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Compressive Sensing Reconstruction for Video: an
Adaptive Approach Based on Motion Estimation

Xin Ding, Student Member, IEEE, Wei Chen, Member, IEEE, and Ian J. Wassell.

Abstract—This paper focuses on the problem of causally
reconstructing Compressive Sensing (CS) captured video. The
state-of-art causal approaches usually assume the signal support
is static or changing sufficiently slowly over time, where Mag-
netic Resonance Imaging (MRI) is widely used as a motivating
example. However, such an assumption is too restrictive for
many other video applications, where the signal support changes
rapidly. In this paper, we propose a framework that combines
Motion Estimation (ME), the Kalman Filter (KF) and CS to
adapt the reconstruction process to motions in the video so that
the slowly-changing assumption on the signal support is relaxed
and consequently is more suitable for video reconstruction.
Explicit and implicit ME are designed to provide motion aware
predictions, upon which a modified KF procedure is applied.
Furthermore, three CS algorithms with embedded ME and
KF are developed, and theoretical analyses are conducted via
reconstruction error upper bounds, to characterize the various
factors that affect reconstruction accuracy. Extensive simulations
utilizing actual videos are carried out and the superiority of our
methods is demonstrated.

Index Terms—Compressive sensing; Kalman filter; Video re-
construction; Motion Estimation; Multiscale Reconstruction.

I. INTRODUCTION

COMPRESSIVE Sensing (CS) [2], [3], which leverages
the sparse structure that is present in most practical

signals, has been making dramatic improvements on the acqui-
sition, processing and reconstruction of signals in recent years.
Compared to the conventional “sensing-then-compressing”
signal acquisition framework, CS combines the two stages
to directly obtain a compressed version of the original signal
using random sampling. Besides, it allows accurate reconstruc-
tion from far fewer samples than that required by the Nyquist
sampling theory. The development of the CS theory has led
to various designs of CS based cameras such as the Rice
single pixel camera [4], coded aperture imagers [5], CMOS
CS imagers [6] and spectral imagers [7], just to name a few.
These designs alleviate the constraint present in a conventional
camera that full-frame sensors are required to capture an
image. In other words, CS cameras are capable of acquiring
an image of higher resolution with the usage of the same
number of sensors. To recover the images taken by these CS
cameras, various approaches to the CS reconstruction problem
have been investigated in the literature [2], [3], [8]–[10].
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In addition to the sparse characteristic within an image,
more structure can be exploited when it comes to the re-
construction of a video captured by an CS camera in view
of the temporal correlations that exist between frames [11].
Ignoring the correlations leads to the most straightforward
but least effective reconstruction method, i.e., applying CS
reconstruction to each frame independently. To enhance the
performance of such methods, the intra-frame correlation is
exploited in [12]. An alternative approach that takes advantage
of the inter-frame correlation is to treat the whole video as a
3D signal and apply batch CS processing [13]–[15]. However,
the batch solution causes delay as it cannot be performed
until all the frames forming the 3D signals are acquired.
Also, the computational complexity increases significantly due
to the high number of dimensions involved. By enforcing a
structured correlation model such as the one used in Multiple
Measurement Vectors (MMV) [16], it is possible to jointly re-
construct multiple frames with a relatively low computational
complexity. Unfortunately, the MMV model assumes that the
sparsity pattern of the whole sequence stays the same through
time, which is too strict for practical video applications.

Another popular approach to exploit the inter-frame cor-
relation relates to the problem of causal and recursive re-
construction of CS captured videos, i.e., only the previous
reconstructed frame and measurements of the current frame
are employed in the reconstruction of current frame. In [17],
Vaswani proposes a method known as Kalman Filtered Com-
pressed Sensing (KFCS) to recover causally a time-varying
sequence. The work is extended in [18] to an actual Magnetic
Resonance Imaging (MRI) sequence, which is nearly sparse
(compressible), rather than ideally so. Non-KF causal methods
are also developed for the noiseless case in [19] and the
noisy case in [20]. All these approaches are based on the
assumption that the signal support (the indices set of non-
zero coefficients in a sparse signal) is slowly changing over
time. It has been shown that these techniques are successful in
applications where the assumption holds, e.g., MRI. However,
this is not true for a large class of videos, wherein the support
changes much more rapidly. In Fig. 1, some popular videos
and MRI sequences are illustrated along with their Support
Change Rates (SCRs). The SCR reflects how dynamically
the support is changing and is defined as: SCR = (T −
1)−1

∑T
t=2 |Nt|−1(|Nt − Nt−1| + |Nt−1 − Nt|), where T is

the total number of frames, Nt and Nt−1 are the support of
the t-th frame and the (t− 1)-th frame, respectively. Clearly,
the SCRs for these commonly used videos are much higher
than those for the MRI sequences. Ignoring the rapid support
change present in video will result in performance degradation
for the previously mentioned methods.

The motion between frames in a video has encouraged us
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Fig. 1: SCR values for video: foreman, tennis, windmill, boats,
flag; and MRI sequences: larynx, cardiac. Each sequence con-
sists 20 frames and a few example frames are demonstrated.
A 4 level 2D discrete wavelet transform is employed for
sparsifying.

to investigate motion-adaptive reconstruction, thereby gener-
alizing the aforementioned methods. However, in contrast to
conventional video applications, the full resolution frames are
not available in CS captured video, which makes conventional
Motion Estimation (ME) methods infeasible. To overcome
this difficulty, various researchers have proposed to in the
first instance conduct coarse reconstruction in order to obtain
an approximation of the whole video sequence, followed
by ME and CS to refine the results [21]–[24]. However,
these methods have high computational complexity as they
involve two reconstructions, as well as a ME process for each
frame. In [1], we propose a ME method that can be directly
applied to CS samples when the random sampling strategy is
employed. ME for CS samples is also developed in [25] for
a block sensing scheme and in [26] for a particular camera
design. Rather than using explicit ME, motion information has
also been incorporated into CS video reconstruction implic-
itly via dictionary learning in [27]–[29], where the learning
mechanism plays a key role concerning the reconstruction
quality. Besides, classification-based methods are developed
in [30], [31], which are not fully motion-adaptive as they
independently reconstruct the region involving motion without
utilizing temporal correlations.

In this paper, we aim to adapt the KFCS idea to account
for the actual motions between frames so that it is more
appropriate for the reconstruction of practical CS captured
video in a noisy environment. Compared to the previous work
in the literature, our contributions include:

• A novel framework that allows the adaption of motion
when reconstructing CS captured video is proposed. In
this framework, a motion aware prediction is first pro-

duced using CS samples, which is then incorporated into
the Kalman Filter (KF) processing. Combined with the
updated KF estimation process, a CS step is also included
in order to improve reconstruction performance.

• Two motion aware prediction approaches are designed
using either explicit or implicit Motion Estimation (ME)
for particular CS systems. Both methods overcome the
difficulty caused by the unavailability of full resolution
frames when applying conventional ME to CS videos.
Compared to the prediction methods currently in the
literature, the explicit scheme has lower computational
complexity since it avoids solving an under-determined
problem before ME; while the implicit scheme improves
their prediction accuracy by including a motion-aware
dictionary learning procedure.

• A modification of the original KF is derived so that the
motion aware prediction can be incorporated into the
filtering process. By updating the prediction using the KF,
a more accurate estimation of the frames are produced,
which also benefits the following CS step.

• Various CS schemes that exploit the KF estimation are
developed for CS video reconstruction. The performance
of these schemes are analyzed via theoretical error upper
bounds and it is shown that the reconstruction quality
is affected by the sensing noise and the accuracy of the
motion aware prediction. Experiments conducted using
example videos demonstrate the superiority of these
schemes.

The rest of the paper is organized as follows. Section II
introduces the mathematical models for CS and multiscale
CS, and reviews the existing non-motion-adaptive causal CS
methods and motion-adaptive methods; in Section III, the
proposed approach is overviewed; Section IV provides the
details of our framework, that includes the proposed motion
aware prediction, the utilization of KF and the design of the CS
algorithms; Section V investigates the theoretical performance
of the proposed approach; the performance of all the proposed
algorithms is evaluated in Section VI and Section VII presents
conclusions.

