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ABSTRACT 

With increased automation and larger compound collections, the development of high-

throughput screening (HTS) started replacing previous approaches in drug discovery from 

around the 1980s onwards. However, even today it is not always appropriate, or even feasible, to 

screen large collections of compounds in a particular assay. Here, we present an efficient method 

for iterative screening of small subsets of compound libraries. With this method the retrieval of 

active compounds is optimized using their structural information and biological activity 

fingerprints. We validated this approach retrospectively on 34 Novartis in-house HTS assays 

covering a wide range of assay biology, including cell proliferation, antibacterial activity, gene 

expression and phosphorylation. This method was employed to retrieve subsets of compounds 

for screening, where selected hits from any given round of screening were used as starting points 

to select chemically and biologically similar compounds for the next iteration. By only screening 

~1% of the full screening collection (~15,000 compounds), the method consistently retrieves 

diverse compounds belonging to the top 0.5% most active compounds for the HTS campaign. 

For most of the assays over half of the compounds selected by the method were found to be 

among the 5% most active compounds of the corresponding full-deck HTS. In addition, the 

stringency of the iterative method can be modified depending on the number of compounds one 

can afford to screen, making it a flexible tool to discover active compounds efficiently. 

Keywords: HTS screening; Iterative screening; in silico heuristic compound selection 
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INTRODUCTION 

Early drug discovery traditionally has been the result of a close collaboration between chemists, 

pharmacologists and clinical scientists, where knowledge from pharmacology and (medicinal) 

chemistry was combined to design potentially active molecules for testing.
1,2

 From around the 

1980s onwards rapid improvements in automation and combinatorial chemistry led to the 

development and increasing acceptance of high-throughput screening (HTS), which allows rapid 

screening of large collections of compounds using robotics and automated data processing. This 

allowed enabled HTS to be used to study relationships between compounds and putative 

biological targets on a very large scale, so that libraries of 1-2 million compounds are routinely 

screened in big pharmaceutical companies, several times per year.
2,3

 Conceptually, HTS aims to 

screen large numbers of molecules in a brute-force approach to identify hits, and the most 

promising chemical entities are then selected as starting points for further investigation. It is 

hoped thatThe rationale behind screening large numbers of molecules is that it increases the 

chances of finding promising chemical entities. However, the previous often iterative cycles of 

design–screen–refine in small interdisciplinary project teams were somewhat lost. 

Over the last few decades, HTS has hence become increasingly popular and has increased 

augmented in capacity from being able to screen tens of thousands of compounds a day to over 

100,000 compounds a day, and has become – besides many other techniques – of crucial 

importance for early drug discovery.
4–6

 However, HTS also has some significant drawbacks. 

Cell-free HTS campaigns, such as biochemical target-based assays, are not adequately predictive 

of compounds’ ADMET (absorption, distribution, metabolism, excretion and toxicity) properties 

which are important pharmacokinetic parameters for drug development.
7
 For cell-based 

phenotypic HTS assays, which can be more predictive of certain ADMET properties such as 
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bioavailability and cytotoxicity, target deconvolution is an important challenge.
8
 Additionally, 

HTS campaigns sometimes cannot be performed at scale for complex biological systems that 

cannot be mass-produced (e.g. organoids).
9
 Finally, and of most relevance for the current study, 

HTS remains a resource-intensive endeavor with a large fraction of the compounds screened 

being inactive or uninteresting. The latter renders the identification of smaller screening sets 

which lead to a significant fraction of active chemical matter detected very relevant.
4
  

The mentioned drawbacks prompted efforts to optimize various aspects of HTS campaigns, such 

as compound library design (for example, based on chemical diversity, where libraries are 

chosen on the basis of chemical knowledge),
10–14

 post-HTS data analysis for triaging active 

compounds (in order to select subsets for further validation)
15,16

 and selecting novel compounds 

similar to active compounds detected in the assay for further investigation.
17–21

 Given the recent 

perceived ineffectiveness of target-based HTS,
22

 a shift to phenotypic HTS has occurred,
8
 hence 

increasing the need for target identification methods. In this regard, a high-throughput screening 

fingerprint (HTS-FP) capturing past performance of compounds across a number of screens was 

developed by Petrone et al. at Novartis,
23

 which allows the comparison of compounds according 

to their bioactivity across a range of HTS assays. This approach was used for both similarity 

searching and various machine learning methods for target identification of hits from phenotypic 

screens. Later, a public version of the same fingerprint was developed and analyzed by Dančík et 

al.,
24

 who also reported its usefulness in the elucidation of compound mode of action. However, 

despite these computational advances in post-screen analysis, HTS campaigns remain an 

expensive endeavor.  

