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A Simple Recursively Computable Lower Bound on
the Noncoherent Capacity of Highly Underspread
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Abstract—Real-world wireless communication channels are
typically highly underspread: their coherence time is much
greater than their delay spread. In such situations it is common
to assume that, with sufficiently high bandwidth, the capacity
without Channel State Information (CSI) at the receiver (termed
the noncoherent channel capacity) is approximately equal to the
capacity with perfect CSI at the receiver (termed the coherent
channel capacity). In this paper, we propose a lower bound on
the noncoherent capacity of highly underspread fading channels,
which assumes only that the delay spread and coherence time
are known. Furthermore our lower bound can be calculated
recursively, with each increment corresponding to a step increase
in bandwidth. These properties, we contend, make our lower
bound an excellent candidate as a simple method to verify
that the noncoherent capacity is indeed approximately equal
to the coherent capacity for typical wireless communication
applications.
We precede the derivation of the aforementioned lower bound
on the information capacity with a rigorous justification of
the mathematical representation of the channel. Furthermore,
we also provide a numerical example for an actual wireless
communication channel and demonstrate that our lower bound
does indeed approximately equal the coherent channel capacity.

Index Terms—Gauss-Markov processes, Hidden Markov pro-
cesses, Kalman filters, Noncoherent information capacity, Under-
spread channels, Vehicular communications.

I. INTRODUCTION

ACTUAL communication channels are typically under-
spread: their delay spread is much smaller than their

coherence time. A more exact definition can be made by
describing the action of a wireless channel as a linear operator
H : L2 → L2. The action of H can be expressed in terms
of the scattering function, CH(ν, τ), where ν is the Doppler
shift, and τ is the time delay [1]. For a Wide-Sense Stationary
Uncorrelated Scattering (WSSUS) channel the non-zero region
of the scattering function is defined: CH(ν, τ) = 0 for all
(ν, τ) /∈ [−ν0, ν0] × [−τ0, τ0]. Letting ∆H = 4ν0τ0, the
channel is said to be underspread if ∆H < 1 [2]. For land-
mobile channels ∆H ≈ 10−3, for indoor channels ∆H ≈ 10−7

[2], and for in-vehicle channels ∆H is typically of the order
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10−5 [3]. Durisi et al [2] argue that the WSSUS model is
appropriate for many scenarios and our previous work shows
that, for in-vehicle channels (which are of particular interest to
us [4]), the channel can be assumed to be wide-sense stationary
[3, Assumption 1] and to have uncorrelated scattering [5,
Assumptions 1,2]. An important metric for such channels is
their noncoherent information capacity – i.e., their capacity
where it is assumed that neither the transmitter or receiver
have a priori Channel State Information (CSI). As identified
by Durisi et al [6], the noncoherent capacity of underspread
fading channels has been the subject of research for a long
time, with early work typically focussing on characterising the
noncoherent capacity in the infinite bandwidth limit [7]–[10].
It is shown that in this situation, the capacity tends to that
of a fading channel with perfect CSI available at the receiver
in the presence of Additive White Gaussian Noise (AWGN),
known as the coherent capacity, [2], [6], [11]–[13], which is
a generalisation of the AWGN channel capacity derived by
Shannon [14].

In this paper, we derive a lower bound on the noncoherent
capacity of highly underspread fading channels in terms of
parameters that would typically be available in actual wire-
less communication systems, namely the coherence time and
delay spread (if available, a statistical model for the impulse
response can be used to tighten the bound – but isn’t strictly
necessary). We work from the intuitive starting point that
CSI can be learnt increasingly accurately at the receiver by
increasing the bandwidth. This leads to a lower bound on
the channel capacity in a recursive form, with each iteration
corresponding to a step increase in bandwidth. This is shown
to be a monotonically non-decreasing function, which not only
illustrates the role of bandwidth in the deployment of effective
wireless communication systems, but also potentially reduces
the computational load, for when the lower bound value
becomes sufficiently large (i.e., for the application in question)
then the recursive calculation can be stopped. We show that
the Gauss-Markov scenario is the worst-case (i.e., the loosest
lower bound) and hence our recursive computational method
uses a Kalman filter [15]. This may lead to our analysis having
a wider application than just the capacity of underspread
channels considered here.