Notation: In the rest of this paper, we always use s̆, s̄ and
ŝ to represent the motion aware prediction, KF estimation and
final CS estimation, respectively. Boldface lower-case letters
denote vectors, boldface upper-case letters denote matrices
and non-boldface letters denote scalars. Calligraphic upper-
case letters denote sets and the superscript (·)c represents the
complement set. By (st)J we mean the sub-vector of st that
contains the elements with index in J and |J | denotes the
cardinality of J . The matrix transpose and inverse operations
are denoted by the superscripts (·)T and (·)−1, respectively.
The superscripts with brackets (·)(i) denote the coefficient
index i. The lp (p = 0, 1, 2) norm of vectors is denoted by
|| · ||p and I represents an identity matrix. The operator diag[·]
means forming a diagonal matrix by placing the elements on
the main diagonal. DWT(·) and IDWT(·) mean conducting
a discrete wavelet transform and an inverse discrete wavelet
transform, respectively. The operators min(·) and max(·)
represent taking the minimum and maximum value of the
contents, respectively.
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II. BACKGROUND AND RELATED WORK

A. CS and Multiscale CS

Consider a video sequence xt ∈ RN (t = 1, ..., T ) where
each frame can be represented as:

xt = Ψst, (1)
where Ψ ∈ RN×N is a sparsifying basis that can be either
pre-defined (e.g., a Discrete Wavelet Transform (DWT)) or
adaptively learned [27], [32], and st ∈ RN is the sparse rep-
resentation which has only K (K � N) non-zero coefficients,
i.e., ||st||0 = K. We assume a CS camera is used for acquiring
the video. The measurement vector for each frame can be
represented as:

yt = Φxt + et = Ast + et, (2)
where yt ∈ RM (M � N) is the t-th observation vector,
Φ ∈ RM×N represents the sensing matrix, et ∈ RM is a
noise term and A = ΦΨ is the equivalent projection matrix.
It is conventionally impossible to recover st or xt from this
under-determined system. However, CS asserts that when A
obeys the Restricted Isometry Property (RIP) [33], this ill-
posed inverse problem can be solved with an overwhelming
probability of success.

Definition 1: A matrix A satisfies the RIP of order K with a
the Restricted Isometry Constant (RIC) δK being the smallest
number such that

(1− δK)||s||22 ≤ ||As||22 ≤ (1 + δK)||s||22 (3)
holds for all s with ||s||0 ≤ K. �

The RIP can be equivalently described by stating that all
subsets of K columns taken from A are nearly orthogonal.
This implies that all pairwise distances between K sparse
signals are well preserved in the projection space. An i.i.d.
Gaussian matrix or a Bernoulli matrix is commonly used as
the sensing matrix Φ because of their universal incoherence,
in which case the RIP condition holds for the matrix A with
a high probability regardless of the choice of Ψ [34].

The CS reconstruction in the noisy case for individual
images can be formulated as a Basis Pursuit De-Noising
(BPDN) problem:

min
st
||st||1 s.t. ||Ast − yt||2 ≤ ε, (4)

where ε is an estimate of the noise level. It has been proved
that when the RIP is satisfied, the reconstruction accuracy of
(4) can be bounded by using the following theorem [33].

Theorem 1: Assume that δ2K <
√

2− 1 and ||et||2 ≤ ε.
Then the solution ŝt to (4) obeys

||̂st − st ||2 ≤ C0K
−1/2||st − (st)K ||1 + C1 ε (5)

where C0 = 2+(2
√
2−2)δ2K

1−(
√
2+1)δ2K

, C1 = 4
√
1+δ2K

1−(
√
2+1)δ2K

, δ2K is the
RIC of matrix A, (st)K is an approximation of st with all
but the K largest entries set to zero. �

When some prior information of the sparsity structure is
available, CS can benefit by designing the sensing strategy
rather than employing purely random sampling. A well known
example, namely multiscale CS [35] offers a non-uniform sam-
pling scheme based on the coarse-to-fine structure presented
in the wavelet transforms of signals, e.g., [36]–[39].

In multiscale CS, full-rate linear sampling is applied to
the coarse scale wavelet coefficients, and the fine scale co-
efficients are compressively sampled at various lower rates

depending on the scale levels. We denote the i-th scale
wavelet coefficients as sit ∈ RNi and define the following two
operators: Ai ∈ RMi×Ni is the equivalent projection matrix
that functions on the i-th wavelet scale and Ri ∈ RNi×N

represents a linear restriction operator [21] that only outputs
the i-th scale coefficients and omits the others. The multiscale
sensing process can then be represented as follows:

yit = Aisit + eit = AiRist + eit = Φixt + eit, (6)
where the superscript i denotes the i-th scale (i = 1, 2, ...),
Mi = Ni for the specified coarse scales i and Mi � Ni
for the others, Φi = AiRiΨ−1 is the sensing matrix that is
actually applied to the pixel-domain signal and Ψ ∈ RN×N is
the DWT sparsifying basis. The multiscale CS reconstruction
is then a combination of linear reconstruction at the coarse
scales and non-linear CS reconstruction at the fine scales.

Clearly, the multiscale scheme benefits from the non-
uniform structure of the sparsity of an image. It takes a
larger fraction of measurements at the less sparse scales and
reduces sensing energy at the more sparse scales. Besides,
due to the scale-separate reconstruction in multiscale CS,
the signal dimensions that we can deal with are enlarged.
Another popular method for dealing with high dimensional
signals is a block-based approach, e.g., dividing images into
small patches and sensing then reconstructing each patch
separately. However, all the previously mentioned methods do
not consider any temporal correlations that would exist when
applied to video reconstruction, which motivates extensions
and improvements to these methods.

B. Related Work
To exploit temporal correlations in a sequence of images

and help the reconstruction of CS captured video, causal
reconstruction methods have been developed. As mentioned, in
[17], [18], Vaswani proposes a causal method, namely KFCS,
to reconstruct a series of CS captured images. It is assumed
that the support of the current image is the same as that of
the previous one and a KF process is carried out to get an
estimate of current signal, s̄t. Then CS is applied on the KF
residual as follows:

minst,res ||st,res||1, s.t. ||yt,res −Ast,res||2 ≤ ε, (7)
where yt,res = yt − As̄t. By using the support of the new
estimation of the current frame, i.e., ŝt = s̄t+ ŝt,res, a second
KF process is applied to enhance the reconstruction quality.

Under the same assumption, a non-KF causal method,
namely modified CS, is proposed in [19], [20]. The signal
support of the previous frame is used in the CS reconstruction
of the current frame by solving the following optimization
problem:

minst ||(st)J c
t
||1, s.t. ||yt −Ast||2 ≤ ε, (8)

where Jt is the support of ŝt−1. If the support change between
frames is small, solving the optimization problem in (8)
leads to an improved reconstruction quality. Note that the
optimization problem in (8) can be seen as a specialized form
of a weighted l1 problem:

minst ||Wtst||1 s.t. ||yt −ΦtΨst||2 ≤ ε, (9)
where Wt = diag[w(1), w(2), ..., w(N)] and w(i) can be
designed using different schemes. If w(i) = 0 when i ∈ Jt and
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Fig. 2: Proposed framework for motion adaptive reconstruc-
tion.

w(i) = 1 when i ∈ J ct , the weighted l1 minimization problem
is equivalent to (8). The optimal reconstruction accuracy of
the weighted minimization is achieved if the weights are equal
to the inverse of the true signal magnitudes, that in practice
however are unknown.

These approaches are more effective than conventional CS
due to their temporal recursive nature; however, they perform
poorly when their assumptions are broken, i.e., the support
changes rapidly between frames. In [21]–[24], motions be-
tween frames are incorporated into the reconstruction process
to generalize the use of temporal correlations. In order to
take advantage of available mature ME techniques, they all
carry out the CS reconstructions first, based on which the
ME and Motion Compensation (MC) are conducted to update
the reconstruction and help with a second CS recovery. In
particular in [22], temporal regularization terms are utilized
in its second CS recovery, i.e., ||Ψ−1(Ft−1xt−1 − xt)||1
and ||Ψ−1(Bt+1xt+1 − xt)||1, where F and B are forward
and backward motion operators, respectively; and in order to
reduce the complexity, in [23], a weighted l2 minimization is
designed to update the prediction of ME and MC.

In [27]–[29], ME is involved implicitly by employing a
motion aware dictionary in the CS reconstruction. In these
approaches, the dictionary is learned from adjacent frames,
which normally results in a more sparse representation of
the current frame then if a fixed dictionary such as DWT is
employed. In particular, in the most recent work [27], for each
block of each frame, a Karhunen-Loève basis is learned, which
has been shown to be beneficial for CS video reconstruction.

III. METHOD OVERVIEW AND PROBLEM FORMULATION

In order to relax the assumption of a slowly changing
support pattern in the existing causal reconstruction methods,
we propose an adaptive framework that combines the steps of
motion aware prediction, KF updating and an improved CS
reconstruction, as shown in Fig. 2. It proceeds as follows:

1) Conduct a motion aware prediction step. We propose two
types of approach for this step: prediction by explicit
ME; prediction by motion aware reconstruction using a
learned dictionary, i.e., implicit ME.

