anon.}Allowed Flow
Prevented Flow

Research Porject XXNHS Cloud S = {personal}
I = ∅

S = {personal}
I = {cons.}

Context change

Fig. 2: Medical data declassified and endorsed for research purposes, as in [22], [23]

guaranteed secrecy (no read up, no write down [13]) and
integrity (no read down, no write up [14]).

Definition 2. In FlowK a flow of information A→ B is safe
if and only if:

A→ B, iff
{
S(A) ⊆ S(B)

I(B) ⊆ I(A)

Example – secrecy enforcement: Consider our ex-
ample of patient monitoring after discharge from hos-
pital, where the patient’s devices are tagged with
medical, bob-private in their secrecy labels. In order for the
cloud service to be able to receive this data it must also
include the tags medical, bob-private in its secrecy label.
Therefore an application instance accessing Bob’s medi-
cal data must be labelled as such. In §7 we describe how
applications can be designed to meet such requirements.
Example – integrity enforcement: The cloud-based
home monitoring support service needs to be assured
that the data it receives is from a hospital-issued de-
vice. To achieve this, the service has an integrity tag
hospital-issued in its integrity label and will only accept
data from devices with tags hospital-issued.

3.4.2 Safe Label Changes

In CamFlow as in Flume [24] or HiStar [25], only the
process itself is able to change its secrecy and integrity
labels and must request this explicitly. It has been shown
that implicit label changes can lead to covert channels
[12], [25].

Definition 3. A label change noted A A′ is safe if and
only if for a label X (either S or I) and a tag t:

X(A) := X(A) ∪ {t} if t ∈ P+
X (A)

OR
X(A) := X(A) \ {t} if t ∈ P−X (A)

Example – declassification: A medical record system
is held in a private cloud. Research datasets may be
created from these records, but only from records where
the patients have given consent. Also, only anonymised

data may leave the private protected environment. We
assume a health service approved anonymisation proce-
dure. Fig. 2 shows the anonymiser inputting data tagged
as personal and declassifying the data by outputting data
with secrecy tag research.
Example – endorsement: In the same example, the
Research Database is on a public cloud and may only
receive research data tagged with consent, anon in their
integrity labels. In the private cloud we see a process that
selects appropriate records for specific research purposes,
checks for patient consent and adds the tag consent to the
integrity label of its output. The anonymiser process can
only input data with this tag; it anonymises the data and
outputs data with the tag anon in its integrity label.

The portal for medical researchers is authorised to read
data from the research database because it has the secrecy
tag research. It can only input data that has integrity tags
consent, anon.

In IFC systems, label changes are explicit actions.
However, previous work [24], [26] allows implicit declas-
sification and endorsement. That is, if an active entity has
the privileges to declassify/endorse and the privilege
to return to its original state (i.e. for declassification/
endorsement over t the entity has privilege t− and t+),
the declassification/endorsement may occur implicitly
without the need for the entity to make the label changes
explicitly. We believe that this could in practice lead to
unintentional data disclosure between security contexts.
Therefore, our model has stronger constraints that re-
quire endorsement and declassification operations to be
explicit.
3.4.3 Privilege delegation

An entity is only able to delegate a privilege it owns.

Definition 4. A privilege delegation is safe if and only if
t ∈ P±X (A).

This rule is further restricted by Conflict of Interest
(CoI) (or Separation of Duty (SoD)) enforcement. The
receiving entity A, must not be put in a situation where
it would break a CoI constraint. This is an additional
constraint not present in other IFC systems.

6

Camflow-LSM

IFC Library

User Space

Kernel Space

Application Process

Kernel

DIFC Management APISystem Calls

Hardware

IFC LibraryTrusted Process

Fig. 3: The CamFlow platform, depicting the interactions of
the IFC Security Module (LSM) and a Trusted Process.

Definition 5. An entity A does not violate a CoI C if and
only if:∣∣∣(S(A) ∪ I(A) ∪ P+

S (A) ∪ P+
I (A) ∪ P−

S (A) ∪ P−
I (A)

)
∩ C

∣∣∣ ≤ 1

Example – conflict of interest: A CoI might arise when
data relating to competing companies is available in a
system. In a hospital context, this might involve the
results of analysis of the usage and effects of drugs from
competing pharmaceutical companies. The companies
might agree to this analysis only if their data is guar-
anteed to be isolated, i.e. not leaked to other companies.

The hospital may be participating in drug trials and
want to ensure that information does not leak between
trials: suppose a conflict is C = {Pfizer,GSK,Roche, ...}
and some data (e.g. files) are labelled PfizerData[S =
{Pfizer}, I = ∅] and RocheData[S = {Roche}, I = ∅]. The
CoI described ensures that it is not possible for a single
entity (e.g. an application instance) to have access to
both RocheData and PfizerData either simultaneously or
sequentially, i.e. enforcing that Roche-owned data and
Pfizer-owned data are processed in isolation.

4 THE CAMFLOW PLATFORM

We now introduce the CamFlow platform that enforces
the IFC constraints as described in §3. Core to the plat-
form is a minimal kernel module dedicated solely to
OS-level IFC enforcement. The module is trusted to en-
force, transparently, IFC across all flows between entities
within the OS. User space processes can directly interact
with the kernel module, e.g. to delegate privileges (§3.4)
through a pseudo-file system, accessible through a high
level API. Higher level considerations and policies can be
managed through specifically defined Trusted Processes
(see §4.2). The architecture is presented in Fig. 5.

4.1 CamFlow-LSM: OS enforcement

Our kernel module, CamFlow-LSM, is implemented as a
Linux Security Module (LSM) [27]. Although our work
is Linux-specific, a similar approach could be used on
any system providing LSM-like security hooks. Unlike
other DIFC OS implementations [24], [26] our kernel
patch is self contained, strictly limited to the security
module, does not modify any existing system calls and
follows LSM implementation best practice. For example,
Laminar [26], mainly designed to support an IFC-enabled
Java VM, modifies over 500 lines of code across the
kernel in order to leverage its LSM. This large kernel
modification renders Laminar hard to maintain, and
represents non-trivial engineering to port to a new kernel

version. By comparison, updating our LSM from kernel
version 3.17.8 to 3.18.2 required only five lines of code to
be changed, related to an unavoidable need to conform
to a kernel API modification.