In this study, we aim to address efficient ways of screening subsets of compound libraries, 

instead of screening entire compound libraries, while at the same time optimizing the retrieval of 
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active compounds. We developed and retrospectively validated an iterative screening method on 

Novartis in-house HTS data, in which selected hits from any given round of screening were used 

as starting points to select chemically and biologically similar compounds for the next iteration. 

This approach was developed with the explicit aim to select much smaller subsets of compounds 

with enriched activity, by harnessing the bioactivity information of compounds in the previous 

iteration. While briefly mentioned by Mayr et al. as an idea,
5
 and used on a small scale by 

Keenan et al. for the design of plasmodial kinase inhibitors,
25

 the concept of iterative screening 

has not been explored systematically in the published literature. A related concept has been 

previously described by Schneider et al. in the context of iterative virtual synthesis and testing of 

individual molecules, where molecules are designed automatically using evolutionary algorithms 

and particle swarm optimization.
26

 However, our approach differs considerably, because we 

iteratively generate sets of molecules instead of individual molecules, hence investigating the 

concept on a much larger scale. 
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METHODS 

HTS data 

Novartis proprietary HTS assays comprising at least 1,300,000 compounds with an inhibitory 

assay readout were used, resulting in a total of 34 assays, of which 11 were cell-based assays and 

23 were cell-free (biochemical) assays. These assays covered a wide number of biological 

events, including cell proliferation, antibacterial activity, gene expression and phosphorylation 

(Supplementary Table S1). 

Starting set for initial screening round 

We used a starting set of well-studied and manually curated compounds, many with tested 

clinical relevance, known to cover a large amount of druggable bioactivity space and of which 

the mechanism of action (MoA) is known. This set (the MoABox) comprised 2,757 compounds 

and is used as a starting point for many phenotypic screening projects at Novartis due to the 

high-quality annotations of each compound. The physicochemical properties and the chemical 

and biological diversity of the MoABox were calculated using RDKit
27

 (Supplementary Figures 

S1 and S2). The design of the MoABox inherently entails that most compounds have properties 

favorable for cell-based screening. Owing to operational turnover of the compound archive, not 

every full-deck HTS contains every compound of the MoABox. Therefore, the starting set for 

each specific assay was the MoABox compounds present in it at the time it was performed. The 

smallest starting set comprised 2,050 compounds, whereas the largest comprised 2,692 

compounds.  

In order to determine the importance of the starting set for good performance, we repeated our 

analysis with 10 randomly chosen starting sets and the results were compared to those obtained 
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with the MoABox as starting set. These sets were obtained by repeatedly selecting a random 

subset from the entire screening deck of equal size to that of the MoABox present in the 

corresponding assay, minus any MoABox compounds that might have been coincidentally 

selected. 

Iterative screening algorithm (ISA) 

For any given set of compounds we are able to look up its activities in a past assay with ~1.3M 

compounds. This in silico screening allows not only a relative ranking (according to activities 

within the subset) but also an absolute ranking (according to the 1.3M compounds). Our aim was 

to iteratively optimize the absolute ranking of subsets of compounds, thereby efficiently 

selecting highly active compounds and steering the screening process towards success with much 

smaller compound sets. Therefore, the method developed in this study consists of three iterative 

procedures (see Figure 1): (1) ranking of compounds based on retrospective activity data, (2) 

selection/triaging of hits (3) expanding from hits to close analogs based on chemical and 

biological similarity metrics. Since this study is a retrospective analysis on HTS data, the ranks 

of the compounds selected correspond to the ranks of the same compounds had they been 

screened in a full-deck screen. Our method is fundamentally different from a basic similarity 

search using active probes, because we perform a similarity search iteratively based on active 

compound information at every round of screening, rather than only once. Circular fingerprints
28

 

(SciTegic ECFP4-like) were used as features for determining chemical similarity and HTS-

fingerprints (HTS-FP)
23

 were used as features for determining biological similarity. 

