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We present an experimental and theoretical study of the dynamics of laterally confined
marine ice sheets in the natural limit in which the long, narrow channel into which they
flow is wider than the depth of the ice. A marine ice sheet comprises a grounded ice sheet
in contact with bedrock that floats away from the bedrock at a ‘grounding line’ to form
a floating ice shelf. We model the grounded ice sheet as a viscous gravity current resisted
dominantly by vertical shear stresses owing to the no-slip boundary condition applied at
the bedrock. We model the ice shelf as a floating viscous current resisted dominantly by
horizontal shear stresses owing to no-slip boundary conditions applied at the side walls
of the channel. The two shear-dominated regions are coupled by jump conditions relating
force and fluid flux across a short transition region downstream of the grounding line.
We find that the influence of the stresses within the transition region becomes negligible
at long times and we model the transition region as a singular interface across which the
ice thickness and mass flux can be discontinuous. The confined shelf buttresses the sheet,
causing the grounding line to advance more than it would otherwise. In the case that the
sheet flows on a base of uniform slope, we find asymptotically that the grounding line
advances indefinitely as t1/3, where t is time. This contrasts with the two-dimensional
counterpart, for which the shelf provides no buttressing and the grounding line reaches
a steady state (Robison et al. 2010).
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1. Introduction

Ice sheets flow as viscous gravity currents covering hundreds to thousands of kilome-
tres over centuries to millennia. Supplied by snowfall, ice sheets can terminate on land
(terrestrial ice sheets), once net melting and sublimation (the change of phase from solid
to vapour) balance the flow rate, or in the ocean (marine ice sheets) by calving (splitting
off) icebergs. Often, marine ice sheets flowing over bedrock that is below sea level feed
floating ice shelves across a grounding line where the conditions necessary for flotation
are first met and the ice sheet detaches from the bedrock. General descriptions of ice
sheets, beautifully illustrated, can be found in Hambrey & Alean (2004). A schematic
diagram illustrating the idealised geometry of a marine ice sheet that forms the basis of
our theoretical and experimental modelling is shown in figure 1.

Ice is a polycrystalline material that flows by grain-boundary creep and regelation
(melting and refreezing of ice grains). On large length and time scales, ice behaves as
a shear-thinning viscous fluid, usually with a simple power-law rheology described by
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Figure 1. Schematic illustrating (a) the side profile and (b) the plan view of a viscous fluid
layer confined between two parallel side walls and intruding into an inviscid ocean.

Glen’s flow law (Glen 1955). However, much of the fundamental fluid mechanics that
governs the mass and force balances across a grounding line can be understood using
Newtonian fluid mechanics, which we focus on here so that the governing dynamical
principles can be tested straightforwardly in the laboratory using simple fluids.

Many previous theoretical studies of grounding-line dynamics have considered two-
dimensional idealisations, in which it is readily shown that the floating shelf has no
dynamical influence on the grounding line nor on the rate of flow of the ice sheet upstream
of it (Weertman 1974; Wilchinsky & Chugunov 2000, Schoof 2007; Robison, Huppert &
Worster 2010). Yet it is known from events such as the collapse of the Larsen B ice shelf
in 2002 that ice sheets accelerate once the ice shelves they feed are removed. In other
words, ice shelves play an important role in buttressing ice sheets, potentially stabilising
the grounding lines against retreat (Dupont & Alley 2005; Gudmundsson 2013).

Robison et al. (2010) presented the first fluid-mechanical laboratory experiment de-
signed to explore fundamental dynamics of marine ice sheets and their grounding lines,
using a very viscous fluid (golden syrup) flowing into a denser and effectively inviscid
fluid (aqueous potassium carbonate) to simulate the flow of ice into the ocean. They
also presented a two-dimensional model that predicts an ultimate steady position for
the grounding line. Their experiments cannot be considered two-dimensional because the
floating shelf was strongly influenced by the side walls of the experimental tank. Their
experiments were also influenced by the fact that the ‘sea level’ rose as the syrup in-
truded into it, which was not included in the theoretical predictions that were compared
directly with the experimental data. The position of the grounding line in their experi-
ments advanced initially but retreated ultimately, and it was the maximum extent of the
grounding line that was compared against the predicted steady position. Nevertheless,
the parametric trends between the theoretical steady position and the measured maxi-
mum extent were shown to be similar. Robison et al. (2010) augmented their model with
an ad hoc additional resistive force applied to the shelf to illustrate that such resistance
causes the grounding line to advance.

