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Abstract

Autoignition of turbulent methane/air mixing layers, in which n-heptane droplets have been added,

was investigated by DNS. This configuration is relevant to dual-fuel, pilot-ignited natural gas engines

under direct injection conditions. Two passive scalars were introduced in order to describe the dual

fuel combustion. It was shown that the pre-ignition phase is dominated by n-heptane oxidation while

methane oxidation is less intense. During the pre-ignition phase the methane/air mixing layer is

distorted due to turbulence creating regions around the n-heptane droplets allowing the transport of

intermediate species to the methane reaction zone. According to the passive scalars introduced, it

was shown that ignition occurs at mixtures rich in n-heptane vapour. Subsequently, consumption of

both n-heptane and methane is rapidly increased and promoted by the high temperatures achieved.

The competition of the two fuels makes autoignition retarded relative to the pure n-heptane case,

but accelerated relative to the pure methane case.
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1. Introduction

Conventional fossil fuels consisting of high molecular weight hydrocarbons are increasingly sub-

stituted by natural gas, which produces lower CO2, NOx, and soot emissions while maintaining high

efficiencies in reciprocating engine applications (Reitz, 2013; Korakianitis et al., 2011; Amjad et al.,

2011; Han et al., 2013; Srinivasan et al., 2007). However, the high octane number of natural gas

(main component is methane) necessitates the introduction of an energy source in order to achieve

ignition. The required energy source is often supplied by the injection of a pilot fuel with different

autoignition characteristics such as diesel (Korakianitis et al., 2011; Srinivasan et al., 2007; Iida

et al., 1997). The majority of previous studies investigating gas-fuelled and pilot-ignited combus-

tion have been conducted with injection of natural gas in the intake manifold followed by direct

injection of the pilot fuel (Papagiannakis and Hountalas, 2004; Iida et al., 1997; Schlatter et al.,

2012). It was found that the ignition delay of the pilot spray and OH* chemiluminescence intensity
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is increased in the presence of methane indicating an active role of methane in the combustion

process (Papagiannakis and Hountalas, 2004; Schlatter et al., 2012; Lee et al., 2003).

Apart from port injection, which gives a fully premixed methane-air mixture at the moment of

the pilot fuel injection, natural gas can also be injected directly into the cylinder in order to avoid

reductions in volumetric efficiency while maintaining the diesel injection to initiate combustion

(Korakianitis et al., 2011). Previous studies have focused on global quantities such as engine power

output and emission levels (McTaggart-Cowan et al., 2007, 2010). Nevertheless, the details of the

phenomena occurring in such dual-fuel non-premixed autoignition processes have not been studied

and it is unclear whether the conclusions from studies in port injection of methane are valid in the

context of direct injection.

The aim of the present study is to provide physical understanding on the behaviour of the dual

fuel autoignition processes when both fuels have inhomogeneous distribution. The focus is to re-

veal the ignition mechanism and effect of each fuel towards the other with regards to ignition. In

this context, Direct Numerical Simulations (DNS) of turbulent methane-air mixing layers that in-

clude n-heptane droplets are performed under high pressures and temperatures therefore mimicking

compression-ignition conditions in dual-fuel, pilot-ignited natural gas reciprocating engines.

2. Mathematical formulation

2.1. Liquid-phase governing equations

The governing equations have been described previously in DNS of spark ignition (Neophytou

et al., 2011, 2012) and autoignition of turbulent sprays (Borghesi et al., 2013) and are briefly

presented here. The liquid phase consisted of dilute n-heptane droplets, treated using a Lagrangian

point-source formulation. The motion of each droplet is affected by the aerodynamic drag force

only. The temperature within the droplet was assumed to be uniform. The droplet evaporation

rate and the amount of heat exchanged with the gaseous phase was evaluated based on the thin film

assumption (subscript f) and the physical properties in the thin film were computed according to

the 1/3 rule. For each droplet d, a system of equations was solved in order to determine its position

xd, velocity vd, diameter ad and temperature Td (Abramzon and Sirignano, 1989):

dxd
dt

= vd (1)

dvd
dt

=
u (xd, t) − vd

τ vd
(2)
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da2d
dt

= −a
2
d

τ pd
(3)

dTd
dt

=
1

τTd

[
T (xd, t) − Td −BT,d

Lv
WF cFP

(
Tcrit − Td
Tcrit − Tref

)0.38
]