A. Related work and novel contributions

The noncoherent capacity of underspread fading channels
has been the subject of a great deal of previous research. In
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particular Durisi et al investigate the noncoherent capacity of
underspread channels from a general starting point, where only
the non-zero region of the scattering function need be known.
The approach taken by Durisi et al is to transmit symbols on
carriers which are localised in both time and frequency and
subsequently they derive a number of lower and upper bounds
on the channel capacity, which have been optimised either
for the low bandwidth or high bandwidth regimes [2], [6],
[11], [12]. In a further paper, Durisi et al assess the impact
of interference terms (i.e., arising from imperfect modelling
of the scattering function) on their capacity bounds [13]. In
this paper we assume that the channel coherence time and
delay spread are known, and since the coherence time is
itself deterministically related to the Doppler spread (for an
appropriate definition of coherence time), our channel model is
equivalent to that investigated by Durisi et al. We do, however,
maintain that our work complements this prior literature and
is especially relevant to the field of wireless communications
(i.e., to aid engineers assessing the capacity of actual real-
world wireless communication channels), and we make the
following specific claims: the expression in this paper of
the lower bound as a straightforward recursively calculable
term makes it computationally simple; the property of our
bound that the recursive calculation iterations correspond to
equal step increases in the bandwidth means that a sufficient
bandwidth to achieve a specified fraction of the coherent
capacity can be calculated explicitly; and finally, the derivation
in this paper is an important formalisation of an intuitive way
of understanding why the capacity of underspread channels is
approximately the coherent capacity – namely that the symbol
carriers can be chosen to be pure frequency tones which will
be highly correlated, and thus CSI can be learnt.

Another intuitive way to understand the underspread chan-
nel is that it can be formalised as a highly correlated time
series, and on this subject there is also much existing literature.
In particular, low Signal to Noise Ratio (SNR) [16] and
high SNR [17] bounds are derived for such channels. The
method for lower bounding the channel capacity concerns
the estimation of the channel response as a time series in
the presence of noise, for example [17], [18], that ostensibly
appears to be analogous to our approach of estimating the
channel as a frequency response series. However, we wish to
point out that our method uses a Kalman filter for estimation,
in contrast to a general Minimum Mean Squared Error estimate
employed in [17], [18]. These papers do, however, highlight an
important property which also applies to our channel model,
specifically that the evolving time-series is either regular or
nonregular (deterministic), the former representing the case
where the channel variation in time is not perfectly predictable,
the latter where it is, hence ‘deterministic’. This categorisation
as either regular or nonregular highlights an important factor
in the investigation of the capacity of underspread channels,
namely that in order for a continuous channel to have a
capacity approximately equal to the coherent capacity at all
SNR, it must be capable of representation (in some basis) as
a nonregular process. As the channel model that we use in this
paper is necessarily regular, we can see that the capacity can
only be approximated to the coherent capacity for a limited

SNR range (although our numerical example, in Section IV,
suggests that the approximation is valid for typical wireless
systems).

One common approach to bounding capacity of channels
represented as correlated time series is to express the channel
capacity as the coherent capacity minus a penalty term which
is related to the lack of perfect CSI, for example [18, Equa-
tion (9)]. A particularly apt example of this approach can be
seen in the paper by Deng and Haimovich [19], where the
evolution of their channel in the time domain is analagous
to the evolution of our channel in the frequency domain.
Furthermore, [19, Equation (8)] gives an upper bound on the
penalty term (which can therefore be related to a lower bound
on the capacity), and the intuitive explanation given for this
bound, that the CSI knowledge increases as the number of
symbols increases, bears more than a passing resemblence to
our own interpretation of the bound derived in this paper. The
bounding method in [19] relies on finding the eigenvalues
of a Toeplitz matrix with the number of elements in each
dimension equal to the number of symbols, and therefore,
including a greater number of symbols in order to tighten
the bound (i.e., by reducing the uncertainty in the CSI)
necessarily increases the computational load, in general, with
computational complexity O(n2 log n) for n symbols [20].
Liang and Veeravalli [21], [22] use a similar method. This
is quite distinct from our approach, where the Gauss-Markov
property of the channel means that each additional symbol
adds an equal computational load, and thus has computational
complexity O(n). It should, however, be noted that we have
implicitly sacrficed some tightness in the bound by lower
bounding the capacity using that of a Gauss-Markov channel,
and therefore for any given application either our bound, or
one based on [19, Equation (8)] may be more appropriate.