Pegler & Worster (2013) presented a combined experimental and theoretical study of
axisymmetric sheet–shelf systems to show how horizontal stresses in the shelf can act
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to buttress the grounded sheet. The most robust experimental and theoretical study of
a buttressed sheet–shelf system was provided by Pegler et al. (2013), who studied the
case of flow in a vertical Hele-Shaw cell such that the width W , depth H and length
L satisfied W ≪ H ≪ L. This is perhaps the simplest limit to consider dynamically
because the horizontal forces exerted across the grounding line are given simply by the
hydrostatic pressures in the sheet and shelf on either side. Indeed, excellent agreement
was found between the theoretical predictions and the experimental data. However, in
more general situations, longitudinal extensional stresses in the shelf can be important
and the force balance is more involved.

In this paper, we study a more realistic limit in which H ≪ W ≪ L. This is typical
of many confined marine ice sheets in nature, in which the floating shelf flows through
a long, narrow fjord that is nonetheless wider than the thickness of ice. The Amery
Ice Shelf, for example, is several hundred metres thick (ranging from approximately
2 km at the grounding line to 300 m at the calving front, the leading edge of the ice
shelf), 50 km wide at the upstream end diverging to approximately 200 km at the calving
front and is approximately 550 km long, confined by stationary ice on either side. We
present a new set of experiments performed in the same configuration as that studied
by Robison et al. (2010), though controlling ‘sea level’ carefully to remain constant, and
a new theory (Pegler 2012) that couples a grounded sheet dominated by vertical shear
stresses to a floating shelf dominated by horizontal shear stresses. Pegler (2012) showed
that extensional stresses are negligible except within a short transition zone of the shelf
downstream of the grounding line and that the transition zone can be integrated across
in the flow direction to give jump conditions between the shear-dominated regions.

In §2, we develop our theoretical model, focusing particularly on the new matching
conditions across the grounding and transition zones. Some numerical integrations of
the model are presented for flow from a localised source of constant flux providing vis-
cous fluid along a sloping, rigid base thence into a denser, inviscid fluid region. These
are complemented and compared with similarity solutions valid at long times after the
initiation of the flow in §3. Our laboratory experiments are reported in §4, where the
measurements are compared with the numerical solutions of our theoretical model. Very
good agreement is found for the shape of the shelf and the positions of the grounding
line and shelf front.

2. Theoretical model and results

Consider fluid of dynamic viscosity µ and density ρ flowing down a rigid slope z =
−b(x) = −αx, where α > 0 is constant, into a dense inviscid ‘ocean’ of density ρw > ρ
(figure 1a). The whole system is confined between parallel, vertical walls a distance W
apart (figure 1b). The viscous fluid is supplied at constant flux per unit width q0 at x = 0,
forms a gravity current (sheet) in 0 < x < xG(t), and begins to float at the grounding
line x = xG(t) to form a floating current (shelf) in xG(t) < x < xN (t).

Following Pegler (2012), we consider the flow in three regions: the region 0 < x < xG, in
which the viscous current is grounded and is dominated by vertical shear stresses (the side
walls have negligible influence); the region xG+ < x < xN , in which the viscous current
is floating and dominated by transverse, horizontal shear stresses originating from the
condition of no slip at the confining side walls; and the transition region xG < x < xG+

linking the two former regions.
In the grounded region 0 < x < xG, the viscous fluid forms a classical viscous gravity

current with surface elevation above sea level h(x, t) and thickness H(x, t) = h(x, t)+b(x).
When H ≪ W the flow is essentially two-dimensional (independent of y) with horizontal
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velocity

u(x, z, t) = −
g

2ν

∂h

∂x
(z + b) [2H − (z + b)] (−b < z < h) (2.1)

satisfying no-slip at z = −b(x) and no stress at z = h(x, t), where y is the horizontal
cross-stream coordinate and z is the vertical coordinate. This flow has flux per unit width

q(x, t) =

∫ h

−b

u dz = −
g

3ν
H3 ∂h

∂x
, (2.2)

where ν is its kinematic viscosity, and g is the acceleration due to gravity (Robison et al.