Metrics used for performance assessment  
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We used two criteria for evaluating compound sets at each iteration: (1) the rank distribution 

based on compound activity and (2) the cumulative coverage of Murcko scaffolds
29

 found in the 

top 0.5% of compounds ranked by activity. In conjunction, these criteria assess the retrieval of 

not only active, but also structurally diverse sets of compounds. In the below, a median rank 

cutoff of 65,000 is sometimes used to assess performance; this corresponds to 5% of a total 

screening collection of 1.3 million compounds. 

Systematic exploration of parameters 

The number of compounds triaged per iteration as well as the number and types of expansions 

affect the size and diversity of the compound sets selected. First, the number of top-performing 

compounds triaged can be varied. Second, expansions can be adjusted (chemical and/or 

biological similarity), as well as the corresponding Tanimoto
30

 similarity cut-off and maximum 

number of expansions per compound. Moreover, the maximum number of compounds 

originating from the same parent compound can be adjusted in order to limit the number of 

closely related analogs. We systematically explored the influence of these parameters in a 

number of in silico experiments (see Table 1), where the influence of each parameter was 

analyzed individually. Experiment 1 was considered as a realistic reference experiment that 

balances performance and the number of compounds screened over 10 iterations (~1% of entire 

collection,  ~15,000 compounds). All other experiments varied one parameter, therefore allowing 

an assessment of its influence with respect to the reference experiment. For example, a 

comparison of experiment 3 with experiment 1 shows the effect of doubling the number of 

compounds triaged per iteration from 100 to 200. 

Data analysis 
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The workflow comprised Python and Perl scripts for data analysis, the Indigo toolkit
31

 and 

RDKit
27

 for cheminformatics calculations. Spotfire
32

 was used for data exploration and R
33

 and 

Cytoscape
34

 were used for the visualization of results.  
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RESULTS AND DISCUSSION 

Here we present in detail the results belonging to the reference experiment, followed by a 

comparison to other experiments. Experiments 4, 6 and 7 showed the same results as the 

reference experiment and are therefore not discussed separately; these experiments highlight, 

however, that more than 50 expansions or a more stringent HTS-FP similarity cut-off do not 

change the results. 

Iterative screening is highly effective across assay types 

The median rank of the compounds selected was 36,101 (excluding the starting set) across all 

assay types, which corresponds to the top ~2.8% of a collection of ~1.3M compounds. In other 

words, half the compounds selected across all iterations (except for the starting set) are found 

among the top 2.8% of the corresponding 1.3M compound screen, indicating a clear enrichment 

in activity of the compounds selected. Of note, the performance is consistent for a large number 

of different assay types (median rank below 65,000, see Figure 2). However, for the types 

enzyme activity/cleavage assay, protein cleavage assay, protein functional assay and protein-

protein binding assay the performance was reduced, as evidenced by a median rank greater than 

65,000 combined with a higher standard deviation. 

Interestingly, performance is better for the cell-free assays than the cell-based assays (rank 

distributions for both assay formats is shown in Figure 3). In order to investigate whether this 

difference was statistically significant, a paired t–test was performed for the median ranks across 

iterations 1 to 10. In addition, a Kolmogorov–Smirnov test was performed for every iteration on 

compound ranks of different assay formats. All p-values were smaller than 10
-5

, hence indicating 

a statistically significant difference in distribution of rank between cell-free and cell-based 
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assays. This difference is likely due to the fact that in order for compounds to have an effect in 

cell-based assays, they have to be able to cross the cell membrane to reach the target of interest 

(in cases when this target is not membrane-bound). Hence, these compounds must have suitable 

physicochemical properties (such as permeability), in order to be effective. Since our method on 

purpose did not distinguish between cell-free and cell-based assays, these results are in line with 

expectations; however, specific compound criteria for cell-based assays (e.g. incorporation of 

logP values, past performance in cell-based assays) are likely to diminish this observed gap in 

performance between the two assay formats in the future. As mentioned before, the MoAbox 

content is geared towards hypothesis-generating cell-based phenotypic screening; as a result, this 

set of compounds performs equally well on cell-based and cell-free assays (Figure 3, iteration 0). 