Since applications running on SELinux [28] or AppAr-
mor [29] need not be aware of the MAC policy being
enforced, we see no reason to force applications running
on an IFC system to be aware of IFC. This implementa-
tion choice is important; cloud providers can incorporate
IFC without requiring changes in the software deployed
by tenants. Alternatively, policy may be declared by
applications through a pseudo-filesystem (as is typical
for LSMs) abstracted by a user space library and enforced
transparently by the IFC mechanism.

Tags and privileges are represented by 64 bit integers
(standard in such systems since Flume [24]). They are
stored in an opaque field of the appropriate Linux kernel
object (corresponding to processes, inodes, files, shared
memory objects, etc.). Only active entities (processes)
have mutable labels and privileges, all other (passive)
entities have immutable labels and no privileges.

As shown in §3 every label change must be explicit and
child objects inherit their parents’ labels. File labels are
persisted across executions and are stored as extended
attributes (as for other LSMs such as SELinux [28]).

Privileges are allocated by the kernel and owned by
the creating process (any process can create tags and the
associated privileges in a decentralised fashion). Privi-
leges can be passed to other processes, users or groups.
A process can add or remove a tag from its label if it
owns the appropriate privilege, if the current user owns
the privilege or if the current group owns the privilege.
How tags are shared and managed must be considered
with care when designing an application and the system
must be administered accordingly.

4.1.1 Co-existing with Other Security Modules

Support for simultaneous, multiple Linux Security Mod-
ules is being proposed via various kernel patches [30],
[31]. The CamFlow-LSM implementation is strictly self-
contained, and designed to compose gracefully with
other LSMs. Previous work [26] that modifies system
calls, would need to rewrite their LSM, among other
things, for use with other LSMs. We believe our approach
brings practical benefits, as again, we do not see IFC as
replacing existing security mechanisms (e.g. SELinux [28]
or AppArmor [29]), but rather as a means to provide
additional security functionality. Further, minimising the
deployment overheads helps to facilitate and encourage
wider uptake and adoption.

4.1.2 Checkpointing and Restoration

Checkpointing a process involves halting its execution,
allowing it to be restarted at a later stage, and enabling
migration, see [32], [33]. LSM state is normally saved and
restored by the checkpointing system (e.g. [34]) and our
module further exports an API to more efficiently seri-
alise and restore security context. However, as described

7

0 10 20 30 40 50 60 70 80 90

sys pipe

sys write

sys read

sys clone

µsdyn. label IFC LSM Native

Fig. 4: Overhead introduced into the OS by the CamFlow LSM
(x-axis time in µs).

earlier and unlike Niu et al. [35], we do not modify
system calls and therefore it is not necessary to modify
existing software in order to run on our platform.

Furthermore, self-checkpointing and restoring the pre-
vious state of a process, has been demonstrated [35] to be
a beneficial feature for IFC systems. This is particularly
useful for processes serving requests. In such a scenario
the state of the process is saved after initialisation. When
a request is received the serving process sets itself up
in the security context appropriate to serve the request.
After the request is served (or a series of requests if the
system is session based as described in §7), the process
restores its memory state and security context to what
they were after initialisation. This improves performance
and prevents data leaks between security contexts.

4.1.3 OS Evaluation

We tested the CamFlow-LSM module on Linux Kernel
version 3.17.8 (01/2015) from the Fedora distribution.3
The tests are run on Intel 2.2Ghz i7 CPU and 6GiB RAM
machine.

Measurements are done using the Linux tool ftrace [36]
to provide a microbenchmark. Two processes read from
and write to a pipe respectively. Each has 20 tags in its
security label, substantially more than we have seen a
need for in current use cases. We measure the overhead
induced by: creating a new process (sys clone), creating
a new pipe (sys pipe), writing to the pipe (sys write) and
reading from the pipe (sys read). The results are given
in Fig. 4.

We can distinguish two types of induced overhead:
verifying an IFC constraint (sys read, sys write) and allo-
cating labels (sys clone, sys pipe). The sys clone overhead
is roughly twice that of sys pipe as memory is allocated
dynamically for the active entity’s labels and privileges.
Recall that passive entities have no privileges. Overhead
measurements for other system calls/data structures are
essentially identical as they rely on the same underlying
enforcement mechanism, and are not included.

In some previous work [19], [24], IFC was introduced
into OS kernels by interposition techniques for which

3. It is not feasible to provide a comparison with the Laminar
implementation [26], that is closest in technical terms to our work,
as the implementation available https://github.com/ut-osa/laminar is
for an obsolete kernel version 2.6.22 (07/2007).

overheads were multipliers. The CamFlow-LSM over-
head is a few percent, see Fig. 4. We provide a build
option that further improves performance by declaring
labels and privileges with a fixed size (by default, la-
bel size can increase dynamically to meet application
requirements). This reduces the overhead of the system
calls that create new entities (the dynamic label com-
ponent in Fig. 4). However, for most applications, the
overhead is imperceptible and lost in system noise; it
is hard to measure without using kernel tools, as the
variation between two executions may be greater than
the overhead.

4.2 Trusted Processes

The CamFlow-LSM is trusted to enforce IFC at the kernel
level. Its functionality is minimal; strictly confined to
the enforcement of IFC policies as described in §3. This
guarantees easier maintainability and a system that is
agnostic to higher level application requirements, thus
minimising the constraints imposed on user-space appli-
cation design.

Therefore, we introduce the concept of a trusted process,
that allows application/platform-specific concerns to be
managed in user-space by bypassing some LSM-enforced
IFC constraints. For example, a trusted process might
serve as a proxy for external connections, as in the
Trusted IFC Gateway in the example in §7, setting up
and managing application components’ labels. Trusted
processes are used to interact with persistent storage
(see §4.4), for checkpointing and restoring processes (see
§4.1.2) and for managing inter-process and external com-
munication (see §5).

Figure 5 shows OS instances running the CamFlow-
LSM hosting a number of application processes, that may
be grouped in containers. Each OS instance has a single
trusted process (Security Context Manager) to manage
its hosted processes’ IFC labels and privileges. In addi-
tion, each process has an associated trusted middleware
process to handle inter-process communication. Such
communication may be within or between containers,
operating systems or clouds.

In this example, S represents a particular set of secrecy
tags, and I a particular set of integrity tags, both of which
remain the same throughout. The application processes
and other OS objects, such as pipes and files, are labelled
[S, I]. The process labelled [∅, I] writes ‘public’ data to a
pipe, which is read by a process labelled [S, I], assuming
all the I tags match correctly. Similarly, two processes are
shown writing to and reading from a file.