2) Based on the predicted frame obtained in the previous
step, a KF process is carried out to update the estimation
using the current measurement.

3) CS reconstruction is conducted in the final step where
the KF estimation is exploited to enhance the reconstruc-
tion accuracy.

Overall, our method can be represented as an optimization
problem as follows:

minst ||Wt(st − s̄t)||1,
s.t.||yt −Ast||2 ≤ ε,

Fig. 3: Geometrical explanation of the advantage of the
proposed approach.

s̄t = f1(̆st,yt,A),

s̆t = f2(Ŝnb,yt,A), (10)
where Wt is a weight matrix; Ŝnb represents the set of the
reconstructed neighbor frames that for example could be the
previous frame or several frames according to the specific
scheme employed; f1 denotes the process of KF updating
and f2 represents the prediction process utilizing explicit or
implicit ME.

The advantage of our method can be explained geometri-
cally in Fig. 3. The black dot dash diamond and the black dot
dash ellipse y1 = A1s+e1 demonstrate the l1 pursuit process
of conventional CS. In this case, there is a unique solution p1.
However, when the sensing matrix does not obey the RIP, as
denoted by A2, we cannot guarantee to solve the problem
with the blue ellipse y2 = A2s + e1, because there exists a
solution p2 that has a smaller l1 norm than p1. In this case,
as our method in (10) has additional constraints other than the
measurements, so the overall constraint is modified as shown
by the red ellipse. Consequently solution p2 is avoided and
solution p1 can still be obtained. In addition, when Wt is
designed as a non-identity matrix, the l1 ball can be altered in
shape as shown by the red thin diamond, which also helps to
guarantee the correct solution. Besides, due to the involvement
of the motion aware prediction step, our method has better
constraints compared to that of assuming s̆t = ŝt−1, which
will lead to a more accurate estimation.

IV. AN ADAPTIVE APPROACH BASED ON MOTION
ESTIMATION

In this section, we elaborate the proposed adaptive approach
in Fig. 2, including the detailed steps and implementation
for each stage and the algorithms summarizing the proposed
methods.

A. Motion Aware Prediction

ME is a core step in traditional video coding and many ME
techniques have been developed [40]. However, the traditional
ME methods cannot be directly applied in CS videos, as
the full resolution frames are not available in this case.
Under specific sensing designs, we propose two approaches
utilizing explicit and implicit ME, respectively, to deal with
this difficulty. Both the proposed approaches can provide a
motion aware prediction for the desired video sequence, which
is then refined by the following KF and CS steps.
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Fig. 4: Motion aware prediction procedure using (a) explicit
ME/MC; (b) implicit ME.

As shown in Figure 4(a), in the explicit scheme, the predic-
tion is obtained by moving the blocks in the previous frame
according to the Motion Vector (MV) that is derived using
the proposed ME. While in the implicit scheme, as shown
by Figure 4(b), the prediction is obtained by reconstructing
its representation in a dictionary that is generated based on
the neighbor blocks in the neighbor frame, e.g., a Karhunen-
Loève basis ΨKLT [27]. To improve the prediction accuracy,
several neighboring frames can be employed for generating
the dictionary.

1) Prediction by Explicit ME/MC: Our explicit ME method
is based on the measurements obtained using the multiscale CS
strategy [35] directly, rather than solving an under-determined
problem first to get approximations of the frames as is
performed [21]–[24]. Suppose the previously reconstructed
reference frame and the current frame are xref and xcur,
respectively, and their wavelet representations are sref and
scur. Following the setting in the multiscale CS approach [35],
we assume that for all l scales, the scales 1 to j are fully
sampled and j + 1 to l are compressively sampled. Using the
measurements yit for each scale i (i = 1...l), the following
steps are conducted:

Step 1: linearly reconstruct the fully sampled scales
s̃icur (i = 1...j);

Step 2: set s̃icur (i = j + 1...l) to zero and do the IDWT,
i.e., x̃cur = IDWT(s̃cur);

Step 3: conduct ME and MC between x̃cur and xref ,
and output the DWT of the MC result s̆cur =
DWT (x̆cur) to the following steps.

Using the predictions s̆icur (i = 1...l), the KF and CS steps
are then carried out for each scale individually, which will
be detailed later. The above prediction approach can also be
considered as producing a low-pass filtered approximation of
the current frame, based on which the ME/MC processes are
carried out. As the reconstructions involved are utilizing full-
rate samples, it is much less complex than conducting coarse
CS reconstructions as is done in some other methods [21]–

[24].
To improve the accuracy of the prediction, one can choose

to serially reconstruct each scale and repeat the previously
described prediction process during each reconstruction. When
doing so, all the previously reconstructed scales are involved
into the ME step, i.e., when reconstructing scale ν, the
coefficients in s̃icur (i = 1...v − 1) have been reconstructed
and only s̃icur (i = v...l) are set to zero. In this way, several
rounds of ME and MC are carried out to provide a better
prediction at the expense of more computations and a longer
reconstruction time. One can design the specific strategy of
conducting the prediction procedure according to the specific
requirements, e.g., do ME/MC for every two scales to trade
off between accuracy and complexity. Note that the proposed
approach allows utilization of all the available ME methods,
e.g., block matching, optical flow and phase-based schemes.

2) Prediction by Implicit ME: As verified in [27]–[29],
instead of using a fixed sparsifying basis, e.g., a DWT basis,
using neighbor frames to learn a motion-aware dictionary
can benefit the reconstruction of CS captured video. We thus
propose to employ the CS reconstruction result based on the
use of such dictionaries as the prediction in our framework.
In this way, the motion information is involved implicitly via
the dictionary and no explicit ME/MC is required.

For the block-based dictionary learning methods, it is
required that we both take measurements and perform re-
construction in a block-based manner. Suppose the video
frame xt is sampled using a block-diagonal sensing matrix
with l component-matrices, i.e., Φi (i = 1...l). Equivalently,
each block of the frame, i.e., xit = Ψi

ts
i
t, is measured as:

yit = ΦiΨi
ts
i
t + eit, where the dictionary Ψi

t is learned based
on the blocks in adjacent frames. Then sit (i = 1...l) can
be recovered using CS algorithms, which forms the predicted
frame. For instance, we can employ the order 2 method of [27]
to generate the prediction of xt using the following steps:

Step 1: for each block xit of the current frame, extract
neighbor blocks of the same size as xit, denoted
by djt (j = 1...b), from a window of a square
region centered at xit−1 and xit−2, respectively,
by carrying out one-pixel shift in all directions;

Step 2: estimate the correlation matrix: Θi
t =

1
b

∑b
j=1 djt (d

j
t )
T ;

Step 3: form the Karhunen-Loève basis for xit using the
eigenvectors of Θi

t, i.e., Ψi
t,KLT = Γ, where Γ

is the matrix with columns as the eigenvectors of
Θi
t;

Step 4: predict xit by x̆it = Ψi
t,KLT s̃it, where s̃it =

argmin ||yit − ΦiΨi
t,KLT sit||22/2 + η||sit||1, and

do DWT: s̆it = DWT(x̆it).

For initialization, a DWT basis is utilized to reconstruct the
blocks in x1 and an order 1 KLT basis is learned to reconstruct
the blocks in x2. Note that the order number denotes the
number of previous frames that are used to generate the dictio-
nary. From the previously described procedure, we can see that
even without explicit ME, the motion between frames is still
included via the dictionary, which produces the motion-aware
prediction that we desire. Using the predictions s̆it (i = 1...l),
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the KF and CS steps are carried out for each block individually
to refine the results.

B. ME Enhanced KF

The KF [41] is one of the most popular methods for
dealing with linear dynamic systems. Employing KF in video
reconstruction consists of two stages: prediction and update.
The prediction is conducted by: s̆t = Ftŝt−1, where Ft is a
state transition matrix that will be needed when calculating the
Kalman gain. However, due to the involvement of the motion-
aware prediction stage in our framework, s̆t has been obtained
without needing Ft. In addition, the prediction step in our
framework has involved the current measurement yt, which
conventionally is only being used in the KF update stage.
Because of these changes in the prediction model, we need to
modify the KF update rules so that the motion aware prediction
can be exploited to enhance the reconstruction accuracy in our
framework.

Instead of modeling the state transition via multiplication
by Ft, we consider it as an additive correction as:

st = st−1 + %(Snb, yt, A) + qt, (11)
where Snb represents the set of the neighbor frames that are
used in the motion aware prediction stage, % is a non-linear
additive correction function that relates to the predictable
motion using Snb and yt, and qt represents the process noise.
Then in the proposed framework, we have

s̆t = st−1 + %(Ŝnb, yt, A), (12)
where Ŝnb denotes the set of the previously reconstructed
neighbor frames and the correction term %(Ŝnb, yt, A) is
obtained based on Ŝnb and yt.