Next, median compound ranks were evaluated per assay type (Figure 4). The iterative method 

performs consistently well for the majority of assay types (median ranks are smaller than 

100,000 for iterations 1–10 for 11 out of the 16 assay types), but there are a number of outlier 

assay types for which the median rank of compounds selected swiftly deteriorates after around 

iteration 3. These assays cover the biological events protein-protein binding, protein cleavage, 

protein function and enzyme activity/cleavage, and are the same ones shown to have an overall 

median rank above 65,000 (Figure 2). These results suggest that expansions in chemical and 

biological space are unable to effectively retrieve the most active compounds for these assay 

types after the first few iterations.  

Chemical diversity analysis of iterative screening results 

In addition to the rank distribution of the iteratively selected compounds, we also analyzed the 

percentage of highly active scaffolds cumulatively retrieved. Highly active scaffolds were 
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separately defined for each assay as the Murcko scaffolds
29

 belonging to the top 0.5% most 

active molecules in the assay. While Murcko scaffolds are useful for assessing structural 

diversity of cyclic compounds (the definition by Bemis and Murcko
29

 is based on ring systems 

and linkers), this measure of diversity is biased for assays where many aliphatic compounds are 

hits. In the absence of a more inclusive and/or appropriate definition of scaffold, the following 

analysis only includes chemical matter with a defined Murcko scaffold. 

The average retrieval rate of highly active scaffolds after 10 iterations across all assay types is 

41% (~1,600 unique scaffolds per assay, ~9 analogs per scaffold), with an average of 14,959 

compounds screened across all iterations per assay. Examples of commonly retrieved scaffolds 

are shown in Supplementary Figure S3, where scaffold 1 is the second most commonly retrieved 

scaffold, corresponding to a prevalence of 1.4% in the compounds screened for all assays in 

iterations 1 to 10. These results indicate that our method is able to prioritize diverse chemical 

matter despite much smaller screening sets. In addition, it performs substantially better than a 

traditional similarity search as the retrieval of highly active scaffolds is only 11% in the first 

iteration where the similarity search would stop, compared to 41% after 10 rounds of iterative 

screening. 

The percentage of cumulatively retrieved highly active scaffolds steadily increases with the 

iteration count (Figure 5), with the steepest increases occurring in the earliest iterations. Most 

assay types display a scaffold retrieval of ~30–45% after 10 iterations. The calcium 

quantification assay showed relatively poor scaffold coverage (~20% after 10 iterations), 

whereas the phosphorylation assay, typically used for kinase inhibitors, showed much better 

scaffold coverage compared to other assay types (~55% after 10 iterations). Given the presence 

of many series of high-quality kinase inhibitors from past drug discovery programs in the 
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Novartis screening archive, in combination with the promiscuity of kinase inhibitor binding,
35,36

 

it is likely that many active inhibitors retrieved are structurally/biologically similar. Hence, this 

is a possible explanation for the preferred retrieval of a higher number of active scaffolds for 

phosphorylation assays. Another interesting observation is that the assays for protein-protein 

binding, protein cleavage and enzyme activity show mediocre median ranks (>65,000), while 

having average scaffold retrieval rates (30-40% retrieval after 10 iterations). This suggests that 

while our ISA is able to retrieve many compounds present in the top 0.5% of most active 

compounds (to an extent comparable with the majority of other assays), many inactive 

compounds are retrieved as well, resulting in a higher standard deviation in rank (see Figure 2). 

The hypothetically best scaffold retrieval among the top 0.5% of compounds screened would be 

achieved by sorting the top 0.5% of compounds by activity and picking their scaffolds. The 

comparison between the hypothetically best scaffold retrieval and iterative scaffold retrieval rate 

is shown in Supplementary Figure S4. For example, after picking 5,000 compounds this best 

possible performance retrieves ~75% of highly active scaffolds, compared to ~10–25% of highly 

active scaffolds (depending on assay type) retrieved iteratively and ~0.4% that would be 

retrieved if selection was random. In other words, iterative screening of ~15,000 compounds 

recovers a third of the structural diversity of the top 5,000 compounds of a 1.3M compound 

screen. 

