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Abstract 

Current work in mathematics education suggests that the learning experiences in which teachers 
engage during undergraduate study influences their knowledge of and beliefs about mathematics 
and the ways in which they will teach (Allen, et. al., 2008; CBMS, 2001; Hill, Rowan, & Ball, 
2005; National Research Council, 2001). However, very little is known about pre-service 
teachers’ learning experiences and how those experiences influence their thinking about 
mathematics teaching and learning. The classroom excerpt described here attempts to illuminate 
how pre-service, elementary teachers’ active engagement in the learning of geometry and 
measurement influences their mathematical power: a positive disposition toward mathematics, 
ability to reason about mathematics, facility in making connections across content strands and to 
other subjects, and proficiency in communicating mathematical ideas (Baroody & Coslick, 1998; 
National Council of Teachers of Mathematics, 1989; Orrill & French, 2002). The author calls for 
research that more closely examines students’ learning experiences and educational outcomes 
such as mathematical power and mathematics knowledge for teaching (Hill, Rowan, & Ball, 
2005). 
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Actively Engaging Pre-service Teachers in Geometry and Measurement 

 
Actively engaging students in the learning process is a central feature of many efforts to 

reform the teaching and learning of undergraduate mathematics (Bryant, 1998; Kvam, 2000; 
Millett, 2001; Roddick, 1997; Treisman, 1992). The Mathematics Association of America 
(MAA) developed Quantitative Reasoning for College Graduates: A Complement to the 
Standards (1998) to address concerns about the types of mathematical experiences that all 
undergraduate students should have as they develop quantitative literacy. In this report, the MAA 
advised that traditional lectures be replaced with more active, engaging experiences that require 
students to engage in teamwork, discussion, and writing about mathematics. In their 
recommendations for preparing K– 12 mathematics teachers, the Conference Board of the 
Mathematical Sciences (CMBS; 2001) also discusses the importance of actively engaging pre- 
service teachers in the learning process. They identified active involvement as a goal of 
elementary and secondary mathematics education and claim that in order for teachers to actively 
involve students in their own classrooms they need to have similar experiences in their college 
mathematics courses. While there is no agreed upon definition of active learning, scholars assert 
that active learning involves talking, listening, writing, reading, and reflecting (Hobson, 1996; 
Meyers & Jones, 1993; Yackel & Cobb, 1996). These elements all engage the brain in different 
thinking processes or operations that lead to the creation of new mental structures, and thus, are 
elements of active learning. 

In addition to engaging in active learning experiences, teachers of mathematics also need 
to develop mathematical power so they can foster its development in their students (Baroody & 
Coslick, 1998). Scholars suggest that there is something important about having an 
understanding of and a positive disposition toward mathematics, being able to reason about 
mathematics, make connections across content strands and to subjects outside of mathematics, 
and being able to communicate mathematical ideas (Baroody & Coslick, 1998; National Council 
of Teachers of Mathematics, 1989; Orrill & French, 2002). 
Restructuring a Geometry and Measurement Course 

As I prepared to teach an undergraduate Geometry and Measurement course for pre- 
service elementary teachers in the spring of 2008, I sought ways to create a learning environment 
where students would have many opportunities to learn by actively engaging in the study of 
mathematics and that would foster the development of their mathematical power. The course was 
structured with these goals in mind and incorporated the following features: 
• Students sat with and regularly worked in pairs or small groups to provide them with 

opportunities to communicate about mathematics with each other and to share and compare 
ideas and problem solving strategies. 

• Students were encouraged to ask questions (of the teacher or of other students) or make 
propositions or conjectures about mathematical ideas as they arose. Questions, propositions, 
and conjectures were then addressed and explored by the class. 

• Students were always required to give explanations of their thinking and reasoning processes 
as to illuminate the process of developing mathematical ideas and solution strategies. 

• Students were regularly asked to consider and identify different ways of thinking about a 
problem and to explore multiple strategies for solving a problem. 

• Students were consistently asked entrance and exit questions that were used throughout the 
semester to assess students’ ability to articulate their conceptual understanding of geometry 
and measurement in writing and their ability to make connections among different concepts. 
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• Students were frequently given think-pair-shares or think-write-pair-shares so as to promote 

opportunities for independent thinking and formulation of ideas before sharing those ideas 
with other students or with the class. 

• Students, as a class, periodically worked through elementary-level problems followed by 
watching and discussing video clips of elementary students working on those problems and 
developing their understanding of mathematical concepts. 

An Excerpt 
It was the last day of class, before the start of spring break. Some of the 21 students were 

getting restless and wanted to begin spring break as soon as possible. About two-thirds of the 
way through the class, we were finishing a word problem when I heard Jason (pseudonym, as are 
all proper names) whisper that he was ready to leave. I thought for a moment about his request 
and then reminded the class about a problem that I had written on the board at the beginning of 
class. It was an interesting problem that I told them I wanted to make sure we got to before the 
end of class. Up to that point, no one had considered the problem, but as some students were 
beginning to get antsy, I proposed that once a student solved that problem, he or she could leave. 
The problem was to find the area of the shaded region given square EFGH with segment 
EF=6cm inscribed by square ABCD with diagonal AC=12cm. It should also be noted that the 
inner square was inscribed by the outer square using the midpoint of the sides of the outer 
square. 