(4)

where u (xd, t), T (xd) are the gaseous-phase velocity and temperature evaluated at the droplet

location, Tref is the boiling temperature at the reference pressure Pref , Tcrit the critical temperature,

Lu the molar latent heat of evaporation and WF the molar weight of the fuel. The relaxation times

τ vd , τ pd and τTd and droplet Spalding numbers for heat and mass transfer, Bm,d and BT,d are evaluated

here according to Abramzon and Sirignano (Abramzon and Sirignano, 1989). The fuel considered

is n-heptane (ρL = 684 kg/m3, Pref = 1 bar, Tref = 371.58K, Tcrit = 540.15K, Lv = 31.80 kJ/mol).

2.2. Gaseous-phase governing equations

The temporal and spatial evolution of the gaseous phase is described by the continuity of mass,

momentum, internal energy andNs−1 transport equations for conservation of species mass fractions,

with Ns being the number of species for which transport equations are solved (Neophytou et al.,

2012; Borghesi et al., 2013; Jenkins and Cant, 1999).

∂ρ

∂t
+
∂ρuj
∂xj

= Γm (5)

∂ρui
∂t

+
∂ρuiuj
∂xj

= −∂P
∂xi

+
∂τij
∂xj

+ Γui (6)

∂ρE

∂t
+
∂ρujE

∂xj
= −∂Puj

∂xj
+
∂τijui
∂xj

− ∂qj
∂xj

+ ΓE (7)

∂ρYα
∂t

+
∂ρujYα
∂xj

= −∂ρVα,jYα
∂xj

+ ω̇α + ΓYα (8)

The viscous stress tensor (τij) and the heat flux vector (qj) are given by the following equations:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µδij

∂um
∂xm

(9)

qj = −λ ∂T
∂xj

+
Ns∑
α=1

ρVα,jYαhα (10)

where Vα,j is the diffusion velocity of species α and is evaluated according to Fick’s law, modified

so as to ensure consistency between the species and continuity equations:
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Vα,jYα = −Dα
∂Yα
∂xj

+

(
Ns∑
β=1

Dβ
∂Yβ
∂xj

)
Yα (11)

Equations 5-8 were closed using the following equation of state:

P = ρRT
Ns∑
α=1

Yα
Wα

(12)

Where R is the universal gas constant, Wα the molecular mass, and hα the specific enthalpy of

species α. The thermal conductivity λ is evaluated according to the following expression:

λ

cP
= A

(
T

Tref

)r
where A = 2.58 × 10−5 J kg−1m−1s−1, Tref = 298 K, r = 0.7, and cP =

∑Ns
α=1 cP,αYα. The molecular

dynamic viscosity is calculated using the Prandtl number Pr, which was set equal to 0.7. The

diffusion coefficient of species α was calculated using the Lewis number Le, assumed to be unity.

The liquid source terms in eq. 5-8 are given below (Rotexo-Softpredict-Cosilab, 2009):

Γm = − 1

V

∑
d

αd
dmd

dt
(13)

Γui = − 1

V

∑
d

αd
dmdvd,i
dt

(14)

ΓE = − 1

V

∑
d

αd

(
cLPmd

T (xd, t) − Td
τTd

+
dmd

dt
hF (Td) +

1

2

dmdv
2
d,i

dt

)
(15)

ΓYα = δαFΓm (16)

where md is the mass of droplet, hF (Td) is the fuel vapour enthalpy at the droplet surface and

V the volume of the cell at the droplet location. The Kronecker delta, δαF , is equal to unity for the

fuel species and 0 otherwise. The function αd distributes the liquid source terms to the gas phase

up to a cut-off set equal to 2ad,0 with ad,0 being the initial Sauter mean diameter of the spray. This

function decreases exponentially with increasing distance from the center of the droplet.