The fraction of highly active scaffolds retrieved was also analyzed across all assay types. Here, 

we determined the fraction of highly active scaffolds for each iteration (see Figure 6). We 

observed that, in general, the active scaffolds which are easily identified are quickly retrieved: 

for the first few iterations the fraction of highly active scaffolds retrieved sharply increases from 

~10% to ~30-80%, after which it slowly decreases, indicating the progressive difficulty in 



14 
 

finding the remaining highly active scaffolds. A possible explanation is the presence of 

unreachable singletons in the screening archive that are beyond the expansions we implemented 

thus far. 

Visualization of stepwise exploration of chemical space 

In order to illustrate the iterative compound selection in more detail, we showed the expansions 

for an inhibitory cell-free kinase assay in a network graph (see Figure 7). All compounds from 

the starting set (0
th

 iteration) leading to no further expansions have been omitted from the 

network graph, whereas those that lead to at least one further expansion are depicted on the large 

circle on the left part of the figure. Compounds are color-coded according to their rank 

(lower/better and higher/worse ranks are represented by green and red nodes, respectively) and 

edges are colored according to the expansion type (chemical similarity expansions are orange 

and biological similarity expansions are turquoise). Certain compounds from the starting set lead 

to very few further expansions, and hence produce very few branches. Other compounds lead to 

a larger number of expansions, as can be seen in the upper-right corner of the figure: all the 

compounds present in that subnetwork represent expansions from one single compound of the 

starting set. In the lower-right corner of the figure, we show an example of scaffold hopping, 

which is commonly observed for biological similarity (HTS-FP) expansions, enabling the 

method to explore chemical space that is not reachable via chemical similarity. In addition, the 

depiction of activity cliffs
37

 (represented by bold and wide edges) allows the identification of 

scaffold hopping indicative of a relatively sharp increase in activity. 

Tuning iterative screening to assay requirements 



15 
 

The number of compounds triaged per iteration has a large effect: as more compounds are 

carried forward, both the median ranks and the scaffold retrieval for compounds selected in 

iterations 1–10 increase (comparison of experiments 2 and 3 with reference, see Figure 8). When 

the number of compounds triaged was increased from 50 to 100 and from 100 to 200, median 

ranks of the compounds selected in iterations 1–10 increased significantly from 23,517 to 36,101 

in the first case, and from 36,101 to 63,721 in the second case (paired t–test p-values of 1.210
-3

 

and 3.410
-4

, respectively). Scaffold retrieval increased from 20% to 28%, and from 28% to 38% 

for the same comparisons, with respective paired t–test p-values of 1.110
-5

 and 9.910
-6

. Less 

stringent hit selection during triaging leads to more subsequent expansions and increases the total 

number of compounds screened. The overall net result is an increased retrieval of active 

scaffolds at the cost of screening more inactive compounds as evidenced by higher median ranks  

(the fraction of highly active scaffolds retrieved at each iteration decreases as more compounds 

are triaged, see Supplementary Figure S5). To illustrate the effect of varying the number of 

compounds triaged per iteration in more detail, we show possible expansions for an inhibitory 

cell-free kinase assay in a network graph (see Supplementary Figure S6). For example, the 

compound subnetwork and corresponding structure-activity relationships in the lower-right 

corner of the figure are only explored when triaging 100 or more compounds per iteration. 

When investigating the dependence of scaffold coverage on fingerprint type, we found that HTS-

FP-based and structure-based expansions accounted for 90% and 50%, respectively, of total 

highly active scaffold retrieval after 10 iterations (Supplementary Figure S7). Since HTS-FPs 

capture the biological profile of compounds, HTS-FP similarity leads to more structurally 

diverse sets of biologically similar compounds compared to structure-based expansions. 
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Increasing the Tanimoto
30

 cut-off from 0.6 to 0.8 (comparison of experiment 5 to the reference 

experiment) for structure-based expansions decreased both median compound ranks from 36,101 

to 16,831 (paired t–test p-value of 9.410
-4

) and scaffold retrieval from 28% to 16% (paired t–test 

p-value of 2.610
-6

). The maximum number of compounds triaged per parent compound did not 

have a clear effect on the diversity nor the ranks of the compounds screened. Lowering this 

number from 5 (reference experiment) to 2 (experiment 8) resulted in a 2% higher scaffold 

retrieval (paired t–test p-value of 0.047), whereas an increase to 10 (experiment 9) had no 

significant effect on either median ranks or scaffold retrieval. In summary, the number of 

compounds triaged was the most influential factor, which can be adjusted depending on the 

number of compounds one intends (or can afford) to screen. 