Owing to the imperfectly reconstructed frames in Ŝnb,
the additive correction term will contain error, i.e., gt =
%(Snb, yt, A)− %(Ŝnb, yt, A). Consider the process noise
qt, the additive correction error gt and the state estimation
error (st−1 − st−1) are uncorrelated, based on the model in
(11) and (12), we derive the following update rules for the
ME enhanced KF using a similar procedure to that in [41] for
the conventional KF:

P̆t = Pt−1 + Q + G (13)

Kt = P̆tA
T [AP̆tA

T + Rt]
−1 (14)

st = s̆t + Kt(yt −As̆t) (15)

Pt = P̆t −KtAP̆t, (16)
where P is the KF error covariance matrix, P̆ is the prediction
error covariance matrix, Q and G are the covariance matrices
associated with qt and gt, respectively, K is the Kalman gain,
R = σ2

obsI is the measurement noise covariance and s̄ is the
KF estimation. The derivation of these modified KF equations
is given in Appendix A.

In the KF stage of our framework, the modified KF equa-
tions are performed scale by scale or block by block for the
explicit or implicit ME methods, respectively. Note that in
(14), the computational complexity of the matrix inversion
operation is O(M3), which is lower than O(M2N1.5), i.e.,
the complexity of the l1 minimization procedure [9], since
M < N . Thus the use of KF does not increase the order

of computational complexity in comparison to traditional CS
reconstruction.

Now we discuss the issue of how to determine Q and
G. Unfortunately, the error of the CS based motion aware
prediction does not have a closed form expression, owing to
the nonlinear process of the CS reconstruction and motion
estimation. In view of the fact that gt is mainly induced by
the estimation error of the frames in Ŝnb, we approximate the
matrix G using an estimation of the mean square error of the
oracle least square (LS) estimator, which represents the best
achievable performance for any unbiased CS estimator [42].
Specifically, for each scale or block i, we define Gi = σ2

1I,
where σ2

1 is estimated as following [42]:

σ2
1 =
|J1|
N

σ2
obsTr{[(Ai)TAi]−1], (17)

in which |J1| is an average estimation of the support cardi-
nality for the scale or block i in the DWT basis Ψ. Then for
Q, as it relates closely to the prediction scheme, we utilize
different strategies for the explicit and implicit ME cases. For
the explicit ME scheme, Q can be learned using training
sequences by extending the algorithm proposed in [18] as
follows:
Step 1: for a training sequence st (t = 1...T ), keep the

coefficients at the specified coarse scales, i.e.,
those that will be fully sampled, and set the rest to
zero, where the result is denoted by s̃t (t = 1...T );

Step 2: apply IDWT to both st and s̃t (t = 1...T ),
carry out ME/MC between every pair of xt−1 and
x̃t, and apply the DWT to the MC result, i.e.,
st,MC = DWT(xt,MC);

Step 3: for each scale in both st and st,MC , (t = 1...T ),
select a threshold using the method described in
[18] and set all coefficients below it to zero;

Step 4: calculate a Q for each scale i as: Qi = σ2
2I, where

σ2
2 = 1∑

j∈H(|νj |)
∑
j

∑
t(s

(j)
t − s

(j)
t,MC)2, νj :=

{t : s
(j)
t − s

(j)
t,MC 6= 0} and H is the set of indices

in the scale.
For the implicit ME scheme, since the prediction is obtained
based on a CS reconstruction, we employ a similar strategy
to that for determining G. That is, for each block i, we
approximate Q as Qi = σ2

2I, in which

σ2
2 =
|J2|
TN

σ2
obs

∑
t

Tr{[(Ψi
t,KLT )T (Φi)TΦiΨi

t,KLT ]−1},

(18)
where |J2| is an average estimation of the support cardinality
for the block i in the KLT basis Ψt,KLT .

C. KF Improved CS

Due to the involvement of the motion adaptive prediction
and KF updating, s̄t tends to be much closer to st than is the
case for the non-motion-adaptive methods. We thus anticipate
a sparse residual signal st,res, which can then be recovered
using various algorithms. We now consider applying three of
the schemes mentioned previously in Section II-B for the KF
improved CS stage:
Step 1: derive the residue in the measurement domain:

yt,res = yt −As̄t;
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Algorithm 1 ExMA
Input: yit, (t = 0...T, i = 1...l), Ai, (i = 1...l), Qi, (i =

1...l), Gi, (i = 1...l), Pi
0|0, (i = 1...l), σobs, ε, λ.

Output: x̂t(t = 0...T ).
Initialization: Get ŝ0 by multiscale CS reconstruction.

1: for t = 1 : T do
2: Linearly reconstruct fully sampled scales (i = 1...v).
3: Predict scales (v + 1)...l by the explicit ME/MC steps.
4: for i = v + 1...l do
5: if Updated ME/MC required then
6: Repeat explicit ME/MC prediction with scales

1...v known.
7: end if
8: Apply ME enhanced KF steps (13)-(16) for scale i.
9: Conduct KF improved CS stage for scale i.

10: end for
11: x̂t =IDWT(ŝt).
12: end for
Algorithm 2 ImMA
Input: yit, (t = 0...T, i = 1...l), Φi, (i = 1...l),Ψi, (i =

1...l), Q,i , (i = 1...l) Gi, (i = 1...l), Pi
0|0, (i = 1...l),

σobs, η, ε, λ.
Output: x̂t(t = 0...T ).
Initialization: Get x̂0 and x̂1 by CS reconstruction using a

DWT dictionary and order 1 KLT dictionary, respectively.
1: for t = 2 : T do
2: for i = 1...l do
3: Predict s̆it by the implicit ME steps.
4: Apply ME enhanced KF steps (13)-(16) for block i.
5: Conduct KF improved CS stage for block i.
6: end for
7: x̂t =IDWT(ŝt).
8: end for

Step 2: utilize one of the following schemes:
scheme 1: min

st,res
||st,res||1, s.t. ||yt,res −Ast,res||2 ≤ ε;

scheme 2: min
st,res
||(st,res)J c

t
||1, s.t. ||yt,res −Ast,res||2 ≤ ε,

where Jt is the estimated support of s̄t;
scheme 3: min

st,res
||Wtst,res||1 s.t. ||yt,res − Ast,res||2 ≤ ε,

where Wt = diag[w(1), w(2), ..., w(N)], w(i) =

(|̄s(i)t |+ λ)−1;
Step 3: get final estimation: ŝt = s̄t + ŝt,res.

We observe that scheme 1 is simply a CS reconstruction on the
residue; scheme 2 is a modified CS based method, in which the
99%-energy support estimation [19] is employed, i.e., Jt :=
{i : i ∈ [1, N ], s2i > ζ}, where ζ is the largest real constant
for which N contains 99% of the signal energy; scheme 3 is a
weighted CS scheme, where we employ the reciprocal of the
KF result as the weights with a stability parameter λ to avoid
infinities. These schemes are applied to the scales or blocks
individually according to the settings in the previous stages.

The proposed algorithms for motion adaptive reconstruc-
tion using explicit ME prediction (ExMA) and implicit ME
prediction (ImMA) are summarized in Algorithm 1 and 2,
respectively. In the rest of this paper, we identify the various
KF improved CS schemes as described previously as ExMA-1,

ExMA-2, ExMA-3, ImMA-1, ImMA-2, ImMA-3, respectively.

V. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis for the
reconstruction accuracy of the proposed approach. Our goal
is to investigate the factors that affect the performance of the
proposed approach and provide more theoretical insights into
the proposed framework. In order to provide a more general
view, the results all consider a single reconstruction.

A. Error Upper Bounds

As the reconstruction error of CS does not have a closed
form representation, we characterize the reconstruction accu-
racy via error upper bounds, which is a widely used approach
for investigating the performance of CS algorithms. The main
results are given in the following theorem.