2.3. Numerical procedure

The three-dimensional compressible DNS code SENGA2, previously used in a variety of tur-

bulent combustion problems (Neophytou et al., 2012; Borghesi et al., 2013; Dunstan and Jenkins,
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2009; Borghesi, 2012), was implemented for solving the governing equations. A tenth-order explicit

central difference scheme (Kennedy and Carpenter, 1994) was used to evaluate the first and second

order spatial derivatives. Periodic boundary conditions were applied in all spatial directions, there-

fore mimicking a constant volume configuration. Operator splitting between transport in physical

space and chemistry was implemented, enabling the calculation of stiff chemistry. Application of

operator splitting in DNS has been studied and validated previously (Najm et al., 1998; Knio et al.,

1999). A fourth-order, low-storage explicit Runge-Kutta scheme (Kennedy et al., 2000) with a time

step ∆t = 5.0 × 10−9 s was employed for advancing the gaseous and liquid phase transport equa-

tions. The gas-phase chemical reactions were advanced in time using the implicit solver VODPK

(Brown et al., 1989). The time step was chosen to be smaller than the acoustic time scale in a grid

cell (∆x/
√
γ(R/Wair)T ), representing the smallest non-chemical time scale in the simulation.

2.4. Chemical mechanism

The Liu et al. (2004) reduced mechanism was implemented containing 22 non steady-state

species and 18 global steps. The mechanism was derived from a skeletal mechanism consisting of

43 species and 185 reactions. The reduced scheme was validated in terms of the ignition delay

time for homogeneous mixtures at different equivalence ratios, temperatures and pressures from

the experimental data of Ciezky and Adomeit (1993). It has also been used for non-premixed

autoignition problems (Borghesi et al., 2013; Neophytou et al., 2012; Wright et al., 2010; Borghesi

et al., 2011) and contains methane.

2.5. Simulation parameters and problem setup

In the present simulations, the cubic domain under investigation had a length of L = 2.4

mm and grid resolution 23 µm resulting in 104 grid nodes in each direction. The initial ambient

temperature was T = 1300 K and the pressure was P = 24 bar which is lower than what is normally

encountered in real diesel engines, but it is also below the critical pressure of n-heptane enabling

the implementation of a simple evaporation model. Similar pressure values were previously used

in DNS of spray autoignition (Borghesi et al., 2013) and experimental investigations of dual fuel

engines (Papagiannakis and Hountalas, 2004). The turbulent velocity field was initialised according

to the Batchelor and Townsend (1948) energy spectrum. The integral length scale was L11 = L/6

and the initial turbulent velocity fluctuations were equal to u′0 = 0.7 m/s. The turbulence was

isotropic and decaying, and there was no initial mean flow. The initial values of the Kolmogorov

length scales were ηK = 25.2µm, indicating that gaseous-phase turbulence was well resolved.
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The n-heptane droplets were randomly distributed in a sphere with its centre located at the

centre of the domain and of radius R = 0.23L. The initial diameter of the droplets was 25 µm,

their temperature was 450 K, and their initial velocity was set equal to that of the background

carrier-phase. The initial distribution of methane mass fraction (YCH4) is given by the following

function.

YCH4 =


Y 0
CH4

2

[
1 + tanh(x−xL

αδ
)
]
, for x ≤ 0.5L

Y 0
CH4

2

[
1 − tanh(x−xR

αδ
)
]
, for x > 0.5L

(17)

Essentially the YCH4 extends in the x-direction creating two mixing layers located equally spaced

from L/2, at xL and xR respectively, with xR − xL = 0.3L. In the above formulation, Y 0
CH4 is

the maximum mass fraction of methane encountered across this distribution and is equal to 1,

α = N∆x, where N is the number of grid points, and δ is the characteristic mixing layer thickness,

equal to 0.018. The configuration is shown in Fig. 1. The amount of the spray chemical energy

compared to the total chemical energy of the system was set to 5 %. It was previously shown that

the pressure rise due to n-heptane combustion is significantly reduced for low fractions of the spray

chemical energy (Demosthenous et al., 2015).

In the particular case of dual-fuel combustion involving two hydrocarbon fuels, two passive

scalars are needed in order to describe the various compositions appearing in the mixture. The

first passive scalar, ξ1, is defined based on the nitrogen mass fraction and it is equivalent to the

conventional mixture fraction; it ranges from 0 in the oxidizer stream to 1 in the fuel stream.