The Security Context Manager maps between the
kernel-level representation of tags (as 64-bit integers) and
the representation of tags in user space. Within a cloud
or other trusted environment, tags may be simple strings.
When tags need to cross domain boundaries, e.g., when
cloud services form part of a wider architecture, e.g., as
in IoT, tags may need to be protected by cryptographic
means (see §5.3).

Trusted processes are either set up through static

https://github.com/ut-osa/laminar

8

CamFlow-MW CamFlow-MW CamFlow-MW CamFlow-MW CamFlow-MW

Process

CamFlow-LSM

Enforcement Point Pipe [∅, I] File [S, I]

[S, I]

CamFlow-LSM

[S, I][S, ∅][∅, I] [S, ∅]
ProcessProcess Process Process

Security
Context
Manager

Security
Context
Manager

C
o
n
ta
in
e
r

C
o
n
ta
in
e
r

C
o
n
ta
in
e
r

Fig. 5: CamFlow Architecture: Labelled OS Objects and Trusted Processes

configuration, read at boot time by the CamFlow-LSM
module, or created at runtime by another trusted process.
Trusted processes must either be managed by a trusted
party (in our current approach the underlying infrastruc-
ture provider) and/or the code must be auditable and
a means to verify the current version running on the
platform must be provided (see §4.5).

4.3 Outside Connections
In order to guarantee flow constraints, only processes
P such that S(P) = ∅ (i.e. not subject to security con-
straints) are allowed to directly connect or receive mes-
sages from outside connections (e.g. through a socket).
In order to connect to the outside world, a process must
either: 1) be able to declassify to S = ∅; 2) communicate
through an intermediate trusted process.

To build a PaaS platform, we developed a message-
passing middleware (§5) which, as a trusted process,
allows data exchange between applications and services
while guaranteeing IFC properties. In §7, we give another
example of such a process through a gateway that au-
thenticates clients and routes requests to the application
instances running within the proper security context.

4.4 Integrating with Persistent Storage
A first technique to provide IFC with data stores comes
directly from work, including our own, on library-
provided IFC [19], [37]. In such work, the tags are stored
within the persistent store alongside the data, and a
trusted software component ensures that when informa-
tion is read from the store, the corresponding labels are
applied. In Flume [24], a trusted process provides the
interface between untrusted applications and persistent
storage.

More recent work has seen the emergence of databases
that natively understand IFC concepts and can enforce
IFC policies [21]. Our work [38], [39] integrates a messag-
ing middleware with database queries which, coupled
with IFC-aware databases, could provide a clean imple-
mentation minimising the TCB. Moreover, IFC can be
enforced by middleware and storage without application
intervention. The CamFlow-middleware §5 interfaces be-
tween storage systems and the rest of the platform. The
middleware behaves as a proxy, translating system-wide
labels into their data-store specific representation (similar

to how a string or cryptographic tag representation of
tags is translated into an OS identifier).

Note that there is a need to extend the trust of coarse-
grained labels at OS kernel level to this fine-grained
implementation of IFC in the database, over which the
kernel itself has no control. A first scenario is that a
whole database might be labelled at coarse granularity
as, say, medical, research. A second scenario is to use
CamFlow-MW to mediate between a trusted/auditable
IFC-enforcing database (such as IFDB [21]) and IFC con-
strained applications running on an CamFlow-enabled
OS. We are continuing to work in this area.

4.5 Leveraging hardware to reinforce trust in the
platform

Incorporating IFC into cloud-provider OSs would en-
hance the trustworthiness of the platform. However,
IFC only guarantees protection above the technical layer
in which it is enforced. Recent hardware and software
developments have made it possible to attest that the
software layers on which our platform runs are those
that have gone through an audit process.

The Trusted Platform Module (TPM) [40], as used for
remote attestation, [41] is one such hardware mechanism.
TPM is used to generate a nearly unforgeable hash repre-
senting the state of the hardware and software of a given
platform, that can be remotely verified. Therefore, a com-
pany could audit the implementation of our IFC enforce-
ment mechanism and ensure that our kernel security
module, messaging middleware and the configuration
they provide are indeed running on the platform. Any
difference between the expected state of the software
stack and the platform could be considered a breach of
trust; such considerations can easily be embedded in the
contractual obligations of the cloud provider.

TPM and remote attestation for cloud computing [42]
are reaching maturity, with IBM rolling out an open
source, scalable trusted platform based on virtual TPM
[43]. Indeed, Berger et al. [43] describe a mechanism
allowing TPM and remote attestation to be provided for
virtual machine offerings and container based solutions,
covering the whole range of contemporary cloud offer-
ings. Furthermore, the approach not only allows the state
of the software stack to be verified at boot time, but

9

also during execution, and can thus prevent run-time
modification of the system configuration.

5 CAMFLOW-MIDDLEWARE

CamFlow contains a fully-featured general messaging
middleware that supports strongly-typed messages; a
range of interaction paradigms, including request-reply,
broadcast, and streams; flexible resource discovery; and
security mechanisms including access controls and en-
crypted communication. A particular feature of the mid-
dleware is its ability to support dynamic reconfiguration
based on event-driven policy. This simplifies both ap-
plication development and deployment, as concerns can
be abstracted and tailored to the particular environment,
rather than embedded within application code.

For want of space, we only consider the middleware
concepts relevant to IFC enforcement. Full technical
details on the general middleware (as it was prior to
IFC/CamFlow integration) can be found in [38], [44].

In CamFlow, the role of the middleware is to move to-
wards end-to-end data flow management, such that IFC
can be enforced across applications/machines (kernels).
There is some work on IFC enforcement across machines;
however, these impose specific requirements, such as
design-time considerations [45], a particular language/
runtime [46], or constraints on system architecture/
implementation [47], [48]. In contrast, we integrate IFC
functionality into a general, fully featured distributed
systems middleware, to enable flexibility and be more
generally applicable. We deliberately avoid imposing a
structure on system design, instead integrating IFC func-
tionality into the sort of communications infrastructure
common to current enterprise and cloud systems.

5.1 CamFlow: Message-level enforcement
Messages are strongly typed, where a message type is
defined by a schema describing its set of attributes.
For an instance of a message, an attribute consists of a
name, primitive-type and value. The support for IFC within
messages is fine-grained, in that individual attributes
within messages are labelled.