Theorem 2: Let rt = st,res − (st,res)Jt ; wmin and
wmax denote the minimum and maximum value of w(j)(j ∈
T c0 ), respectively, where T0 is the support of st,res; P1 =
w−1min

∑
i∈T0(w(i))2 and P2 = w−1minwmax. Assume that at

each t, |Jt| = K1 and st, st,res, rt are K2, K3, K4 sparse,
respectively, and ||et||2 ≤ ε. Then

1) the estimation error after the KF step, i.e., ||st− s̄t||2 =
||st,res ||2 is bounded by:
||st,res ||2 ≤ atbt[||st − s̆t||2 + ||ATet||2], (19)

where at = [c + (||M−1
t−1||2 + r)−1]−1, bt =

[(||Mt−1||2)−1 + r]−1, Mt = ATA + σ2
obsP̆

−1
t , r =

σ2
sys/σ

2
obs, σ

2
sys is the variance of Q + G and c is the

minimum eigenvalue of ATA.
2) when δ2K3

<
√

2− 1, the reconstruction error of
ExMA-1 and ImMA-1 is bounded by:
||ŝt − st||2 ≤ C0K3

−1/2||st,res − (st,res)K3
||1 + C1 ε,

(20)
where C0 = [2 + (2

√
2− 2)δ2K3 ][1− (

√
2 + 1)δ2K3 ]−1,

C1 = 4
√

1 + δ2K3 [1− (
√

2 + 1)δ2K3 ]−1.
3) when δ22K4

+ 2δK1+2K4
< 1, the reconstruction error of

ExMA-2 and ImMA-2 is bounded by:
||ŝt − st||2 ≤ C2K4

−1/2||rt − (rt)K4 ||1 + C3 ε, (21)
where C2 = [2− 2δK1+2K4

+ 2u][1− δK1+2K4
− u]−1,

C3 = 4
√

1 + δK1+2K4
[1 − δK1+2K4

− u]−1, u =√
δ22K4

+ δ2K1+2K4
.

4) when δ2K3
< (
√

2K
−1/2
3 P1 + 1)−1, the reconstruction

error of ExMA-3 and ImMA-3 is bounded by:
||ŝt − st||2 ≤ C4K

−1/2
3 ||st,res − (st,res)K3

||1 + C5ε,
(22)

where C4 = [2P2 + (
√

2 − 2P2)δ2K3
][1 −

(1 +
√

2K
−1/2
3 P1)δ2K3

]−1, C5 = 2(1 +

K
−1/2
3 P1)

√
1 + δ2K3 [1− (

√
2K
−1/2
3 P1 + 1)δ2K3 ]−1.�

Proof: Proofs are given in Appendix B.
Remark 1: Statement 1 of Theorem 2 indicates that the

accuracy of the KF estimation s̄t is closely related to the
accuracy of the motion aware prediction, i.e., ||st − s̆t||2.
More investigations concerning this prediction error are given
in Section V-B.
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Remark 2: The statements 2, 3 and 4 of Theorem 2 provide
error bounds for different motion adaptive algorithms. All
the bounds consist of two parts, i.e., a noise term and an l1
term, that relates to st,res, i.e., the estimation error of the KF
step. This indicates that the performance of these algorithms
depends upon the sensing error and the accuracy of the KF
estimation, which is in turn related to the accuracy of the
motion aware prediction step, as implied in statement 1.

Remark 3: Comparing the statement 2, 3 and 4,
we observe that different RICs are required to yield
valid performance guarantees for different algorithms.
These performance bounds are valid simultaneously if
δK < min(

√
2− 1, (

√
2K
−1/2
3 P1 + 1)−1), where K =

max(2K3,K1 + 2K4).
Remark 4: If the RIC is satisfied for both ExMA-1/ImMA-

1 and ExMA-2/ImMA-2, we have C2 < C0, C3 ≤ C1 since
u ≤
√

2δK <
√

2. Therefore, the upper error bound of ExMA-
2/ImMA-2 is lower than that of ExMA-1/ImMA-1 when the
l1 term obeys [K4

−1/2||rt − (rt)K4
||1] ≤ [K3

−1/2||st,res −
(st,res)K3

||1]. Such an observation leads to the use of ExMA-
2/ImMA-2 instead of ExMA-1/ImMA-1 in appropriate cases.

Remark 5: If the RIC is satisfied for both ExMA-1/ImMA-
1 and ExMA-3/ImMA-3, we have C4 ≤ C0, C5 ≤ C1 if
P1 ≤ K

1/2
3 , P2 ≤ 1 +

√
2δK(2 − 2δK)−1. Thus under this

condition, the upper bound of ExMA-3/ImMA-3 is lower than
that of ExMA-1/ImMA-1, which implies that ExMA-3/ImMA-
3 can be superior to ExMA-1/ImMA-1.

B. Motion Aware Prediction Error

As discussed before, the reconstruction accuracy of the
proposed algorithms closely depends on the accuracy of the
KF estimation, which is in turn related to the motion aware
prediction error, i.e., ||st − s̆t||2.

In the explicit ME/MC scheme, if we denote the MC result
based on conventional ME using the true frames by s̃t, the
prediction error can then be bounded by:

||st − s̆t||2 ≤ ||st − s̃t||2 + ||s̃t − s̆t||2, (23)
where ||st − s̃t||2 measures the accuracy of the conventional
ME and MC process; while ||s̃t−s̆t||2 represents the additional
error in the motion aware prediction step caused by the
approximation of the true frame. It has been shown in [43]–
[45] that the estimation error in the conventional ME and MC
process, i.e., ||st− s̃t||2, depends on a number of factors such
as the motion and light variation. Apart from the application-
dependent factors, ||s̃t − s̆t||2 describes the additional error
owing to the low-pass filtering operation in our approach.
We now evaluate the effect of this term by performing the
following experimental study.

The study is conducted using the foreman sequence shown
in Fig. 1. We first carry out conventional ME when the full
resolution frames are known and from the evaluated MVs, we
obtain the MC frames, i.e., s̃t. Then to test the additional error
in the explicit ME process, each of the test frames is sam-
pled using the multiscale sampling strategy and the predicted
frames, i.e., s̆t, are obtained using the explicit ME/MC scheme.
The original previous frame is used as the reference frame.
Then the Normalized Squared Error (NSE) between s̃t and

1 2 3 4 5
10

�6

10
�5

10
�4

10
�3

10
�2

No. of fully sampled scales

N
S

E

NNE=0

NNE=5

NNE=10

NNE=30

Fig. 5: NSEs of the explicit ME/MC prediction method with
respect to the conventional ME for the foreman sequence.

TABLE I: Processing steps utilized in the evaluated ap-
proaches.

Dictionary
learning

Pre-CS
Recon ME/MC KF CS

Recon
ExMA no no yes yes yes
ImMA yes yes no yes yes
VCS no yes yes no yes
MAD yes no no no yes

Ktfocuss no yes yes no yes
ModCS no no no no yes
KFCS no no no yes yes

s̆t is calculated as: NSE = ||s̃t − s̆t||22/||s̃t||22. This process
is performed for 20 frames and the mean NSE values are
recorded. We employ a 4 level 2D-DWT in our experiments
and introduce Gaussian additive noise e ∼ N (0, σ2

obsI) during
the measurement taking process. To keep the noise energy
constant for each plot, we define the Normalized Noise Energy
(NNE) as: NNE = σ2

obsM/N.

The results are shown in Fig. 5. Note that when the number
of fully sampled scales is unity, only measurements of the
approximate band are taken. Additional measurements from
the next finer scales are introduced as the value on the x-axis
of Fig. 5 is increased. As expected, the quality of the prediction
improves when more scales are fully sampled and the noise
power is reduced.

In the implicit ME scheme, the prediction error, i.e.,
||st − s̆t||2, is in fact the CS reconstruction error. Therefore,
according to Theorem 1, it is determined by the measurement
noise and the sparsity of the frames when being represented in
the motion-aware dictionaries. In particular, the reconstruction
error of [27] represents the prediction error of the implicit ME
scheme presented in Section IV-A2 and we will evaluate it in
Section VI-C.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the proposed motion adap-
tive approach and compare its performance with various
state-of-art approaches. Specifically, three motion-adaptive
methods including Video Compressive Sensing (VCS) [22],
Motion-Aware Decoding (MAD) [27], Ktfocuss [23], and
two non-motion-adaptive causal methods including Modified
CS (ModCS) [20] and KFCS [18] are considered in our
simulations. These methods employ various process steps, that
are identified explicitly in Table I.
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A. Implementation Details

As one may notice, the ExMA and ImMA approaches
require different sampling schemes, i.e., multiscale sensing
and block-based sensing, respectively. We thus examine per-
formance for these schemes separately. To enable fair compar-
ison, we implement the other chosen schemes using multiscale
or block-based sensing as appropriate. That is, when evaluating
the motion adaptive method using explicit ME, we implement
all the approaches using multiscale sensing and reconstruction;
while they are implemented using block-base schemes for
evaluations of the implicit motion adaptive methods. In the
following sections, we choose a naming convention where
the initial letter, i.e., either “m” or “b”, indicate the sens-
ing schemes. For instance, “bModCS” denotes the ModCS
approach using the block-based scheme and “mModCS” is
ModCS using the multiscale scheme.