ξ1 =
YN2 − Y ox

N2

Y f
N2

− Y ox
N2

(18)

In the above definition YN2 is the local mass fraction of N2, Y
ox
N2

is the mass fraction of N2 in the

oxidizer stream, and Y f
N2

is the mass fraction of N2 in the fuel stream.

In order to distinguish the contribution of each fuel, we introduce ξ2,H so that for each ξ1 there

is a ξ2,H which ranges from 0 as if the fuel present is solely methane to 1 as if the fuel present is

solely n-heptane. Namely,

ξ2,H =
h− h2(ξ1)

h1(ξ1) − h2(ξ1)
(19)

where h1(ξ1) is the enthalpy of a n-heptane/air mixture at ξ1, h2(ξ1) is the enthalpy of a methane/air
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mixture at ξ1, and h is the local enthalpy given by the following definition:

h =
N∑
α=1

Yαhα (20)

3. Results and discussion

3.1. Homogeneous reactor calculations

Homogeneous reactor calculations are essential for providing insights on the ignition delay and

favourable mixture fraction value for ignition. For the particular case of dual fuel combustion under

direct injection conditions it is necessary to obtain the ignition characteristics for both fuels. Thus

homogeneous reactor calculations are performed for n-heptane/air and methane/air mixtures. The

temperature of the air stream was 1300 K while the temperature of the fuel was 450 K and the

ambient pressure was 24 bar as in the DNS investigation. The initial composition and temperature

in mixture fraction space is given by assuming inert mixing between the fuel (methane or n-heptane)

and the oxidizer stream (air). In addition to these conditions, homogeneous reactor calculations

were also performed for the special case when the fuel stream consists both of methane and n-

heptane so that YCH4(ξ = 1) = 0.5 and YC7H16(ξ = 1) = 0.5. This mixture is denoted as B in

the following. Ignition was defined as the time when the temperature exceeds 1450 K. Setting a

different value of temperature cut-off would not cause any appreciable change in the ignition delay

time due to the rapid increase of temperature at ignition. The resulting trends of ignition delay

time (τid) are given in Fig. 2 as a function of mixture fraction. The mixture fraction value that

corresponds to the shortest ignition delay time is denoted as most reactive mixture fraction (ξMR).

The values of τid and ξMR for the cases investigated are given in Table 1.

The shortest ignition delay time of methane is significantly longer than the corresponding delay

time of n-heptane as presented in Table 1 and this is reflected to Fig. 2 considering a greater range of

mixture fraction values. Additionally, the ξMR,CH4 is leaner compared to ξMR,C7H16 . The ξMR,C7H16

is leaner than what previously observed for n-heptane autoignition (Borghesi et al., 2013) due to the

higher temperatures encountered in the present simulations resulting in more active lean mixtures.

As Table 1 and Fig. 2 reveal, the behaviour of mixture B is not falling exactly between what is

observed when the fuel is pure n-heptane or pure methane. Instead it exhibits a behaviour closer to

the n-heptane, leading to the conclusion that n-heptane is dominant for determining autoignition.

Furthermore, the ignition delay time of a mixture consisting of the same amount of n-heptane as
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what is initially present at the ξMR,B is 0.327 ms, which is shorter than τid for B. This suggests

that the methane present in the mixture participates actively during the pre-ignition period and

this competition between the two fuels increases the ignition delay time of the mixture.

3.2. DNS Results

3.2.1. Pre-ignition phase

During the pre-ignition phase, droplet evaporation and mixing promoted by turbulence are the

dominant processes but in this particular case, due to the high temperature of the oxidizer stream,

the reaction rates are also significant. Figure 3 illustrates scatter plots of heat release rate (HRR),

reaction rates of C7H16, CH4, CH2O and of ξ2,H against ξ1 at t=0.320 ms. Higher heat release

rates are observed for ξ1 ≤ 0.15 which is consistent with the higher C7H16 and CH2O reaction rates

observed at those mixture fraction values. The n-heptane is being consumed while intermediates

such as CH2O are being produced. A more complex behaviour is observed for methane which is

simultaneously produced and consumed, albeit with lower consumption rate than n-heptane. To

elaborate on this behaviour, a scatter plot of the reaction rate of n-heptane against the corresponding

value of methane suggests that methane is produced for high consumption rates of n-heptane while

it is consumed for intermediate and low values.