2010, cf. Huppert 1982).

The flow in the region xG+ < x < xN is simplified by making three approximations as
follows. We assume first that there are no bending stresses in the shelf so that it satisfies
the flotation condition ρH = ρw(H−h). The upper surface elevation is therefore given by
h(x, t) = (g′/g)H(x, t), where g′ = g(ρw−ρ)/ρw is a reduced gravity. Secondly, we assume
that the air above the shelf and the water (solution) beneath it exert negligible stress on
the shelf, so that the horizontal velocity in the shelf is vertically uniform (independent
of z) to leading order. Finally, we assume that lateral and longitudinal length scales are
characterised by W and L in this region so that, when W ≪ L, this region acts like a
Hele-Shaw cell with a parabolic flow profile

u(x, y, t) = −
g

2ν

∂h

∂x
y(W − y) (0 < y < W ) (2.3)

satisfying no-slip at the side walls y = 0, W . This flow has a volume flux per unit width

q(x, t) =
1

W

∫ W

0

Hu dy = −
g

12ν
W 2H

∂h

∂x
(2.4)

(Pegler et al. 2013).

Expressions (2.2) and (2.4) for the two-dimensional volume fluxes can be incorporated
into the mass conservation equation

∂H

∂t
+

∂q

∂x
= 0 (2.5)

to determine a partial differential equation for H(x, t) in each region. This system of
equations is fourth-order in x and has free boundaries at x = xG(t), x = xG+(t) and
x = xN (t), so seven spatial boundary conditions are needed to close the system. The
equation in the grounded region is subject to boundary conditions representing the input
flux q(0, t) = q0 and the fact that the grounding line is the first place that the flotation
condition is met, so H(xG, t)(1 − g′/g) = αxG(t). The equation in the floating region
is subject to H(xN , t) = 0 and a kinematic evolution equation for the position of the
leading edge

ẋN = lim
x→xN

(q/H) = −(gW 2/12ν)hx(xN , t), (2.6)

where the x subscript denotes ∂/∂x and the dot denotes differentiation with respect to
time. In addition, there are two conditions derived from a force balance and from mass
continuity, as described below, and considerations of the transition region between xG

and xG+ that close the system. Initially, the fluid emerges from a point singularity at
x = 0 with xG = xN = 0 and H = 0.
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2.1. Evolution of the grounding line

The net horizontal force per unit width in the shelf can be written as

N(t) = −
1

2
ρwg(H − h)2 + B(t) (x = xG), (2.7)

where the first term on the right-hand side is the hydrostatic pressure force exerted by the
ocean, transmitted through the shelf to the grounding line, and B(t) is the buttressing
force per unit width resulting from shear stresses exerted all along the confining side
walls of the shelf, given by

B(t) =
µ

W

∫ xN

xG

H
∂u

∂y

∣

∣

∣

∣

y=W

y=0

dx. (2.8)

Close to the grounding line, within the transition region indicated by dashed curves in
figure 1, the velocity field can be influenced by all components of the stress. However, once
the shelf is much longer than the transition region, L ≫ xG+ − xG, we can approximate
the buttressing force per unit width by

B(t) ≈ B+(t) =
µ

W

∫ xN

xG+

H
∂u

∂y

∣

∣

∣

∣

y=W

y=0

dx = −
1

2
ρg′H2

∣

∣

∣

∣

xG+

, (2.9)

neglecting the shear stresses in the relatively short transition region and using the ex-
pression for u given by (2.3).

The net longitudinal force in the sheet per unit width can be calculated to be

N(t) = −
1

2
ρgH2 + 4µ

∫ h

−b

∂u

∂x
dz = −

1

2
ρgH2 + 4µ

[

∂q

∂x
+

g

2ν

(

H
∂h

∂x

)2
]

(2.10)

from the expression for the velocity field given by (2.1) (Robison et al. 2010). The first
term on the right-hand side is the hydrostatic pressure force and the second term is the
viscous contribution to the net horizontal force in the sheet.

We proceed by identifying xG+ with xG and replacing the transition region with a
singular interface x = xG separating the sheet from the shelf. In consequence, the depen-
dent variables H , N and q can in principle be discontinuous across x = xG, though the
arguments above indicate that N itself is continuous within the approximation of our
model.