For the MAD approach, the order-2 algorithm is employed
and only a block-based scheme is implemented owing to the
design of their system. Also, we only implement VCS using
the multiscale scheme and the regularizers present in [22]
are all included in our implementation. By “Ktfocuss” we
refer to the method of Ktfocuss with ME/MC in [23] and
the reconstruction before ME utilizes the Ktfocuss algorithm
itself.

For evaluations of the explicit case, a 4 level 2D DWT
is utilized for sparsifying and each scale is sampled by a
i.i.d Gaussian sensing matrix. The first frame is reconstructed
using multiscale CS reconstruction for initialization. For the
high dimensional scales, block-paralleled KF and CS steps are
conducted to ease implementation issues. We employ the block
matching approach for all the ME processing involved in the
experiments.

For the evaluations of the implicit case, a motion aware
dictionary is employed in the prediction stage, whilst a 4
level 2D DWT is used for the KF and CS stages. The block
size is set as 32 × 32 and the searching window for the
learning dictionaries is 64 × 64. Each block is sampled by
a i.i.d Gaussian matrix. The first frame is reconstructed using
block-based CS reconstruction for initialization. Each block is
vectorized in the KF and CS stages.

In all the experiments, the videos in Fig. 1 are employed and
their dimensions are: foreman 256× 256, tennis 1024× 1024,
boats 1024×1024, windmill 1024×1024 and flag 512×512.
The Peak Signal to Noise Ratio (PSNR) is used for evaluation.
The parameters are set as: P0|0 = 0, ε = η = σobs, λ = 5.
For the various settings of the sample ratio and noise energy,
each experiment is repeated to get an overall or average result
over 50 trials.

B. Case I: Motion Adaptive Approach using Explicit ME/MC

1) Reconstruction Accuracy: We first carry out experiments
on the foreman sequence. The sample ratio is set as M/N =
0.2 and the noise energy is kept at NNE = 10. Fig. 6 shows
a histogram of the PSNRs for frames 2 to 20 in all the 50
trials (i.e., 50 × 19 = 950 reconstructions) for each scheme.
It is clear that the ExMA algorithms outperform the others,
with ExMA-3 the best of all in terms of the mean PSNR. The
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Fig. 6: Histograms of the PSNRs for each of the multiscale
schemes for the foreman sequence. The mean PSNR for each
algorithm is shown in the title. (M/N = 0.2, NNE = 10)
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Fig. 7: PSNRs for the foreman sequence for the multiscale
schemes when various sample ratios are employed. (NNE =
10)
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0.2)
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TABLE II: PSNRs for various videos for the multiscale schemes.
(a) PSNRs (dB) for video Tennis

NNE 2 2 2 10 10 10 30 30 30
M/N 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

ExMA-3 30.5 35.8 39.5 29.1 33.3 37.0 28.4 30.9 32.4
ExMA-2 30.3 35.8 39.6 29.5 33.3 36.8 28.6 30.5 32.3
ExMA-1 30.4 35.7 39.5 29.2 33.0 36.9 28.5 30.5 32.3

VCS 29.0 33.9 38.0 27.5 31.3 35.2 26.5 28.8 30.8
mKtfocuss 28.7 33.8 37.9 27.0 31.0 35.4 26.2 28.6 30.7
mModCS 26.1 31.0 34.1 25.2 29.7 33.8 22.8 27.4 29.3
mKFCS 27.2 31.9 35.0 26.5 30.5 34.2 25.4 28.1 29.8

(b) PSNRs (dB) for video Windmill

NNE 2 2 2 10 10 10 30 30 30
M/N 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

ExMA-3 26.2 32.3 36.1 25.2 31.7 35.8 24.8 29.8 33.4
ExMA-2 26.0 32.2 36.0 25.0 31.6 35.4 24.6 29.7 33.3
ExMA-1 26.0 32.2 36.0 25.2 31.7 35.4 25.0 29.6 33.4

VCS 23.3 31.0 34.9 22.0 30.2 33.9 21.6 27.9 31.9
mKtfocuss 22.8 30.6 34.8 21.8 30.0 34.0 21.2 27.4 32.0
mModCS 21.2 29.3 33.0 20.5 27.8 32.0 19.6 26.7 31.3
mKFCS 21.7 26.3 31.1 21.1 26.0 30.5 20.5 25.8 30.0

(c) PSNRs (dB) for video Boats

NNE 2 2 2 10 10 10 30 30 30
M/N 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

ExMA-3 28.0 35.7 39.3 26.5 33.8 37.8 25.7 32.7 35.6
ExMA-2 28.0 35.5 39.1 26.3 33.8 37.7 25.7 32.7 35.3
ExMA-1 27.9 35.5 39.0 26.7 34.0 37.7 25.9 32.5 35.5

VCS 26.3 34.8 37.8 25.5 32.5 36.6 24.8 31.1 33.8
mKtfocuss 26.0 34.8 37.9 25.4 32.3 36.5 24.4 30.6 33.7
mModCS 24.2 32.3 35.8 23.5 31.5 34.4 21.5 29.4 33.2
mKFCS 25.0 31.0 34.4 24.2 30.1 33.1 23.8 29.8 32.8

(d) PSNRs (dB) for video Flag

NNE 2 2 2 10 10 10 30 30 30
M/N 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

ExMA-3 29.5 33.9 36.1 29.2 33.4 35.5 27.0 29.6 33.0
ExMA-2 29.3 34.0 36.2 28.9 33.5 35.4 27.2 29.6 32.9
ExMA-1 29.3 34.2 36.2 29.0 33.5 35.4 27.3 30.0 32.9

VCS 28.0 33.1 34.8 27.5 32.2 34.2 26.0 28.4 31.4
mKtfocuss 27.6 32.8 34.9 27.0 32.0 34.0 25.4 28.0 31.1
mModCS 23.8 30.9 34.0 23.0 29.4 33.6 21.0 26.9 30.2
mKFCS 27.0 31.8 34.0 26.4 30.8 33.7 24.8 27.8 30.2

(a) (b)

Fig. 9: Some example reconstructed frames of video (a) Tennis (6-th frame, M/N = 0.08, NNE = 2); (b) Boats (6-th frame,
M/N = 0.15, NNE = 2). In each figure, the frames in the first row from left to right are that of: original video, ExMA-3,
ExMA-2, ExMA-1; and the second row from left to right displays that of: VCS, mKtfocuss, mModCS, mKFCS.

ModCS approach performs worst with a mean PSNR about
6dB less than ExMA-3.

In Fig. 7, the performance of the algorithms are evaluated
under various sample ratios. The result is averaged over 20
frames and 50 trials. It is observed that the ExMA algorithms
are superior to the others for different sampling rates. To
achieve a PSNR of 30dB, the ExMA algorithms require a
sample ratio of about 14%; whilst the other approaches need
sample ratios from about 19% to 24%.

The performance of all the algorithms with various amounts
of added noise is shown in Fig. 8. We maintain the sample
ratio at 0.2 during the experiment. The advantage of the ExMA
algorithms can still be observed. It can be seen that when the
noise variance increases, ExMA-2 gradually becomes the best
of all followed by ExMA-3.

Similar results are evident for the experiments conducted
using the other videos. The PSNR results are presented in
Table II, where the highest PSNR values are highlighted in
bold. We can see the ExMA algorithms perform best for all the
experiments. Some example reconstructed frames are shown
in Fig. 9.

TABLE III: Running time (per frame) in seconds for the
foreman sequence for the multiscale schemes. (NNE = 10)

M/N Pre-Stages ME/MC KF&CS Total
ExMA-3 0.1 N/A 10.01 36.78 46.79
ExMA-2 0.1 N/A 10.05 29.52 39.57
ExMA-1 0.1 N/A 10.07 35.75 45.82

VCS 0.1 21.04 9.90 21.65 52.59
mKtfocuss 0.1 13.23 9.91 11.69 34.83
mModCS 0.1 N/A N/A 2.53 2.53
mKFCS 0.1 N/A N/A 27.57 27.57
ExMA-3 0.3 N/A 8.04 36.60 44.64
ExMA-2 0.3 N/A 7.92 26.63 34.55
ExMA-1 0.3 N/A 7.96 35.36 43.32

VCS 0.3 20.40 8.75 20.87 50.02
mKtfocuss 0.3 12.26 8.71 10.57 31.54
mModCS 0.3 N/A N/A 1.02 1.02
mKFCS 0.3 N/A N/A 25.73 25.73

2) Running Time: Running time comparisons are also con-
ducted using the foreman sequence. Due to the different stages
employed in the various approaches, in Table III, we separately
list the running time of the stages (with all the stages prior to
ME/MC combined as Pre-stages), as well as the total running
time. The results are averaged to yield a per frame running
time and they are all obtained on a Macbook pro with a
2.6GHz Intel Core i5 CPU and 8GB RAM. To enable fair
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Fig. 10: Histograms of the PSNRs for each of the block-based
schemes for the foreman sequence. The mean PSNR for each
algorithm is shown in the title. (M/N = 0.2, NNE = 10)

comparisons, the CS steps involved in all the approaches are
set to stop when the norm of the difference between two
consecutive estimates (normalized by the norm of the current
estimate) is less than 10−5.