Finally, iterative screening was repeated with 10 randomly chosen starting sets and the results 

were compared to those obtained with the MoABox as starting set. The latter resulted in better 

median ranks only until the first iteration and virtually identical median ranks from iteration two 

onwards, and slightly higher scaffold retrieval throughout all iterations (Supplementary Figure 

S8). While minor differences across starting sets can be observed, the key findings presented in 

this study are independent of the precise composition of the starting set. However, availability of 

a high-quality starting set, as the MoAbox for us, can provide biological insight early on through 

comprehensive compound annotations. 
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CONCLUSION 

Even though alluded to in the literature and theoretically appealing, no comprehensive practical 

evaluation of iterative screening was published. In this study We we have performed an 

unequalled large-scale validation of iterative screening on 34 HTS assays comprising at least 

1,300,000 compounds and showed greatly improved efficiency over conventional HTS 

campaigns. For most assays, half of the compounds found by iterative screening of only 1% 

(~15,000 compounds) of the entire collection correspond to the top 5% of the full collection 

screen. Put differently, screening only 1% of the collection provides ~7,500 top-quality hits for 

further optimization. On average, the compounds selected covered over 40% of the scaffolds 

belonging to the top 0.5% most active compounds for each assay, hence also ensuring structural 

diversity. Our method allows for exit points during the iterative screening process: performing 

large numbers of iterations is not necessary in order to retrieve active compounds, as they are 

retrieved starting from the 1
st
 iteration already, and therefore, a large investment in resources 

upfront is not required. As expected, the method in its current state performs better for cell-free 

assays compared to cell-based assays; a future improvement can gear towards physicochemical 

properties more adapted to cell-based screens.  

We used network graphs to visualize the compound selection process, and to highlight activity 

cliffs,
37

 scaffold hopping and the effect of changing the number of compounds triaged (which 

was found to have the largest influence on compound selection). As an outlook for further 

refinement of our method, we propose (1) investigating activity cliffs
37

 (to be able to prioritize 

expansion types) and (2) employing iteratively-retrained machine-learning methods
20

 to rank the 

screening collection in parallel to the structure-based and HTS-FP-based expansions currently 

performed. We believe that the iterative method developed here can easily be fine-tuned for 
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specific assay types, provides multiple exit points and can potentially lead to considerable 

savings in both time and resources.   
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Figures section 

 

Figure 1. Iterative screening algorithm (ISA) overview. The ISA developed in this study consisted of three 

iteration steps: (1) ranking of compounds based on retrospective data, (2) triaging of (i.e. selecting) top-performing 

compounds and (3) expanding from top-performing compounds to close analogs based on chemical and biological 

similarity metrics. The starting set comprises the MoABox compounds present in the HTS assay. The ISA allows for 

adjustment of parameters at the triaging stage (the number of compounds carried forward, and the number of 

compounds originating from the same parent compound to limit large numbers of closely related analogs). At the 

expansion stage, the parameters used (chemical and/or biological similarity) can be adjusted, as well as the 

corresponding similarity cut-off and maximum number of expansions per compound. 
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Figure 2. Ranks of compounds from iterations for all assay types. Boxplots of ranks for all compounds selected by the ISA for iterations 1–10 (excluding the 

starting set) are represented for each assay type. The performance for enzyme activity/cleavage assay, protein cleavage assay, protein functional assay and 
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protein-protein binding assay is much worse (median rank of 200,000 on average) compared to other assays, with also a broader rank distribution. Blue: median 

rank below 65,000; red: median rank above 65,000. The first 65,000 compounds correspond to the top ~5% of 1.3M. 
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Figure 3. Ranks of iteratively selected compounds for cell-free and cell-based assays. Green: cell-free assays, orange: cell-based assays. There is a consistent 

difference in median rank (and interquartile range, extension of boxplot) across iterations 1 to 10 between cell-free and cell-based assays. This indicates the 

relative difficulty in selecting compounds that are able to satisfy cell-based screening requirements (e.g. cell permeability). Median ranks are significantly 

different (paired t–test, p-value < 10
-5

), as are the rank distributions for each iteration (Kolmogorov–Smirnov test, p-value < 10
-5

).  
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Figure 4. Median rank per iteration across assay types. The median rank of the compounds of the selected subset at each iteration is plotted versus iteration. 