We therefore equate expression (2.7) with B = B+ to expression (2.10) to determine
the gradient of volume flux in the sheet

∂q

∂x
= −

g

2ν

(

H
∂h

∂x

)2

+
1

4µ

(

1

2
ρg′H2 −

1

2
ρg′H2

+

)

, (2.11)

where the subscript + denotes quantities to be evaluated at the upstream boundary of
the shelf x = xG+, while unsubscripted variables are to be evaluated at the downstream
boundary of the sheet x = xG. Since xG+ has been identified with xG, H+ and H here
represent the right-hand and left-hand values of H either side of the discontinuity.

Since the flotation condition ρH(xG(t), t) = ρwb(xG(t)) applies at the grounding line
for all time, we can differentiate it with respect to time to give

ρ

(

∂H

∂x
ẋG +

∂H

∂t

)

= ρw
∂b

∂x
ẋG, (2.12)
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Figure 2. Numerical solution of (2.19)–(2.25) for the side profile of the sheet-shelf system for a
sequence of values of t = 1, 2, . . . , 6. Here, W = 1, ǫ = 0.1,A = 1. The transition region between
xG and xG+ has been modelled as a singular interface across which the thickness of the current
is discontinuous, as shown by the dashed vertical lines.

which can be re-written as
(

ρw

ρ

∂b

∂x
−

∂H

∂x

)

ẋG =
∂H

∂t
= −

∂q

∂x
(x = xG) (2.13)

by using the continuity equation (2.5). From this and using the expression for the flux
gradient from (2.11), we obtain an equation describing the evolution of the grounding
line

ẋdyn
G =

g

2ν

(

H
∂h

∂x

)2

−
g′

8ν
(H2 − H2

+)

−
∂H

∂x
+

ρw

ρ

∂b

∂x

. (2.14)

This is similar to the expression derived in Robison et al. (2010) but with the addition
of the buttressing term proportional to H2

+ (Pegler 2012). Note that both terms in the
denominator of (2.14) are positive, so it is clear that buttressing causes the grounding
line to advance.

It was noted by Robison et al. (2010) that when the grounded sheet terminates in
shallow water the hydrostatic pressure from the ocean is insufficient to balance the lon-
gitudinal forces in the ice sheet. In that case, no ice shelf forms and the terminus of the
ice sheet advances kinematically according to

ẋG = ẋkin
G ≡ −

gH2

3ν

∂h

∂x
(x = xG). (2.15)

The same considerations apply here, so the evolution equation for the grounding line
applied in our model is therefore

ẋG = min{ẋdyn
G , ẋkin

G }. (2.16)

The final boundary condition required to close the system comes from conservation of
mass across the moving grounding line, which is expressed by

q+ = q + (H+ − H)ẋG. (2.17)

Note that both H and q can be discontinuous across the singular grounding line in this
model, which represents the changes in thickness and flux across the transition region.
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2.2. Non-dimensionalisation

We non-dimensionalize the governing equations by the intrinsic length, time and thickness
scales associated with the flow of the grounded sheet and write

x =

(

νq0g

g′2

)1/3

x̂, t =

(

ν4g

q2
0g

′5

)1/6

t̂, H =

(

ν2q2
0

gg′

)1/6

Ĥ (2.18a − c)

(Robison et al. 2010). After dropping hats, the dimensionless equations describing mass
conservation in the sheet and the shelf, derived from (2.5) using (2.2) and (2.4), are

∂H

∂t
=

1

3

∂

∂x

[

H3

(

∂H

∂x
−A

)]

(0 < x < xG), (2.19)

∂H

∂t
=

W2

12

∂

∂x

(

H
∂H

∂x

)

(xG < x < xN ). (2.20)

The equation in the sheet is subject to the constant flux provided at the origin and
the flotation condition at the grounding line

−
1

3
H3

(

∂H

∂x
−A

)

= 1 (x = 0) and H = ÃxG (x = xG), (2.21a, b)

while conservation of mass across the grounding line (2.17) becomes

−
1

3
H3

(

∂H

∂x
−A

)

= −
W2

12
H+

∂H+

∂x
+ (H+ − H)ẋG (x = xG). (2.22)

The front of the shelf of zero thickness advances kinematically (2.6) according to