From Table III, we observe that the reconstructions in
general run faster when the sampling rate increases, since
more scales are fully sampled. Compared to the non-motion-
adaptive methods, i.e., mKFCS and mModCS, the motion-
adaptive approaches produce more accurate reconstruction
at the cost of more computational burden that comes from
the additional stages involved. We notice that the mKtfocuss
approach runs faster than the other motion-adaptive methods.
This is because it utilizes the less complex weighted l2
minimization during reconstruction and also we implement
it in a block-parallel manner for high dimensional scales.
Among all the motion-adaptive methods, VCS is the slowest.
In addition, by comparing the running time of the prediction
stages, i.e., pre-stages plus ME/MC stage, we observe that our
prediction approach has lower computational complexity than
the other motion adaptive approaches.

C. Case II: Motion Adaptive Approach using Implicit ME

1) Reconstruction Accuracy: The previously described ex-
periments are now carried out using the block-based sensing
scheme to evaluate the performance of the motion adaptive
approach when the implicit ME is used. Fig. 10 shows a
histogram of PSNRs for each scheme when the foreman
sequence is employed. The sample ratio is 0.2 and the noise
energy is 10. We can see that the motion-adaptive approaches
are superior to the non-motion-adaptive methods and the
ImMA algorithms outperform all of the other approaches.

In Fig. 11, the sample ratio is varied to examine reconstruc-
tion performance. It is observed that the ImMA algorithms
have better reconstruction quality than the others over all the
tested sample ratios. For a sample ratio of 20%, all the ImMA
algorithms can achieve a PSNR of about 32dB, followed by
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Fig. 11: PSNRs for the foreman sequence for the block-based
schemes when various sample ratios are employed. (NNE =
10)
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Fig. 12: PSNRs for the foreman sequence for the block-
based schemes when various amounts of noise are included.
(M/N = 0.2)

MAD with a PSNR of about 30dB, whilst the PSNRs of all
the other schemes are all below 28dB.

When the noise energy varies, the performance of all the ap-
proaches are illustrated in Fig. 12. The advantage of the ImMA
methods over all the others is clear, although the improvement
over the MAD method decreases when the noise is larger.
When the noise variance is above 12, we observe that the
ModCS algorithm, that is non-motion-adaptive, outperforms
the motion-adaptive approach Ktfocuss.

In addition, from Fig. 10 - 12, we observe that the various
ImMA algorithms have very similar performance. The reason
is that the implicit motion aware prediction already exploits
CS reconstruction (while the explicit prediction procedure
does not), which together with the KF steps lead to a good
estimation of the current frame, and the varying degrees
of performance improvements offered by an additional CS
reconstruction for the ImMA schemes are not sufficiently
significant to affect the overall performance of these schemes.

The experiments are also conducted using the other videos
yielding the results shown in Table IV, where the highest
PSNR values appear in bold. Some example reconstructed
frames are shown in Fig 13.

2) Running Time: Using the same computing platform as
in the section VI-B 2, we now compare the running time
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TABLE IV: PSNRs for various videos for the block based schemes.
(a) PSNRs (dB) for video Tennis

NNE 2 2 2 10 10 10 30 30 30
M/N 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

ImMA-3 28.9 33.3 36.9 28.3 32.2 34.2 26.6 29.2 32.3
ImMA-2 28.9 33.1 36.9 28.2 32.3 34.3 26.6 29.3 32.3
ImMA-1 28.8 33.2 36.9 28.3 32.2 34.3 26.6 29.2 32.3

MAD 27.9 31.8 34.9 27.7 31.2 32.4 25.2 28.1 30.4
bKtfocuss 26.4 30.8 33.6 26.2 29.6 31.8 24.4 27.4 29.9
bModCS 25.8 30.1 33.1 25.7 29.3 31.6 25.2 28.1 29.9
bKFCS 24.2 29.0 32.6 23.9 28.6 31.9 23.5 27.3 30.4

(b) PSNRs (dB) for video Windmill

NNE 2 2 2 10 10 10 30 30 30
M/N 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

ImMA-3 28.5 32.1 35.3 27.5 31.8 33.2 26.6 31.1 32.6
ImMA-2 28.3 32.0 35.3 27.4 31.8 33.2 26.7 31.3 32.6
ImMA-1 28.4 32.0 35.3 27.4 31.8 33.2 26.6 31.2 32.6

MAD 26.9 30.7 33.2 26.1 30.6 32.1 25.7 30.3 31.8
bKtfocuss 22.9 28.4 32.8 22.5 27.9 31.4 20.9 26.0 28.5
bModCS 21.9 27.9 32.2 21.8 27.8 31.2 21.6 27.0 29.6
bKFCS 20.1 25.4 28.8 19.7 24.8 28.5 18.9 23.6 27.9

(c) PSNRs (dB) for video Boats

NNE 2 2 2 10 10 10 30 30 30
M/N 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

ImMA-3 28.3 35.5 39.3 27.6 33.3 35.3 27.3 31.8 32.7
ImMA-2 28.2 35.5 39.3 27.6 33.4 35.3 27.4 31.8 32.8
ImMA-1 28.3 35.5 39.3 27.7 33.3 35.3 27.3 31.9 32.8

MAD 27.1 33.4 37.3 26.9 32.1 34.3 25.9 30.9 32.1
bKtfocuss 24.5 31.2 35.0 24.2 30.3 33.2 22.3 28.1 30.4
bModCS 23.6 30.6 34.1 23.5 29.8 32.7 23.5 28.6 30.5
bKFCS 21.6 26.7 31.6 21.0 26.3 31.2 20.7 25.8 30.0

(d) PSNRs (dB) for video Flag

NNE 2 2 2 10 10 10 30 30 30
M/N 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

ImMA-3 28.9 32.3 35.2 28.2 31.6 34.7 27.8 30.8 31.8
ImMA-2 28.8 32.3 35.2 28.2 31.6 34.7 27.8 30.8 31.8
ImMA-1 28.9 32.3 35.2 28.2 31.6 34.7 27.7 30.8 31.8

MAD 27.6 31.0 33.8 26.1 30.7 33.7 25.8 29.7 30.5
bKtfocuss 25.2 29.5 33.1 24.5 29.1 32.2 22.9 27.6 29.7
bModCS 23.6 28.7 32.2 23.2 28.1 31.1 22.9 27.5 29.3
bKFCS 21.9 26.2 30.6 21.7 26.0 30.4 21.2 25.9 29.0

(a) (b)

Fig. 13: Some example reconstructed frames of video (a) Windmill (8-th frame, M/N = 0.30, NNE = 2); (b) Flag (14-th
frame, M/N = 0.30, NNE = 10). In each figure, the frames in the first row from left to right are that of: original video,
ExMA-3, ExMA-2, ExMA-1; and the second row from left to right displays that of: VCS, mKtfocuss, mModCS, mKFCS.

of the foreman sequence for the block-based algorithms in
Table V. We observe that when the sampling rate increases,
all the approaches become slower due to the larger sensing
matrices involved. Ktfocuss takes the longest time when the
sampling rate is 0.3. The motion-adaptive methods are not
necessarily slower that of the non-motion-adaptive ones, e.g.,
ModCS, because the representations of the frames are more
sparse in the motion-adaptive case owing to the utilization of
the motion-aware dictionaries.

By comparing Table III and Table V, we notice that the
prediction stage of ExMA (ME/MC stage in Table III) is
much faster than that of ImMA (Pre-Stages in Table V),
which implies that predicting using the explicit ME/MC is
less complex than using the implicit scheme. Furthermore, it
can also be observed that the speed of Ktfocuss, ModCS and
KFCS change significantly when the different implementations
are used. This is because the dimensions involved in the
reconstruction vary due to the different sensing schemes.
Meanwhile, the signals involved in their CS steps are related
to either predictions or previous frames, which are different
depending upon the sensing schemes used. It means that the
sparsity of these signals in the CS stage varies and thus the

TABLE V: Running time (per frame) in seconds for the
foreman sequence for the block-based schemes. (NNE = 10)

M/N Pre-Stages ME/MC KF&CS Total
ImMA-3 0.1 25.07 N/A 23.37 48.44
ImMA-2 0.1 24.72 N/A 22.12 46.84
ImMA-1 0.1 24.91 N/A 22.29 47.20

MAD 0.1 22.40 N/A 2.61 25.01
bKtfocuss 0.1 18.69 6.20 17.89 42.78
bModCS 0.1 N/A N/A 66.97 66.97
bKFCS 0.1 N/A N/A 7.03 7.03

ImMA-3 0.3 24.34 N/A 28.07 52.41
ImMA-2 0.3 24.05 N/A 27.56 51.61
ImMA-1 0.3 24.25 N/A 28.01 52.26

MAD 0.3 21.77 N/A 2.38 24.15
bKtfocuss 0.3 59.22 6.45 57.88 123.55
bModCS 0.3 N/A N/A 76.73 76.73
bKFCS 0.3 N/A N/A 9.80 9.80

convergence rate, i.e., the time taken to achieve the stopping
criteria changes.