The students immediately started working on the 
problem, and although Jason was the first to run up to show 
me his solution, no one stopped working because it had 
already been solved. Perhaps the students were anticipating 
my usual questions: “Ok, so what did you do and how did 
you get this as your answer?” and “Can you find another 
way to solve it to verify that your solution is correct?” This 
questioning, of course, was not explicit in the deal “If you 
solve it, then you can leave,” but the students had enough 
experiences in the course to anticipate this expectation and 
recognized that thinking about a mathematics problem in a 
different way can help them make sense of their solutions. 
Jason’s First Solution: 
Jason: “Is this the answer?” [he showed me a sketch of the 
problem and solution A=36cm2] 
Me: “Hmmm, how did you get that?” 
Jason: “Well, the area of this triangle [triangle EFB] is 
9cm2 and there are 4 of them, so the total area is 36 cm2.” 
Me: “How did you calculate the area of the triangle?” 
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Jason: “You know the base is 6cm ‘cause that is given in A  C
 

the problem, and the height is 3.” 
Me: “How do you know that the height is 3?” 
Jason: “Because…, um, wait…I’ve got to look at that.” H  

G 

Me: “Ok.” [Jason headed back to his seat] 
Jason was the only male in the class. He was 

formerly a secondary mathematics education major and D
 

has taken more advanced math courses than most of the other elementary education majors in the 
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class. He was fairly confident in his ability to do mathematics, particularly when it involved 
calculations. He, however, had been a bit humbled by our study of the underlying mathematical 
ideas involved in elementary school mathematics along with his discovery of the value in 
considering different ways to think about and solve problems. Jason had come to respect his 
classmates’ perspectives and often commented, “I never would have thought of solving it that 
way.” 

As Jason walked past Laverne’s table, she looked up from her work at me, “Are you 
going to show us how to do this?!” She was frustrated. Laverne was always frustrated. She was a 
non-traditional student who had very little confidence in her ability to do mathematics. She often 
struggled with trying to get started on a problem, mostly because she questioned herself and 
whether or not she was doing the problem correctly. Whenever she was asked what she has a 
question about, Laverne responded, “Everything!” For the unit on measurement, she had been 
sitting at a table with Ursula. Ursula did not say much in class unless she was asked, but she 
worked well with Laverne. Ursula was also very willing to begin working on something even 
when she was not quite sure about what to do. She was comfortable figuring things out and 
adjusting her solution along the way. When Laverne asked for my assistance I asked her what 
she had already tried; as she was gearing up to tell me that she was completely lost, Ursula 
tapped her to get her attention. Laverne turned her attention to Ursula and the two began 
discussing how to solve the problem. 

A moment later, Jason came back up to explain his solution. I noticed while he was 
working with his group he seemed to be explaining his way of solving the problem and his group 
members were listening and asking questions about why his solution made sense. 
Jason’s Second Solution: 
Jason: “Ok. I just had to go back and make sure what I did made sense.” 
Me: “Ok. Let’s see. What did you do?” 
Jason: “So if this side is 6 [refers to segment EF] and this 
distance is 12 [segment AC], then since they are both 
squares, this is 3 [segment AI] and this is 3 [segment 
JC].” 
Me: “Ok.” 
Jason: “So the base of the triangle [segment HE of 
triangle AHE] is 6cm and the height (segment AI] is 3cm 
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E  F 

6cm 
 
6  I  J  C 

so the area is 9 [pointed to his written work ½*6*3]. 
There are 4 triangles, so the total area is 36 cm2. Is that 
right?” 
Me: “That’s interesting. So can you find another way to 
verify that it is correct?” 
Jason: “So you want me to do it another way? Ahh!” 
Me: [I smiled. He seemed to need some encouragement.] 
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“Yes. Think about our general strategy, figure out the area and subtract the parts you don’t 
want.” 
Jason: “Ok.” [He headed back to his table and began discussing the problem with his group 
members again. This time he appeared to be listening as his group members’ explained their 
ideas.] 