H = 0, ẋN = −
W2

12

∂H

∂x
(x = xN ), (2.23a, b)

while the grounding line advances according to (2.16)

ẋG = min{ẋdyn
G , ẋkin

G }, (2.24)

where

ẋdyn
G =

1
2

(

H ∂h
∂x

)2
− 1

8
(H2 − H2

+)

−∂H
∂x + Ã

, ẋkin
G = −

1

3
H2 ∂h

∂x
(x = xG). (2.25a, b)

Three dimensionless parameters appear, namely

W =

(

g′2w3

νq0g

)1/3

, ǫ =
g′

g
, A =

α

ǫ1/2
, (2.26)

which represent the dimensionless width of the channel, the dimensionless density ratio
or ratio of reduced gravity to gravity and the dimensionless bed slope respectively. For
clarity, we have also introduced Ã = A/(1 − ǫ).

We solved (2.19)–(2.25) using a second-order, finite-difference scheme after mapping
the domains of the sheet and shelf to fixed unit intervals (c.f. Acton et al. 2000). To
initialize our computations, we used the asymptotic solution for the early-time evolution
of the two-dimensional sheet derived in Robison et al. (2010).

Representative solutions for the profile thicknesses are shown in figure 2, while the
evolutions of the grounding line and leading edge are shown in figure 3 using illustra-
tive parameter values W = 1, ǫ = 0.1,A = 1. Parameter values representative of marine
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Figure 3. Agreement between the late-time asymptotic results (3.7) and (3.1b) for xG and xN

(dashed lines) and the numerical solution to the full model (2.19)–(2.25) for xG and xN (solid
curves) as functions of time. Here, W = 1, ǫ = 0.1,A = 1.

ice sheets are approximately W = 1 − 100, ǫ = 0.1,A = 10−4 − 10−3. The range of
values estimated here for W should be treated cautiously given that ice sheets are non-
Newtonian, with variable effective viscosity, so a range of typical viscosities in the region
of 5×1012−1015 Pa s was used. Figure 2 is representative of three stages. Initially, there
is no shelf and the grounding line evolves kinematically. Once the grounding line evolves
dynamically and a shelf forms, at about t = 1.5, there is a discontinuity in thickness
across the singular transition region. At large times, the discontinuity in thickness di-
minishes. Our experiments, described in §4, ran to dimensionless times of order 102 and
are therefore mostly representative of the third, large-time regime.

3. Asymptotic results

At late times, the shelf is much longer than the sheet and the numerical solutions
indicate that most of the source flux is transmitted through the sheet to the shelf more
than advancing the grounding line, with q ≈ 1 throughout the sheet. The shelf then
evolves self-similarly, as if supplied by a constant dimensionless flux q = 1 near the
origin, with the same scaling as found in related studies by Huppert & Woods (1995)
and Pegler et al. (2013), namely

H ∼ f(η)W−2/3t1/3, xN ∼ ηNW2/3t2/3, (3.1a, b)

where η = x/xN . The dimensionless function f(η) satisfies the ordinary differential equa-
tion

4f − 8ηf ′ = η−2
N (ff ′)′ (0 < η < 1) (3.2)

with boundary conditions

−f(0)f ′(0) = 12ηN , f(1) = 0, η2
N = − 1

8
f ′(1), (3.3)

from which ηN is determined to be ηN ≈ 1.03. The differential equation originates from
(2.18). The second and third boundary conditions originate from (2.21a) and (2.21b),
respectively, while the first describes the imposed constant flux at the entry to the shelf.
The approach of the full, time-dependent solution towards the asymptotic similarity
solution is shown in figures 3 and 4a.