Hierarchical message structures are supported, mean-
ing an attribute might contain a number of sub-attributes
(children), e.g. similar to XML. Thus, the information flow
of a child c can only be more restricted than its parent
p; S(p) ⊆ S(c) and I(c) ⊆ I(p). All child attributes are
subject to the same labelling constraints, with the top-
level attribute referring to the label of the message type.

Labels can be defined within message type schema,
which sets the attribute’s IFC label for all message
instances of the type, i.e. this cannot be changed by
entities dealing in such messages, and the entities must
hold the requisite labels to interact using messages of
that type. Otherwise, the entity (process/task using the
middleware for communication) producing/publishing a
message can set the security labels for the attributes (for
those not predefined), if the entity holds the associated
privileges.

If an entity does not assign a label to an attribute,
the middleware sets this label to the entity’s current
label subject to any definitions in the message type. In
this way, applications can be subject to IFC enforce-
ment completely transparently (i.e. without their direct
involvement); while also providing the interface for the
application to be actively involved if required.
Receiving: If the receiving entity’s labels do not agree
with those of an attribute value, the attribute value (and
any sub-attributes) are removed from (made null in) the
message. This is enforced on message receipt, before it
is delivered to the entity.
Sending: A sending entity cannot produce an attribute
whose labels do not agree with its own labels. This is
enforced when an entity attempts to send a message,
ensuring values for any attributes violating this policy
are removed, before message propagation.

5.2 Policy-driven, event-based reconfiguration

In some circumstances, it may be necessary to modify the
allowed flow of information. For example, the general
policy for a tenant may be to restrict the flow of personal
data to within the European Union, but in case of failure
in a data centre the service may be temporarily hosted
in a US data centre to guarantee availability. Another
example in a medical context is the detection of a life-
threatening event regarding a patient, where data restric-
tions are relaxed and patient data automatically disclosed
to the emergency services [7].

These examples illustrate a necessary change in sys-
tem behaviour (e.g. restricting data to EU territory, not
disclosing patient data) in order to maintain quality
of service (e.g. maintaining availability) or responding
to other functional requirements (e.g. protecting patient
life). Middleware can encapsulate the policy to auto-
matically effect these event-based reconfigurations, at
runtime, when the circumstances arise. Such implicit
change occurs through well defined policies and should
be considered with extreme care. Indeed, they break the
rule of no implicit context change (§3.4.2) and may disclose
data to parties outside of the normal system behaviour.

It again follows that cloud applications and services
need not be IFC aware (though they are not precluded
from taking an active role). The middleware sets the
labels to the current runtime levels of the entity, to
appropriately manage message exchange without ap-
plication intervention. As such, system components are
subject to IFC enforcement policy, without requiring any
direct involvement with IFC specifics. In addition, the
general reconfiguration capabilities of the middleware
enable connections between components to be defined
and managed at runtime, providing another mechanism
for controlling communication.

5.3 System-wide, Secure Label Representation

For IFC to be enforced across machines, tags must be
managed. Towards this, we have proposed that the
widely used and available X509 certificates could repre-

10

0 100 200 300 400 500 600

Time in ms.IFC-overhead

Fig. 6: Average IFC overhead for the CamFlow-MW for a
workload transmission of 5000 messages (x-axis in ms)

sent tags, when in transit outside trusted closed systems,
see [49]. The approach relies on public key certificates
and attribute certificates [50], and uses cryptographic
means to support IFC-controlled exchange of data across
a range of federated applications and clouds. Data ex-
changes are only allowed from sources belonging to the
federation, which is verified through the PKI.

5.4 Evaluation

We have previously evaluated the overhead that IFC
brings to our messaging middleware—this is detailed
in [39]. In summary, the results indicate that IFC en-
forcement introduces an average overhead of ∼9% in
performance time compared to the standard, non IFC-
enabled middleware. Note that these results were mea-
sured in the context of a particular workload deliberately
designed to highlight the impact of IFC enforcement. It
follows that the overheads associated with real-world
usage may be less onerous.

6 CAMFLOW-AUDIT: DATA-CENTRIC LOGS

IFC, in addition to providing strong assurances that
policy is being enforced, can also provide a data-centric
log [51] detailing the information flows within and be-
tween system components. Cloud logging systems are
generally based on legacy logging systems (OS, web-
server, database etc.) that either fail to capture the needed
information, or are extremely complicated to interpret in
a useful manner [52]. More importantly, such logs tend to
be relevant only to the particular service or component,
which makes it difficult, if not impossible, to audit across
a range of applications, clouds, etc.

IFC logs, as provided by our platform, allow us to
capture information on application-level data flows, both
attempted and permitted, allowing the correct expression
and implementation of data flow policy to be checked.
Moreover, such audit brings a level of transparency
allowing the potential of IFC (§1) to be demonstrated:
(1) mutual protection of applications; (2) data sharing
according to policy; (3) investigation of data leakage;
(4) system-wide access control policy enforcement; (5)
compliance with regulations and contracts. In addition,
attempted security attacks and possible security breaches
(whose effects may be confined by IFC) can be inves-
tigated. The existence of audit enhances trust in cloud
services.

Any monitored system call issued by a labelled pro-
cess can be logged, along with middleware operations
concerning connections and message transmission. Op-
erations on labels are also recorded. We have defined

Information Exchange

Create
Security Context Change

t0

t1

t3
t4

t7

t2 t5
t6

P3[S
′′, I]

P2[S
′′, ∅]

P3[S, I]F1[S, I]

P1[S, I] P1[∅, I]

Public[∅, ∅]F2[S
′, I ′]

Fig. 7: Simplified audit graph from IFC OS execution (we omit
meta-data for readability). In blue/pale path to disclosure.

several different types of flow as part of our IFC model
(see §3), namely data flow, creation flow, security context
change and privilege delegation. These flow types may
be important in security forensics and are recorded as
part of the audit log. In Table 1, we show the type of
information recorded: unique IDs representing the origin
and destination entities, the labels associated with those
entities, whether the flow was allowed, the type of flow
and the corresponding timestamps and further metadata
that may vary depending on the entity type. In a mid-
dleware context, the message types involved, and even
details of the messages can also be recorded. All of this
allows an auditor to 1) trace information flows within,
across and between applications and clouds; and 2) to
examine which applications are attempting to violate IFC
constraints and further investigate why.