The ISA performs consistently well for most assay types, but there are a number of assays for which the median rank of compounds selected swiftly deteriorates 

after around iteration 3. These assays are for protein-protein binding, protein cleavage, protein function and enzyme activity/cleavage, and are the same ones 

shown to have an overall median rank greater than 65,000 (Figure 2). 
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Figure 5. Cumulatively retrieved highly active scaffolds (%). For all assay types, the percentage of cumulatively retrieved highly active scaffolds (scaffolds of 

the 0.5% most active compounds of the full HTS) steadily increases, with the steepest increases occurring in the earliest iterations. Most assay types display a 

scaffold retrieval of between ~30–45% after 10 iterations. The calcium quantification assay showed relatively poor scaffold coverage (~20% after 10 iterations), 

whereas the phosphorylation assay showed much better scaffold coverage compared to other assay types (~55% after 10 iterations).  
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Figure 6. Fraction of highly active scaffolds retrieved (%). The ISA exhibits a general trend for all assays: for the first 2 or 3 iterations the fraction of highly 

active scaffolds retrieved per iteration sharply increases from ~10% to 30-80% depending on assay type (the active scaffolds which are easy to identify are 

quickly retrieved), after which it slowly decreases, as it becomes increasingly difficult to find the remaining highly active scaffolds. Nevertheless, active 

scaffolds are still retrieved at the last iterations.    
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Figure 7. Visualization of stepwise exploration of chemical space for an inhibitory cell-free kinase assay. Expansions for an inhibitory cell-free kinase assay 

are shown in a network graph. All compounds from the starting set (0
th

 iteration) leading to no further expansions have been omitted from the network graph, 

whereas those that led to at least one further expansion are depicted on the large circle on the left part of the figure. All the compounds present in the subnetwork 

in the upper-right corner of the figure represent expansions from one single compound from the starting set (MoABox). In the lower-right corner of the figure, we 

show an example of scaffold hopping, which is commonly caused by expansions based on biological similarity (HTS-FP), enabling the method to explore 

chemical space that is not reachable via expansions based on chemical similarity. In addition, the depiction of activity cliffs
37

 (represented by bold and wide 

edges) allows the identification of scaffold hopping leading to relatively sharp increases in activity.       
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Figure 8. Effect of varying the number of compounds triaged per iteration in terms of median compound 

rank and percentage cumulatively retrieved highly active scaffolds. As the number of compounds triaged 

increases, the median ranks consistently increase for iterations 1 to 10, whereas scaffold retrieval is higher as well. 

These results are in accordance with our expectations: as the number of triaged compounds is increased (i.e. a less 
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stringent selection criterion is applied for compound triaging), more expansions take place and more compounds are 

screened overall. 
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Tables section 

Table 1. Summary of parameters explored over 9 in silico experiments. Here, experiment 1 was considered as the reference experiment, which was chosen 

on basis of a trade-off between number of compounds screened over 10 iterations (approximately 1% of screen size) and performance. All other experiments 

varied one parameter, therefore allowing an assessment of its influence with respect to the reference experiment. For example, a comparison of experiment 3 with 

experiment 1 shows the effect of doubling (from 100 to 200) the number of compounds triaged per iteration.  

Experiment 

number 

Iteration 

count 

Triaged 

number of 

compounds 

Maximum number 

of expansions 

(structure-based) 

Tanimoto cut-

off (structure-

based) 

Maximum number 

of expansions 

(HTS-FP-based) 

Tanimoto cut-off 

(HTS-FP-based) 

Maximum number of 

compounds triaged 

per parent compound 

1 10 100 50 0.6 50 0.6 5 

2 10 50 50 0.6 50 0.6 5 

3 10 200 50 0.6 50 0.6 5 

4 10 100 100 0.6 50 0.6 5 

5 10 100 50 0.8 50 0.6 5 

6 10 100 50 0.6 100 0.6 5 

7 10 100 50 0.6 50 0.8 5 

8 10 100 50 0.6 50 0.6 2 

9 10 100 50 0.6 50 0.6 10 
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Supporting Information 

Supplementary Table S2. Assay types used for retrospective validation. All 34 assays comprise at least 

1,300,000 compounds.  