Abigail, Ursula, and Laverne soon came up excitedly to show me their solutions. Abigail 
is a non-traditional student who does not recall ever taking geometry in high school and 
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sometimes has trouble understanding what problems are asking. Throughout the class she 
enjoyed using different learning tools to model problems so that she could understand what she 
was really trying to find. She is very careful when drawing shapes and often uses graph paper to 
help with her precision. The graph paper helped her to see more clearly how to solve this 
problem. 
Abigail’s Solution 

Abigail noted that because ABCD is a square, 
segment AC bisects segment BD so the distance from 
point B to the center of square EFGH [point K] is 6cm. 
She then solved the problem by looking at congruent 
triangles ABC and ADC, found the area of these triangles, 
and then subtracted out the area of square EFGH: 
A=2(1/2)(12)(6) – (6)(6) = 36 cm2. A

 

Laverne and Ursula’s Solution 
Ursula listened carefully to Abigail’s solution, but 

Laverne could hardly contain her excitement. She H 

interrupted to say that she and Ursula thought about it that 
way too, but ended up breaking it up into smaller 
triangles. As soon as Abigail finished, Laverne proudly 
explained that they found eight congruent right triangles 
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each with a base of 3cm and a height of 3cm, and then calculated their areas: A=(8)(1/2)(3)(3) = 
36 cm2. When I asked Ursula and Laverne how they figured out that each of these measurements 
is 3cm, Ursula explained that if segment AC is 12cm and 
segment IJ is 6cm then you are left with 3cm on either side of 
points I and J so segment AI is 3cm and segment JC is 3cm. She 
told me that they know this is true because both ABCD and 
EFGH are squares and E, F, G, and H are midpoints. Ursula also 
noted that segment BD bisects segment AC and it also bisects 
segment EF, so you end up with eight right triangles each with a 
base of 3cm and a height of 3cm. I followed up with a couple 
questions directed to Laverne so I could verify that she 
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understood what Ursula was explaining. She appeared to 
understand, so I sent them off to solve the problem another way. 
Jason’s Group’s Solution 

Jason and his group worked out another solution and he 

Hm   3cm 3 
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came back up to share it with me. They had sketched in segments AC and BD and noted that 
they bisect each other. He explained that there are four 
congruent quadrants, each was a right triangle with area 
=(1/2)(6)(6)=18 cm2. So the area of square ABCD is 
4(18)=72cm2. Then you have to subtract off the small square EFGH: 
A=72-(6)(6)= 36 cm2. I smiled and wished Jason an enjoyable spring 
break – ten minutes before class was scheduled A 

to end. Instead of rushing out the door, Jason went back to his 
table to discuss the problem with his group some more. I guess 
he wasn’t in such a rush after all. 
Discussion 
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Proponents of active learning argue that new ideas are formed and discoveries are made 

in mathematics not by individual competition but through collaboration with colleagues, and this 
process is central to the nature of the subject (Mau & Leitze, 2001; Rogers, 1992; Yackel & 
Cobb, 1996). Rogers (1992) states 

A pedagogy that emphasizes product deprives students of experiencing the process by 
which ideas in mathematics come to be and perpetuates a dualistic view of mathematics in which 
right answers are known by authorities and are the property of experts. Such a pedagogy strips 
mathematics of the context in which it was created and is based on misconceptions about its very 
nature. (p. 42) 

Mau and Leitze (2001) add, “When we teach our mathematics students to ‘be quiet and 
listen,’ we deprive them of the opportunity to create their own meaning, disempower them, and 
remove their opportunity to develop autonomy” (p.38). The lack of opportunity to learn can be 
detrimental to students’ mathematics achievement in general (National Research Council, 2001). 
For women in particular, robbing them of the opportunity to engage in the learning process 
inhibits the development of their voice in the learning of mathematics and further marginalizes 
them in an already male-dominated discipline (Mau & Leitze, 2001; Rogers, 1992). 

This excerpt provides some evidence of and suggests that by actively engaging students 
in doing mathematics, teacher educators can foster the development of mathematical power: a 
positive disposition toward mathematics, ability to reason about mathematics, facility in making 
connections across content strands and to other subjects, and proficiency in communicating 
mathematical ideas (Baroody & Coslick, 1998; National Council of Teachers of Mathematics, 
1989; Orrill & French, 2002). Mathematical power could potentially influence the development 
of a teacher’s ability to draw upon and utilize other important tools for teaching, such at 
mathematics knowledge for teaching (Hill, Rowan, & Ball, 2005; Hill, Schilling, & Ball, 2004). 
Presently, no studies exist that have examined pre-service teachers’ mathematical power or its 
development during undergraduate study. Consequently, there is no information on relationships 
between mathematical power and other important educational outcomes. There is a need for 
research that provides a better understanding of the types of learning experiences that teachers 
should have during their teacher preparation programs. 

Reports on the status of mathematics education in K–12 schools express concern about 
teacher preparation programs and the types of opportunities made available for pre-service 
teachers to learn important mathematics in meaningful ways and call for more research to 
understand this segment of mathematics education (CBMS, 2001; National Mathematics 
Advisory Panel, 2008). Teacher educators have a responsibility to address recommendations put 
forth by national, state, and local organizations and must continue to seek ways that create 
opportunities for future teachers to learn mathematics for teaching. I propose that one area that 
deserves further examination is the relationship between active learning opportunities and the 
development of mathematical power.  Findings from a study that examines these components of 
pre-service, elementary teachers’ study of mathematics is forthcoming. 
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