The mixing processes for the problem under investigation not only involves mixing between each

fuel and the oxidizer stream but also mixing between the fuels. The mixing between the two fuels

described by ξ2,H is plotted in Fig. 3 as a function ξ1. The rich mixtures primarily consisted of

methane (ξ2,H ≈ 0) rather than n-heptane because a significant amount of n-heptane needs to be

evaporated in order to create rich mixtures at the instant shown. Therefore the n-heptane richer

mixtures (ξ2,H ≈ 1) barely reach ξ1 = 0.25 whereas methane contributes for the whole range of ξ1.

Contours of C7H16 and CH2O mass fractions and CH4 reaction rate are shown in Fig. 4 taken at

z = 0.5L at t =0.320 ms. The heptane droplets were initially located within the methane zone, but

gradually evaporation and droplet motion allows n-heptane vapour to come in contact with air at the

sides of the mixing layer. The methane/air mixing layers are distorted due to turbulence creating

pockets surrounding the n-heptane droplets. Evaporation is stronger for the droplets that interact

with the hot oxidizer stream and once significant amount of n-heptane has evaporated, intermediate

species such as CH2O are produced. Formaldehyde is also found at the interfaces of methane and

hot air and although at lower concentrations this suggests that methane is also undergoing its own

(slower) autoignition. The alternate behaviour of consumption and production of methane observed
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in Fig. 3 for lean mixtures is clearly captured in these contour plots showing methane production

at locations where n-heptane is present, while methane consumption is promoted at the interfaces

of methane and the hot oxidizer.

In order to investigate the competition of the two fuels in producing intermediate species, scat-

ter plots of the reaction rate of CH2O is plotted in Fig. 5 against reaction rates of C7H16 and

CH4. Production of CH2O is maximized for high consumption rates of C7H16 which coincides with

production rates of CH4 as CH4 constitutes one of the intermediate species of the C7H16 oxidation.

As previously captured in Fig. 3 consumption of CH4 is also associated with production of CH2O

but at lower production rates.

The behaviour of the system during the pre-ignition phase in ξ1-ξ2,H space is illustrated in Fig.

6 showing shaded contours of C7H16 and CH4 reaction rates and CH2O mass fraction. It is evident

that consumption rate of C7H16 is found for high values of ξ2,H as compositions with high ξ2,H

values correspond to a predominantly n-heptane/air mixture. Similarly, CH4 is being consumed for

mixtures with low value of ξ2,H which primarily involve methane/air mixtures. Production of CH4

coincides with consumption of C7H16. Formaldehyde is mainly found at compositions with high

values of ξ2,H .

3.2.2. Ignition phase

Based on the definition given earlier, i.e. T > 1450 K, ignition occurs at t=0.435 ms at ξ1 =

0.038, ξ2,H=0.948. Ignition is therefore favoured at regions rich in n-heptane vapour. Figure 7

shows scatter plots of temperature, HRR, and reaction rates of C7H16 and CH4 taken at t=0.445

ms. The consumption rate of methane is rapidly increasing during ignition whereas the reaction

rate of C7H16 has not changed significantly as it was already high during the pre-ignition phase.

Figure 8 captures an ignition site showing contours of the temperature, YC7H16 and reaction rates

of C7H16 and CH4 at z = 0.6L at t=0.445 ms. Isolines of RR.CH4 mark the areas of the alternate

behaviour of CH4 being simultaneously produced an consumed. It is apparent that ignition occurs

inside the pockets created by the mixing layer of methane/air, inside which sufficient intermediate

species exist. The intense production of intermediate species was a result of the presence of adequate

amount of n-heptane as previously noted (Figs. 5 and 6). The n-heptane continues to supply the

surrounding hot oxidizer with intermediate species but at the vicinity of the droplets the temperature

is lower due to evaporative cooling (see Fig. 8). When the intermediate species reach the methane

reaction zone, the oxidation of methane is promoted. Methane production is still evident at the
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vicinity of n-heptane consumption at intermediate temperatures.