Biological events Number of HTS assays 

Antibacterial activity 1 

Binding activity 2 

Cell proliferation 1 

Enzyme activity 14 

Gene expression 1 

Phosphorylation/enzyme activity 3 

Protein cleavage 1 

Protein function 5 

Protein protein binding 1 

Receptor internalization 1 

Repopulation 1 

Unclassified 3 



 32 

 

Supplementary Figure S1. Overview of physicochemical properties, and chemical and biological diversity of 

the MoABox. The following properties are summarized for the MoABox: H-bond donors, H-bond acceptors, 

molecular weight, cLogP, ring count, topological polar surface area. The bottom two figures show how many 

nearest neighbors can be found in the entire screening collection for how many MoABox compounds. A Tanimoto
30
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cut-off of 0.6 was used to define (structurally or biologically) similar compounds. The MoABox compounds have 

properties favorable for cell-based screening. 

Supplementary Figure S2. Overview of frequency densities of physicochemical properties and pairwise 

similarity of the MoABox. The frequency densities of the following properties are shown for the MoABox: cLogP, 
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H-bond acceptor count, H-bond donor count, heavy atom count, molecular weight and pairwise (structural) 

similarity. The MoABox compounds have properties favorable for cell-based screening. 
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Scaffold Prevalence 

1.  

1.4% 

2.  

0.93% 

3.  

0.50% 

4.  

0.14% 

5.  

0.14% 

Supplementary Figure S3. Examples of commonly retrieved scaffolds for iterations 1–10 for all assay types. 

While the scaffolds are not rank ordered according to their prevalence (for example, many scaffolds with a 

prevalence higher than 0.14% are not shown in the figure), scaffold 1 is the second most commonly retrieved 
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scaffold by the ISA, corresponding to a prevalence of 1.4% in the compounds screened for all assays in iterations 1 

to 10. This indicates that the diversity of the compound sets selected by the ISA is large. 



37 
 

 

Supplementary Figure S4. Cumulatively retrieved highly active scaffolds (%) for all assay types compared to the “best possible performance”. The gray 

area represents the 95% confidence interval for the corresponding assay type based on a linear model. When the “best possible performance” retrieves ~75% of 

highly active scaffolds, the ISA retrieves approximately ~10-25% of highly active scaffolds (depending on assay type).   
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Supplementary Figure S5. Effect of varying the number of compounds triaged per iteration in terms of the fraction of highly active scaffolds retrieved 

(%). As more compounds are triaged, more compound expansions take place and more compounds are screened overall. As a consequence, the fraction of highly 

active scaffolds retrieved for every iteration decreases consistently. 
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Supplementary Figure S6. Illustration of the effect of varying the number of compounds triaged per iteration using networks for an inhibitory cell-free 

kinase assay. As more compounds are triaged, more compound expansions take place and more compounds are screened overall. For example, the compounds 

belonging to the subnetwork in the lower-right corner of the figure can be found by the algorithm by triaging 100 or more compounds per iteration (these 

compounds are not found in case only 50 compounds are triaged per iteration). 
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Supplementary Figure S7. The effect of expansion type on highly active scaffold retrieval. HTS-FP-based expansions accounted for 90% of total highly 

active scaffold retrieval, whereas structure-based expansions only accounted for 50%. This can be explained by the fact that HTS-FP capture the biological 

similarity between compounds and therefore, HTS-FP-based expansions lead to more structurally diverse sets of biologically similar compounds, compared to 

structure-based expansions. 
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Supplementary Figure S8. The effect of using randomly selected starting sets on median ranks and highly 

active scaffold retrieval. Using the MoABox as starting set resulted in better median ranks until the first iteration 

and virtually identical median ranks for iteration two onwards, and slightly higher scaffold retrieval throughout all 

iterations. While minor differences across starting sets can be observed, the key findings presented in this study are 

independent of the precise composition of the starting set.  
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