6.1 Analysing paths to disclosure

To assist in interpreting log information, it is possible
to build a directed graph corresponding to the allowed
flows during the execution of our system. An illustra-
tion is shown in Fig. 7. Such a directed graph helps
one identify data leaks. For example, a tenant might
discover that some sensitive medical data leaked into a
data store where only anonymised research data were
supposed to be stored. IFC is enforced in line with the
policy encapsulated in labels; thus data may leak if such
policy is improperly expressed and/or declassification/
endorsement processes are not correctly implemented
(e.g. if the anonymisation process in Fig. 2 allows re-
identification).

Suppose that an information leak is suspected be-
tween different security contexts L1[S, I] and L2[S

′, I ′].
Determining whether such a leak can occur is equiv-
alent to discovering whether there is a path in the
graph between the two contexts. If the leak occurred,
there must be a path between some entity Ei such that
S(Ei) = S ∧ I(Ei) = I and another entity Fi such that
S(Fi) = S′ ∧ I(Fi) = I ′.

The existence of such a path demonstrates that a leak
is possible. To investigate whether a leak occurred it is
essential to consider the timestamps associated with the
edges comprising the path. We denote by te, the last in-
coming edge to the entity under investigation with labels
[S′, I ′]; only edges such that t < te should be considered.
When applied to all nodes along a path, this rule ensures

11

origin origin labels destination destination labels permitted timestamps type origin metadata destination metadata
P1 [S, I] F1 [S, I] true t0 create {uid, pid [...]} {filename, [...]}
F2 [S’, I’] P1 [S, I] true t1 exchange {filename, [...]} {uid, pid [...]}
P3 [S”, I] P2 [S”, ∅] true t6 exchange {middleware, endpt [...]} {middleware, endpt [...]}
...
P1 [S, I] F3 [S”’, I”’] false t8 create {uid, pid [...]} {filename, [...]}

TABLE 1: Sample audit log structure

strictly monotonically increasing timestamps from the
first node to the last. Fig. 7, shows in pale blue a possible
data disclosure path, from file F2, from a very simple
audit graph. We know from the timestamps t0 and t1
that the data disclosure did not occur through file F1

and process P3, but through P1’s declassification.

6.2 Analysing data provenance

In §3, Fig. 2, we can see that IFC is guaranteeing that for
medical records to flow to a research database (and sub-
sequently to the corresponding research portal), patient
consent is verified and the data is anonymised. We can
guarantee by using IFC that this pattern is followed.

However, an investigator may want to know which
anonymisation algorithm has been run, which data has
been used to generate the anonymised records etc.,
questions relating to data provenance that arise from our
IFC audit log. Provenance can be described as metadata
that represents the history of an object [53]. Provenance
systems are used, for example, in data forensic analysis
to determine how a certain file has been generated [54].
Indeed, with the metadata stored in our audit graph, it
is possible to reconstitute the history of a record.

It has been suggested that provenance systems could
be used to retroactively enforce IFC constraints [20]. Here
we demonstrate that conversely, audit logs generated by
IFC systems can be used to provide a provenance system.

6.3 The audit log as ‘big data’

We are potentially generating a vast amount of data in
our IFC logs. However, unlike standard system logs that
are complex to analyse, our logs generate graphs that
are ideal for analysis by “big data” tools that have been
developed for this purpose [55].

Since the amount of data is potentially huge, the
amount of data being logged can be fine-tuned to meet
the requirements of the platform/tenant. For example,
by reducing the amount of metadata being stored, by
logging only security context changing operations, by
logging only information corresponding to some tar-
get security context, keeping operations on unlabelled
entities outside of the log etc. The decision on what
needs to be logged then becomes a tradeoff between
the data utility and the volume (cost) of log generated,
which can be decided in order to correspond to legal
or contractual requirements (for example, a regulated
sector may need to have a fine grained log to satisfy
data forensic requirements). Indeed, as such an approach
is new to the cloud, such considerations will be refined

by experience, with best practices developing over time.

6.4 Audit access
Logs can be considered as sensitive information and ac-
cess to them should be controlled. This represents an area
of our ongoing work. Traditional access controls clearly
play a role; however, secrecy tags can also be leveraged.
For example, an auditor, before being granted access to
audit logs, must demonstrate ownership of the corre-
sponding secrecy IFC tags (for example through cryp-
tographic means as in §5.3). The auditor may be granted
access to a log entry only if S(origin)∪ S(destination) ⊆
S(auditor).

7 EXAMPLE: SUPPORT FOR WEB SERVICES

One of the most common uses of PaaS is to host web ap-
plications. In this section we present the implementation
of such a solution built on the infrastructure described in
§4, in order to evaluate and demonstrate the feasibility
of our proposed approach. This is illustrated in Fig. 8.
Our platform runs classic and unmodified Ruby web
applications.

As discussed in §4, a labelled process cannot inter-
act directly with standard externally-facing sockets and
must interact with the outside world through a trusted
middleware process. Similarly, interaction with cloud
services (such as data stores) is also achieved through
our messaging middleware as discussed in §5 and §4.4.

Interaction with clients is achieved through a “gate-
way” between the IFC and non-IFC worlds. The require-
ment for this gateway can be removed if a trustworthy
IFC implementation can be provided at the client side,
consistent with the cloud implementation with respect
to tag naming, enforcement, etc. Tag naming in general,
system-wide, is an issue beyond the scope of this paper,
see further §8. In our proof of concept implementation
the gateway is a simple Apache server running a custom-
built module.

The role of the gateway is to authenticate the end-
user when a session is created and associate this session
with an application instance running within the security
context corresponding to the user. Recall that a security
context comprises the S and I labels. Any further re-
quests to the gateway in that session are routed to the
corresponding application instance. Once an instance no
longer has an associated session it can be recycled using
self-checkpointing as described in §4.1.2.

Several application types are running over our cloud-
based, web services platform. For example, in a medical

12

App. Instance App. InstanceApp. Instance

CamFlow-MW

IFC Constrained IFC Constrained IFC Constrained
Context A Context B Public

Trusted IFC Gateway
Enforcing IFC

Data-store

Data-store Service Application

Dr Mauve Dr Green Dr Pink

CamFlow-MW CamFlow-MWCamFlow-MW

IFC Cloud Platform
Remote Clients

Fig. 8: PaaS Architecture on top of IFC-OS

context these might be medical record editing, pharmacy
ordering, social services etc. A single, shared, identity
service for the end-user is part of the cloud provider
offering (in our proof of concept implementation we used
OAuth [56]).