3.2.3. Post-ignition phase

After ignition, the temperature is increasing and propagates to leaner and richer mixtures and

radicals such as OH start to be significant. Figure 9 shows scatter plots of HRR, temperature and

OH mass fraction at t=0.520 ms. It is evident that there exist regions of the flow where ξ1 ≈ ξ1,ign

but the temperature remains low and hence there is minor chemical activity while endothermic

reactions are also evident. In order to provide an overview of the behaviour observed, the volume

integrated reaction rates of C7H16, CH4, O2, OH, and CH2O are plotted in Fig. 10 against time. As

previously depicted, during the pre-ignition phase consumption of C7H16 is markedly more intense

than consumption of CH4 and intermediates are mainly produced due to the oxidation of C7H16.

Nevertheless, consumption of both fuels is rapidly increased at ignition while consuming radicals

and oxygen. Soon after ignition their consumption subsequently drops due to the competition of

both fuels to be oxidized and the endothermic reactions occurring at lean mixtures.

4. Conclusions

Autoignition of turbulent methane-air mixing layers in the presence of n-heptane sprays was

investigated by DNS, in an effort to understand the fundamental flame initiation process in pilot-

ignited direct-injection methane compression ignition engines. Two passive scalars were introduced

for the description of dual fuel combustion. It was found that during the pre-ignition phase, inter-

mediate species are primarily produced by the n-heptane droplets surrounded by the hot oxidizer

while consumption of methane is minor. The methane/air mixing layers are distorted due to tur-

bulence creating pockets around the droplets that facilitate transport of intermediate species to the

vicinity of the methane reaction zone. Ignition occurs at lean mixtures as predicted by homogeneous

reactor calculations with the n-heptane-methane case igniting closer to the n-heptane compared to

the methane case. The DNS shows that autoignition occurs in locations rich in n-heptane vapour as

suggested by the mixture parameters introduced to describe dual fuel combustion. Thus the ignition

kernel is located where the liquid fuel has migrated towards the hot air zone, thereby reducing the

delaying effect of the methane on the heptane autoignition process and increasing the evaporation

rate. Subsequently after ignition, consumption of both fuels is rapidly increased and eventually a

methane-air flame is established.
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Table 1: Homogeneous reactor calculations

Fuel τid [ms] ξMR

C7H16 0.225 0.037
CH4 2.079 0.015

B=0.5C7H16+0.5CH4 0.463 0.033
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Figure 1: Schematic of the configuration in the DNS investigation. Dark grey shows the methane layer which is
homogeneous in the y- and z-directions. The n-heptane droplets were initially located in a sphere (light grey).
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Figure 2: Ignition delay time of homogeneous n-heptane/oxidizer, methane/oxidizer and n-heptane-methane/oxidizer
(B=0.5C7H16+0.5CH4) mixtures. The temperature of the oxidizer (ξ = 0) is 1300 K and of the fuel (ξ = 1) is 450
K and P = 24 bar.
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Figure 3: Scatter plots of heat release rate (HRR), ξ2,H , reaction rates of CH2O, C7H16, and CH4 against ξ1, and
reaction rates of C7H16 against CH4 at t=0.320 ms.
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Figure 4: Contour plots of C7H16 and CH2O mass fractions and reaction rate of CH4. The iso-line of ξ1=0.5 is also
shown (dotted line). The contours are taken at z = 0.5L at t = 0.320 ms.
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Figure 5: Scatter plots of reaction rate of CH2O against reaction rate of C7H16 and CH4 at t=0.320 ms.
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Figure 6: Contours of C7H16 and CH4 reaction rates and CH2O mass fraction in ξ1 - ξ2,H space at t=0.320 ms.
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Figure 7: Scatter plots of temperature, heat release rate (HRR) and reaction rates of n-heptane and methane against
ξ1 at t = 0.445 ms.
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Figure 8: Contour plots of temperature, reaction rates of n-heptane and methane and mass fraction of CH2O taken
at z=0.6L at t =0.445 ms.

22



Figure 9: Scatter plots of heat release rate (HRR), temperature and OH mass fraction at t = 0.520 ms.
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Figure 10: Temporal evolution of the volume integrated reaction rates of C7H16, CH4, O2, OH, and CH2O.
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