Because most of the source flux is transmitted to the shelf at late times, the sheet
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Figure 4. Agreement between asymptotic results and the solution to the full model (2.19)–(2.25)
for the shelf and sheet for t = 3, 10, 30, 100, 300, 1000, 3000, 10000. Note that in panel (b) the
curves for t > 1000 are indistinguishable from the asymptotic line. (a) The thickness of the
shelf (thin curves) presented in similarity coordinates converges to the similarity solution (3.1)
(bold curves) as t → ∞. (b) The scaled sheet surface heights h/Ha

G (thin curves) as functions
of scaled distance x/xa

G converge towards the long-time surface height z = hG(t) (bold curve).
Ha

G(t) and xa

G(t) are late-time asymptotic predictions for the sheet thickness at the grounding
line (3.1a) and the grounding line position (3.7), respectively. The parameter values used are
W = 1, ǫ = 0.1 and A = 1.

reaches a quasi-steady state with uniform flux

−
1

3
H3 ∂h

∂x
= −

1

3
H3

(

∂H

∂x
−A

)

≃ 1. (3.4)

At late times, the discontinuity in thickness across the transition region becomes neg-
ligible and the ice thickness at the grounding line

HG ∼ HG+ ∼ f(0)W−2/3t1/3 (3.5)

from (3.1a). The sheet, being very long, is mostly in deep water with H ≫ 1. Therefore,
from equation (3.4),

∂h

∂x
=

∂H

∂x
−A ≪ 1, (3.6)

whence h ∼ hG(t) = ǫHG(t) and H ∼ hG(t) + Ax. Evaluating this last equation at
x = xG and rearranging, we obtain

xG ∼
f(0)

ÃW2/3
t1/3, (3.7)
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Experiment q0 (cm2 s−1) ν (cm2 s−1) α ǫ A W

A 0.10 430 0.092 0.081 1.1 2.6
B 0.34 430 0.092 0.032 2.9 1.0
C 0.70 367 0.092 0.077 1.2 1.4
D 0.96 460 0.092 0.081 1.1 1.2
E 1.04 352 0.092 0.077 1.2 1.3
F 0.73 417 0.051 0.081 0.6 1.4
G 0.75 53 0.051 0.094 0.5 3.0
H 1.78 320 0.051 0.077 0.6 1.1

Table 1. Parameter values used in our experiments.

with f(0) ≈ 1.86 obtained by integrating (3.2). These expressions are shown to give a
very good asymptotic fit to the full solution in figures 3 and 4b for t & 102. Equation (3.5)
shows that ∂H/∂t ∼ t−2/3 ≪ 1 as t → ∞, giving validity a posteriori to the quasi-steady
approximation for the sheet (3.4). Similarly, our predictions give xN/xG ∼ t1/3 ≫ 1 as
t → ∞, confirming that the shelf is asymptotically much longer than the sheet. More
precisely, this holds when

t ≫
f(0)3

η3
NW4Ã3

≈
5.9

W4Ã3
. (3.8)

We see from this expression that the asymptotic regime is reached more quickly for larger
dimensionless bed slopes A or larger dimensionless channel widths W .

4. Experimental results

We performed a series of experiments in an acrylic tank 10 cm wide, 200 cm long, and
25 cm deep inclined at an angle θ to the horizontal (figure 5). The bed slope α = tan θ.
Golden syrup was used for the viscous current, while a more dense aqueous pottasium
carbonate solution with a viscosity some five orders of magnitude smaller than that of
golden syrup was used for the ocean.

Golden syrup was released from a reservoir installed inside the raised end of the tank
by lifting a sliding gate into a fixed position. The flux was maintained constant by keeping
the reservoir at a constant head. The delivery flux was determined by measuring the total
volume of golden syrup supplied to the reservoir during the experiment and dividing by
the duration of the experiment. The tank was pre-filled with potassium carbonate solution
to within a millimetre below the bottom lip of the sliding gate. During the experiment, the
depth of potassium carbonate solution was maintained constant by manual adjustment
of a siphon valve at the opposite end of the tank. The side view of each experiment was
recorded using a digital camera.

The parameter values used in each experiment are given in table 1. The kinematic
viscosities of pure syrup varied from 320 to 460 cm2s−1 in our experiments depending on
the ambient temperature, which varied from experiment to experiment. We additionally
lowered the viscosity of syrup to 53 cm2 s−1 for one of our experiments, achieved by dilu-
tion with approximately 10% water. We measured the viscosity before each experiment
using a falling-sphere method. The density of the golden syrup dilutions ranged from
1.42 to 1.44 g cm−3. The densities of potassium carbonate solution ranged from 1.48 to
1.56 g cm−3, leading to values of ǫ ranging from 0.03 to 0.09, A ranging from 0.5 to 3,
and W ranging from 1 to 3.