Here, we use OAuth identities to correspond to the
IFC tags required by applications. The aim is that the
same patient identity (and corresponding IFC tag(s)) can
be used by a doctor, authorised as treating that patient,
to access multiple applications such as medical record
editing etc, on behalf of Alice. We assume such applica-
tions, in order to be used on Alice’s behalf, have secrecy
tags medical, alice (as in §3, Fig. 1) and, for simplicity, we
assume no integrity tags.

The GP authenticates, is authorised as treating doc-
tor for Alice and selects the ‘identity’ that corresponds
to Alice. A new session is created server-side by the
gateway, with the requested application instance run-
ning in the corresponding security context, with S =
[medical, alice], I = [∅] When the GP wants to access
applications on behalf of a new patient, he needs to close
Alice’s session, authorise as treating doctor for Bob and
open a new session for Bob. Emergency access to data
is covered by event-based reconfiguration as discussed
in §5.2 (for example granting any doctor privileges over
Alice’s tags).

Note that the control described above is not achieved
by the application, but by the platform itself and can
be controlled by the end-user, subject to access control.
That is, a medical application used on Alice’s behalf runs
in a security context in which data cannot flow to that
of another patient. Furthermore, applications running on
behalf of a given user can share the data of that user
without the risk of seeing a buggy application leaking
data between end-users; the flow of data is not controlled
by the application, but by the platform.

As described in §4, we assume the middleware and
the OS enforcement are provided as a service by the
underlying platform. A tenant wanting to use the third
party web-service offering, once his trust in the under-
lying platform is established, needs only to audit the
gateway; again, the underlying infrastructure provider
could either provide such a gateway or audit it. The
rest of the software stack of the third party web-service
provider is bound by the IFC enforcement mechanism
and therefore need not be trusted.

8 CONCLUSION & FUTURE WORK

In §1 we described the potential of cloud-deployed IFC
as supporting: (1) protection of applications from each
other; (2) flexible data sharing across isolation bound-
aries; (3) prevention of data leakage due to bugs/miscon-
figurations; (4) extension of access control beyond appli-
cation boundaries; (5) increased data flow transparency,
aiding data management, the identification of policy
errors/misconfigurations, and providing evidence for
compliance with contractual/regulatory requirements.

We have demonstrated the feasibility of providing IFC
at the OS level within IaaS or PaaS cloud services and
thus underpinning SaaS. We presented a new kernel
implementation of IFC as a LSM, demonstrating low
overhead for worst-case scenarios where processes con-
tinuously make read/write system calls. Our IFC model
and LSM implementation are designed so that applica-
tions can run unchanged over IFC, thus making cloud
adoption feasible, particularly for smaller companies.

We built a web service support framework to show
that if the platform is trusted to deploy IFC correctly
at the OS level (perhaps with hardware verification of
lower levels) then applications are constrained to run
in user and platform-defined security contexts. Such an
approach supports sharing between applications running
in the same security context and prevents unauthorised
data flows between security contexts by malicious or
buggy/misconfigured applications.

The example begins to address the extension of IFC
beyond a single cloud. We showed a trusted IFC gateway
(§7), designed to set up security contexts for external
users. Should such users be running in a trusted, com-
patible IFC environment, the gateway would not be
needed. In terms of operating within, across and between
systems, we envisage IFC being enforced on the end-
user device, together with the IFC-aware messaging layer
described in §5 and [39]. In such a scenario, the user’s
end-device process could communicate with the cloud-
side process directly through an IFC-secured channel.

CamFlow was developed with cloud deployment in
mind. When multiple cloud services become part of a
wider distributed architecture, such as in IoT, a trustwor-
thy deployment of IFC can no longer be assumed outside
of the immediate cloud context. When data leaves the
environment of a ‘thing’s’ owner, IFC gives the potential
of controlling where it may flow subsequently. Towards
this, we intend to extend CamFlow to support mobile
environments. This is feasible: Android now supports
the full enforcement of SELinux,4 and an Android-LSM
implementation has been demonstrated [57].

A scheme for managing tag definitions (tag naming) is
required for wide-scale IFC enforcement. Though clearly
beyond the scope of this paper, initial thoughts on how
tags might be used to manage the location of data, ac-
cording to EU legislation, are given in [11]. We envisage
agreements on tag names, associated with legislation,

4. https://source.android.com/devices/tech/security/selinux

https:// source.android.com/devices/tech/security/selinux

13

and domain-specific naming, e.g. for Facebook ‘friends’
or as we have defined for our projects with the UK
National Health Service [22], [23]. The cryptographic
representation of tags (§5.3) appears useful, particularly
in dealing with issues of ownership, e.g. user-owned
devices in IoT, and/or multiple domains, where different
organisations could maintain both separate and interop-
erable tagging regimes. More experience on designing
and using IFC labels is required; however, it appears that
a worldwide tag naming scheme would require support
akin to that provided by DNS.

A related issue concerns tag sensitivity, i.e. whether the
tags themselves leak information. This no doubt depends
on the mechanisms for tag management.

IFC logs provide the means to audit an IFC-enabled
system, thus demonstrating trustworthy behaviour. Logs
can be processed to show compliance with contracts
and regulations, to investigate leaks and attacks and,
in general, to show that data has been managed in
accordance with policy, even after it has left the control
of its owner. More work is needed on regulating and
managing access to audit information, though as detailed
in §6 we have made progress towards this.

IFC allows data flows to be controlled system-wide,
end-to-end, creating more powerful and comprehensive
access controls than traditional authentication and au-
thorisation. We believe that IFC has great potential as a
security mechanism whereby trust in a few major cloud
providers, deploying IFC, can be built on to provide a
demonstrably trustworthy computing environment.

ACKNOWLEDGMENTS

This work was supported by UK Engineering and Phys-
ical Sciences Research Council grant EP/K011510 Cloud-
SafetyNet: End-to-End Application Security in the Cloud.
We acknowledge the support of Microsoft through the
Microsoft Cloud Computing Research Centre.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” SIGOPS Operating Systems Review, vol. 37, no. 5,
pp. 164–177, 2003.