VII. CONCLUSIONS

In this paper, we consider the problem of causally recon-
structing videos captured by a CS camera. A framework that
adapts the reconstruction process to motion in the video is
proposed and it incorporates motion aware prediction, KF
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updating and CS reconstruction to improve the CS video
reconstruction. Under this framework, two motion aware
prediction methods using explicit ME/MC and implicit ME
are proposed for block-based and multiscale CS systems,
respectively, in which the explicit ME prediction scheme has
lower computational complexity. The reconstruction accuracy
and performance guarantees for various algorithms based on
the proposed framework are analyzed theoretically via upper
error bounds, which shows that the performance of our method
depends on the sensing noise and the accuracy of the ME
methods. Under various settings of the sample ratios and sens-
ing noise, comprehensive simulations using different videos
demonstrate that the proposed motion-adaptive approach has
superior reconstruction accuracy in comparison to the state-
of-art causal and motion adaptive methods.

APPENDIX A
DERIVATION OF ME ENHANCED KF

Using the models defined in (11), (12), and considering the
process noise qt, the error of the additive corrections gt and
the state estimation error (st−1 − st−1) are uncorrelated, we
derive the prediction error covariance matrix by:

P̆t = E[(st − s̆t)(st − s̆t)
T ]

= E[(st−1 − s̄t−1)(st−1 − s̄t−1)T ]

+ E[(gt + qt)(gt + qt)
T ]

= Pt−1 + E(qtq
T
t ) + E(gtg

T
t )

= Pt−1 + Q + G. (24)
Then with s̆t and P̆t obtained, as in conventional KF [41],

we consider the distribution of the prediction as a Gaussian
function with a mean s̆t and a variance P̆t. In [41], the
conventional KF is derived using a fusion process of Gaussian
functions. Following the same procedure, we can acquire a
fused distribution of the motion aware prediction and the
measurement, which is the distribution of the state estimation
of the ME enhanced KF, and its mean value s̄t and variance
Pt can then be derived as shown in (14) - (16).

APPENDIX B
PROOF OF THEOREM 2

For statement 1, we adapt the derivation of [46] to our
settings. Define βt = st − s̄t. As s̄t = (I−KtA)̆st + Ktyt,
we can get:

βt = (I−KtA)(st − s̆t)−Ktet. (25)
Let Mt = ATA + σ2

obsP̆
−1
t , Jt = I −KtA, we can derive

the following equations:
Kt = M−1

t AT , Jt = σ2
obsM

−1
t P̆−1t ,

P̆t = Pt−1 + σ2
sysI,

Pt−1 = σ2
obsM

−1
t−1, (26)

where σ2
sys denotes the variance of Q+G. It can be observed

that to bound ||βt||2, we need to bound ||Jt||2, which in turn
requires bounding ||M−1

t ||2 and ||P̆−1t ||2.
Define r = σ2

sys/σ
2
obs and λmin(X), λmax(X) as the

minimum and maximum eigenvalue of a matrix X, respec-
tively. The following properties for symmetric positive definite
matrices X, Y are used: ||X||2 = λmax(X) = 1/λmin(X−1),

λmin(X + Y) ≥ λmin(X) + λmin(Y), λmax(X + Y) ≤
λmax(X)+λmax(Y). Denote λmin(ATA) with a constant c.
Using (26), we can get:

||M−1
t ||2 = [λmin(ATA + σ2

obsP̆
−1
t )]−1

≤ [c+
σ2
obs

λmax(P̆t)
]−1

≤ [c+
1

||M−1
t−1||2 + r

]−1. (27)

Then we can also get:

σ2
obs||P̆−1t ||2 ≤

σ2
obs

σ2
obsλmin(M−1

t−1) + σ2
sys

= [
1

||Mt−1||2
+ r]−1. (28)

If we denote the bounds in (27) and (28) as at and bt,
respectively, we can derive the bound of ||βt||2 as:

||βt||2 = ||M−1
t [σ2

obsP̆
−1
t (st − s̆t)−ATet]||2

≤ atbt[||st − s̆t||2 + ||ATet||2].

The next two statements are straight forward applications of
the error bounds in CS [33] and modified CS [47]. For both
of the statements, we can get ||st− ŝt||2 = ||̄st+st,res− (̄st+
ŝt,res)||2 = ||st,res− ŝt,res||2. Therefore, the error bounds are
the same as applying CS or modified CS to st,res, which leads
to the results in Theorem 2.

We now derive the error bound for the following problem:
minst ||Wtst||1 s.t. ||yt −Ast||2 ≤ ε,

where Wt = diag[w(1), w(2), ..., w(N)].
The method of [33] is employed. Set s∗t = st + ht and

decompose ht into a sum of vectors (ht)T0 , (ht)T1 , (ht)T2 ,...,
each of sparsity at most K. T0 corresponds to the locations of
the K largest coefficients of st; T1 to the locations of the K
largest coefficients of (ht)T c

0
; T2 to the locations of the next

K largest coefficients of (ht)T c
0

and so on. Then we can get:
||Wtst||1 ≥ ||Wt(st + ht)||1

=
∑
i∈T0

|w(i)(s
(i)
t + h

(i)
t )|+

∑
i∈T c

0

|w(i)(s
(i)
t + h

(i)
t )|

≥ ||(Wtst)T0 ||1 − ||(Wtht)T0 ||1
+ ||(Wtht)T c

0
||1 − ||(Wtst)T c

0
||1.

||(Wtht)T c
0
||1 ≤ ||(Wtht)T0 ||1 + 2||(Wtst)T c

0
||1. (29)

According to the Cauchy-Schwarz inequality, we can get:
||(ht)T0 ||21 ≤ K||(ht)T0 ||22,

||(Wtht)T0 ||1 ≤
∑
i∈T0

[(w(i))]2||(ht)T0 ||2. (30)

We define wmin and wmax as the minimum and maximum
value of w(i)(i ∈ T c0 ), respectively. Additionally, we define
P1 = w−1min

∑
i∈T0(w(i))2 , P2 = w−1minwmax. Using (29)(30)

and the following facts: ||(ht)(T0∪T1)c ||2 ≤ K−1/2||(ht)T c
0
||1,

||(st)T c
0
||1 = ||st − (st)K ||1, we can derive:

||(ht)T c
0
||1 ≤ w−1min||(Wtht)T c

0
||1

≤ P1||(ht)T0 ||2 + 2P2||st − (st)K ||1, (31)
||(ht)(T0∪T1)c ||2 ≤ K

− 1
2P1||(ht)T0 ||2+2K−

1
2P2||st−(st)K ||1.

(32)
Following the same steps as in [33], we have:

||(ht)(T0∪T1)||2 ≤ αε + βK−1/2||(ht)T c
0
||1, where
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α = 2
√

1 + δ2K(1 − δ2K)−1, β =
√

2δ2K(1 − δ2K)−1.
By substituting (31), we get ||(ht)(T0∪T1)||2 ≤
αε+βK−1/2P1||(ht)(T0∪T1)||2 + 2βK−1/2P2||st− (st)K ||1.
Assume that 1− βK−1/2P1 > 0, then

||(ht)(T0∪T1)||2 ≤
αε+ 2βK−1/2P2||st − (st)K ||1

1− βK−1/2P1
. (33)

We now conclude from (32) and (33) that
||(ht)T0 ||2
≤ (1 +K−

1
2P1)||(ht)(T0∪T1)||2 + 2K−

1
2P2||st − (st)K ||1

≤ (1 + β)2P2

1− βK− 1
2P1

K−1/2||st − (st)K ||1 +
(1 +K−

1
2P1)α

1− βK− 1
2P1

ε.

Then, for ExMA-3 and ImMA-3, as ||st− ŝt||2 = ||st,res−
ŝt,res||2, we can derive the last statement in Theorem 2 by
appropriate substitution.
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