A sample sequence of photographs of one of our experiments compared against our
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Figure 5. Schematic of our experimental setup. Golden syrup is kept at a constant head in the
reservoir and flows under the sliding gate to form a viscous gravity current. The current flows
down the sloping base of the tank into a denser solution of potassium carbonate. The level of
the solution is kept constant by a siphon.
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Figure 6. Sequence of photographs of experiment C shown at times t = 100, 500, 900 s with the
theoretical prediction for the surface profiles overlain (dashed). The full experiment is shown in
Supplementary Movie 1.

theoretical prediction is shown in figure 6, where the experimental shape of the current
is seen to agree with our prediction. Both the sheet and the shelf are present in these
photographs, and the grounding line evolves dynamically. Note that the dimensionless
times in these photographs are all greater than about 20, by which time the discontinuity
in thickness across the singular transition region of the theoretical model is less than 1
mm and is not apparent in the overlain solutions.

The measured positions of the grounding line and the leading edge (circles) are com-
pared with our theoretical predictions (solid curves) in figure 7 for a representative ex-
periment. We see that our theory makes very good predictions of our experiments, in
contrast with the predictions made using a 2-D flow-line model without buttressing (Ro-
bison et al. 2010), shown with dashed curves. The remaining experiments are compared
to theory in figure 8, where we see good agreement over a range of parameters. The
predictions made with and without buttressing represent the extreme cases of the con-
fined shelf satisfying the no-slip condition at the margins or having very weak margins
respectively.

Figure 7 also shows (with dotted curves) the predictions of the model of Pegler et al.

(2013) (modified to take account of the sloping base), in which the dynamics of both
sheet and shelf are dominated by horizontal shear stresses generated by the side walls.
This would correspond in the glaciological setting to the limit of a confined marine ice
sheet with negligible basal friction. What this comparison shows is that, once the confined
shelf has developed and provides significant buttressing, the dynamics of the grounded
ice sheet has little influence on the position and evolution of the grounding line.



12 K. N. Kowal, S. S. Pegler and M. G. Worster

0 100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

t (seconds)

x
 (

c
m

)

 

 

x
G

x
N

Figure 7. Comparison of experimental data (circles) against numerical solutions (solid curves) of
the full model (2.19)–(2.25) for the positions of the grounding line xG(t) and leading edge xN(t)
for experiment C. The grounding line and leading edge positions predicted by two-dimensional
theory without buttressing (Robison et al. 2010) are shown by the dashed curves. Predictions
of the Hele-Shaw model of Pegler et al. (2013) are shown by the dotted curves.
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Figure 8. Comparisons between the experimental data for experiments A-H (markers) and
the numerical solutions (solid curves) to (2.19)–(2.25) for (a) the grounding line xG(t) and (b)
frontal position xN(t).

5. Conclusions

Our study, motivated by the flow of marine ice sheets confined to long, narrow em-
bayments, or fjords, illustrates and quantifies the important role played by ice shelves
in buttressing marine ice sheets and controlling the position of the grounding line. Our
theoretical model accounts solely for the horizontal shear stresses within the ice shelf. In
consequence, rather than describing the continuous evolution of the ice thickness from
the sheet to the shelf through a transition region just downstream of the grounding line,
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the model features jump discontinuities in thickness and mass flux across a singular in-
terface at the grounding line. The role of extensional stresses in the transition region in
adjusting the thickness and flow continuously from the grounding line to the horizontal-
shear-dominated part of the shelf is analysed in detail in a forthcoming publication
(Pegler 2016). However, the good agreement between our experiments and theoretical
predictions shows that a long, confined shelf and its buttressing role can be modelled
adequately by ignoring the details of the transition region and accounting solely for the
accumulated horizontal shear stresses within the bulk of the shelf. In fact, the position
of the grounding line in a confined marine ice sheet is largely dictated by the buttressing
provided by the shelf, which can be predicted from the Hele-Shaw flow analyzed by Pe-
gler et al. (2013) and is very little influenced by the dynamics of the ice sheet upstream
of the grounding line.

We would like to thank Dr. Mark Hallworth for valuable help with running the exper-
iments and the technicians of the DAMTP G.K. Batchelor Laboratory for help with the
setup of the experimental apparatus. K.N.K is supported by a NERC PhD studentship.
The experimental data is available as supplementary material.
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