[2] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the Linux Virtual Machine Monitor,” in Proceedings of the Linux
Symposium, vol. 1, 2007, pp. 225–230.

[3] D. Bernstein, “Containers and Cloud: From LXC to Docker to
Kubernetes,” Cloud Computing, no. 3, pp. 81–84, 2014.

[4] P. Desnoyers, O. Krieger, B. Holden, and J. Hennessey, “Using
OpenStack for an Open Cloud eXchange (OCX),” in International
Conference on Cloud Engineering (IC2E). IEEE, 2015.

[5] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A
Gap Analysis of Internet-of-Things Platforms,” 2015, Arxiv,
arXiv:1502.01181. [Online]. Available: http://arxiv.org/abs/1502.
01181

[6] C. J. Millard, Ed., Cloud Computing Law. Oxford University Press,
2013.

[7] J. Singh and J. Bacon, “On Middleware for Emerging Health
Services,” Journal of Internet Services and Applications, vol. 5, no. 6,
pp. 1–34, 2014.

[8] S. Lee, E. L. Wong, D. Goel, M. Dahlin, and V. Shmatikov,
“πBox: A Platform for Privacy-Preserving Apps.” in 10th USENIX
Symposium on Networked System Design and Implementation, 2013,
pp. 501–514.

[9] K. Singh, S. Bhola, and W. Lee, “xBook: Redesigning Privacy
Control in Social Networking Platforms,” in USENIX Security
Symposium, 2009, pp. 249–266.

[10] N. Kumar and R. Shyamasundar, “Realizing Purpose-Based Pri-
vacy Policies Succinctly via Information-Flow Labels,” in Big Data
and Cloud Computing (BdCloud’14). IEEE, 2014, pp. 753–760.

[11] T. Pasquier and J. Powles, “Expressing and Enforcing Location
Requirements in the Cloud using Information Flow Control,” in
IC2E International Workshop on Legal and Technical Issues in Cloud
Computing (Claw’15). IEEE, 2015.

[12] D. E. Denning, “A lattice model of secure information flow,”
Commun. ACM, vol. 19, no. 5, pp. 236–243, 1976.

[13] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Math-
ematical Foundations and Model,” The MITRE Corp., Bedford
MA, Tech. Rep. M74-244, 1973.

[14] K. J. Biba, “Integrity Considerations for Secure Computer Sys-
tems,” MITRE Corp., Tech. Rep. ESD-TR 76-372, 1977.

[15] A. C. Myers and B. Liskov, “A Decentralized Model for Infor-
mation Flow Control,” in 17th Symposium on Operating Systems
Principles (SOSP). ACM, 1997, pp. 129–142.

[16] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: an information-flow tracking sys-
tem for realtime privacy monitoring on smartphones,” in Proc. 9th
USENIX conference on Operating systems design and implementation,
ser. OSDI’10, 2010, pp. 1–6.

[17] I. Papagiannis, M. Migliavacca, and P. Pietzuch, “PHP Aspis:
Using partial taint tracking to protect against injection attacks,”
in 2nd USENIX Conference on Web Application Development, 2011,
p. 13.

[18] E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask),” in Symposium
on Security and Privacy. Berkeley, CA: IEEE, 2010.

[19] T. F. J.-M. Pasquier, J. Bacon, and D. Eyers, “FlowK: Information
Flow Control for the Cloud,” in 6th International Conference on
Cloud Computing Technology and Science (CloudCom). IEEE, 2014.

[20] S. Akoush, L. Carata, R. Sohan, and A. Hopper, “MrLazy: Lazy
Runtime Label Propagation for MapReduce,” in 6th Workshop on
Hot Topics in Cloud Computing (HotCloud). USENIX, 2014.

[21] D. Schultz and B. Liskov, “IFDB: Decentralized Information
Flow Control for Databases,” in European Conference on Computer
Systems (Eurosys’13). ACM, 2013, pp. 43–56.

[22] P. Hosek, M. Migliavacca, I. Papagiannis, D. Eyers, D. Evans,
B. Shand, J. Bacon, and P. Pietzuch, “SafeWeb: A Middleware for
Securing Ruby-based Web Applications,” in Middleware, 2011, pp.
491–512.

[23] T. Pasquier, B. Shand, and J. Bacon, “Information Flow Control
for a Medical Web Portal,” in e-Society 2013. IADIS, 2013.

[24] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris, “Information Flow Control for Standard
OS Abstractions,” in Symposium on Operating Systems Principles.
ACM, 2007, pp. 321–334.

[25] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making information flow explicit in HiStar,” in Proc. 7th
USENIX OSDI ’06, 2006, pp. 19–19.

[26] D. E. Porter, M. D. Bond, I. Roy, K. S. Mckinley, and E. Witchel,
“Practical fine-grained information flow control using Lami-
nar,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 37, no. 1, p. 4, 2014.

[27] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman, “Linux Security Modules: General security support for
the Linux kernel,” in Foundations of Intrusion Tolerant Systems.
IEEE Computer Society, 2003, pp. 213–213.

[28] S. Smalley, C. Vance, and W. Salamon, “Implementing SELinux
as a Linux Security Module,” NAI Labs Report, vol. 1, p. 43, 2001.

http://arxiv.org/abs/1502.01181
http://arxiv.org/abs/1502.01181

14

[29] M. Bauer, “Paranoid Penguin: an Introduction to Novell AppAr-
mor,” Linux Journal, vol. 2006, no. 148, p. 13, 2006.

[30] M. Quaritsch and T. Winkler, “Linux Security Modules Enhance-
ments: Module Stacking Framework and TCP State Transition
Hooks for State-Driven NIDS,” Secure Information and Communi-
cation, vol. 7, 2004.

[31] C. Schaufler, “LSM: Generalize existing module stacking,” Linux
Weekly News, 2014.

[32] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of
fault tolerance mechanisms and checkpoint/restart implementa-
tions for high performance computing systems,” The Journal of
Supercomputing, vol. 65, no. 3, pp. 1302–1326, 2013.

[33] “CRIU.” [Online]. Available: http://criu.org/
[34] O. Laadan and S. E. Hallyn, “Linux-cr: Transparent application

checkpoint-restart in linux,” in Linux Symposium. Citeseer, 2010,
p. 159.

[35] B. Niu and G. Tan, “Efficient User-space Information Flow Con-
trol,” in Symposium on Information, Computer and Communications
Security (SIGSAC’13). New York, NY, USA: ACM, 2013, pp. 131–
142.

[36] T. Bird, “Measuring Function Duration with ftrace,” in Japan
Linux Symposium, 2009.

[37] B. Davis and H. Chen, “Dbtaint: cross-application information
flow tracking via databases,” in Proc. 2010 USENIX conference on
Web application development, ser. WebApps’10, 2010, pp. 12–12.

[38] J. Singh and J. Bacon, “SBUS: A Generic, Policy-enforcing Mid-
dleware for Open Pervasive Systems,” University of Cambridge
Computer Laboratory Technical Report TR, vol. 847, 2014.

[39] J. Singh, T. Pasquier, J. Bacon, and D. Eyers, “Integrating Middle-
ware with Information Flow Control,” in International Conference
on Cloud Engineering (IC2E). IEEE, 2015.

[40] B. Parno, “Bootstrapping Trust in a” Trusted” Platform,” in
HotSec. USENIX, 2008.

[41] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards Trusted
Cloud Computing,” in Conference on Hot Topics in Cloud Comput-
ing. USENIX, 2009, pp. 3–3.

[42] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and
L. van Doorn, “vTPM: Virtualizing the Trusted Platform Mod-
ule,” in Security Symposium. USENIX, 2006, pp. 305–320.

[43] S. Berger, K. Goldman, D. Pendarakis, D. Safford, E. Valdez,
and M. Zohar, “Scalable Attestation: A Step Toward Secure and
Trusted Clouds,” in International Conference on Cloud Engineering
(IC2E). IEEE, 2015.

[44] J. Singh, D. Eyers, and J. Bacon, “Policy Enforcement within
Emerging Distributed, Event-Based Systems,” in ACM Distributed
Event-Based Systems (DEBS’14), 2014.

[45] L. Sfaxi, T. Abdellatif, R. Robbana, and Y. Lakhnech, “Information
Flow Control of Component-based Distributed Systems,” Concur-
rency and Computation: Practice and Experience, vol. 25, no. 2, pp.
161–179, 2013.

[46] S. Yoshihama, T. Yoshizawa, Y. Watanabe, M. Kudoh, and K. Oy-
anagi, “Dynamic Information Flow Control Architecture for
Web Applications,” in ESORICS 2007, ser. LNCS, J. Biskup and
J. Lopez, Eds. Springer Berlin Heidelberg, 2007, vol. 4734, pp.
267–282.

[47] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic, A. Blankstein,
J. Cowling, D. Curtis, L. Shrira, and B. Liskov, “Abstractions for
Usable Information Flow Control in Aeolus,” in Proc. USENIX
Annual Technical Conference, Boston, 2012.

[48] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing Dis-
tributed Systems with Information Flow Control,” in 5th USENIX
Symposium on Networked System Design and Implementation, 2008,
pp. 293–308.

[49] J. Singh, T. F. J.-M. Pasquier, and J. Bacon, “Securing Tags to
Control Information Flows within the Internet of Things,” in
International Conference on Recent Advances in Internet of Things
(RIoT’15). IEEE, 2015.

[50] J. S. Park and R. Sandhu, “Binding Identities and Attributes
Using Digitally Signed Certificates,” in 16th Annual Conference
on Computer Security Applications. IEEE, 2000, pp. 120–127.

[51] A. Ganjali and D. Lie, “Auditing cloud management using infor-
mation flow tracking,” in Workshop on Scalable Trusted Computing.
ACM, 2012, pp. 79–84.

[52] R. K. Ko, M. Kirchberg, and B. S. Lee, “From System-centric to
Data-centric Logging-accountability, Trust & Security in Cloud
Computing,” in Defense Science Research Conference and Expo
(DSR), 2011. IEEE, 2011, pp. 1–4.

[53] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Provenance
for the Cloud,” in Conference on File and Storage Technologies.
USENIX, 2010, pp. 15–14.

[54] R. Lu, X. Lin, X. Liang, and X. S. Shen, “Secure Provenance: the
Essential of Bread and Butter of Data Forensics in Cloud Comput-
ing,” in Symposium on Information, Computer and Communications
Security. ACM, 2010, pp. 282–292.

[55] R. Angles and C. Gutierrez, “Survey of Graph Database Models,”
Computing Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

[56] D. Hardt, “The OAuth 2.0 Authorization Framework,” IETF,
Tech. Rep., 2012.

[57] S. Smalley and R. Craig, “Security Enhanced (SE) Android:
Bringing Flexible MAC to Android.” in NDSS, 2013.

Thomas Pasquier is a PhD student and a Re-
search Assistant at the University of Cambridge.
His MPhil from Cambridge included a project on
“Prevention of identity inference in de-identified
medical records”.

Jatinder Singh is a Senior Research Associate
at the Computer Laboratory, University of Cam-
bridge. His research interests concern manage-
ment control in distributed systems, particularly
regarding cloud and the Internet of Things.

David Eyers is a Senior Lecturer at the Uni-
versity of Otago, New Zealand and a Visiting
Research Fellow at the Cambridge Computer
Laboratory.

Jean Bacon is a Professor of Distributed Sys-
tems at the University of Cambridge, and leads
the Opera research group, focussing on open,
large-scale, secure, widely-distributed systems.

http://criu.org/

	Introduction and Motivation
	Background
	Protection via VMs and Containers
	IFC Models
	Taint Tracking (TT) Systems

	CamFlow-Model: IFC for the Cloud
	Tags and Labels
	Decentralised Privileges and Security Contexts
	Creating a New Entity
	Security
	Safe Messages
	Safe Label Changes
	Privilege delegation

	The CamFlow Platform
	CamFlow-LSM: OS enforcement
	Co-existing with Other Security Modules
	Checkpointing and Restoration
	OS Evaluation

	Trusted Processes
	Outside Connections
	Integrating with Persistent Storage
	Leveraging hardware to reinforce trust in the platform

	CamFlow-Middleware
	CamFlow: Message-level enforcement
	Policy-driven, event-based reconfiguration
	System-wide, Secure Label Representation
	Evaluation

	CamFlow-Audit: Data-Centric Logs
	Analysing paths to disclosure
	Analysing data provenance
	The audit log as `big data'
	Audit access

	Example: Support for Web Services
	Conclusion & Future Work
	References
	Biographies
	Thomas Pasquier
	Jatinder Singh
	David Eyers
	Jean Bacon