On the subject of the capacity of Gauss-Markov processes
there is also some existing prior literature. Etkin and Tse [23]
use a Kalman filter to estimate the channel, and calculate the
information capacity in terms of an estimation error, whilst
Médard takes a similar approach in [24]. Chen et al [25]
also investigate the capacity of Gauss-Markov channels, but
produce bounds without using a Kalman filter. Our analysis
differs from these as we explicitly show that the Gauss-Markov
channel model lower bounds the capacity of the actual channel
– and hence the Kalman filter may be used to calculate a lower
bound on the channel capacity.

B. Paper Organisation
In Section II a general channel model is defined in terms of

its frequency response and it is explained how this can be used
in an Orthogonal Frequency Division Multiplexing (OFDM)
scheme to evaluate a lower bound on the channel capacity.
In Section III the main results are presented (with part of the
proof in the appendix) in the form of the aforementioned lower
bound, whilst in Section IV a numerical worked example is
given and finally in Section V conclusions are drawn.

C. Notation
Italicised and non-italicised symbols are used for frequency

and time domain variables respectively. Scalars are non-bold
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lower case, as in general are functions (i.e., x for the time
domain, x for the frequency domain), vectors are bold lower-
case (i.e., x for the time domain, x for the frequency domain),
a single element from a vector or matrix is non-bold lower-
case with subscript to denote its index (i.e., xi for a vector
and xi,j for a matrix in the time domain; and xi for a vector
and xi,j for a matrix in the frequency domain), truncated
vectors are bold lower-case with subscript to denote first
element and superscript to denote final element (i.e., xj

i for the
time domain, xj

i for the frequency domain) and matrices are
upper-case (i.e., X for the time domain, X for the frequency
domain). Convolution is denoted ∗, (.)∗ is used to denote
complex conjugation and (.)T to denote the transpose. N
denotes the normal distribution, CN denotes the complex
normal distribution, FT denotes the Fourier transform and �
denotes the Hadamard (element-wise) product. The magnitude
of a complex number is denoted |.|, as is the determinant
of a matrix, however it is always clear in context which is
meant. Finally, it is convenient to represent complex numbers
as vectors, and when multiplied together as a matrix acting
on a vector. Letting x be a number, which in general may be
complex:

x =

[
Re(x)
Im(x)

]
, X =

[
Re(x) -Im(x)
Im(x) Re(x)

]
,

for example (letting z also be a number which may in general
be complex):

z × x = Zx = Xz.

The notation can also be generalised to complex vectors: x =
[x1;x2; ...;xn]. Whilst this notation may ostensibly appear
to be unwieldy and uneccessary, it is crucial throughout the
paper, in particular for Proposition 1 to show why the channel,
which is in general complex Gaussian, can be respresented as
bivariate Gaussian, with the two elements corresponding to the
real and imaginary parts.

When handling probabilities, we make some simplifications
to the notation, these do not affect the validity of what follows
and are introduced purely for the purpose of brevity and clarity.
For example, letting x1 and x2 be random variables, formally
we have

P (x1 = x1) = fx1(x1) = N (x1; 0, σ2),

which we would write

P (x1) = N (x1; 0, σ2).

We can also extend this to conditional distributions. Again, a
formal example would be

P (x1 = x1|x2 = x2) = fx1|x2(x1) = N (x1; ax2, σ
2
1),

which we would write

P (x1|x2) = N (x1; ax2, σ
2
1),

where in this example a is an arbitrary scaling factor of the
previous value x2.

II. CHANNEL MODEL

The action of the channel can be defined:

y(t) = zH(t) ∗ x(t) + n(t), (1)

where all terms are functions in time, t, with y(t) as the
channel output, zH(t) the channel time varying impulse re-
sponse, x(t) the input and n(t) AWGN. Shannon showed that
the capacity of this channel is the mutual information between
y(t) and x(t) maximised over all permissible inputs x(t) [14],
we denote this C:

C = sup
x(t)

I(x(t); y(t)), (2)

where I(.; .) is mutual information. It should be noted that
it is usual to think of mutual information in terms of some
discrete representation of the channel, rather than the channel
itself – as indeed we shall do in this paper.

From (1), it is convenient to use the property of linearity to
consider zH(t) to be the sum of two parts: z1(t) being a part
with impulse response truncated after τt seconds and also not
varying within successive time-blocks of duration τB ; z2(t) is
the remainder of zH(t) (i.e., zH(t) = z1(t) + z2(t)). Note, ‘H’
has been dropped for the subscript to simplify the notation.
This leads to:

y(t) = z1(t) ∗ x(t) + z2(t) ∗ x(t) + n(t). (3)

From (3) we can define a second channel, where z2(t) ∗ x(t)
is treated as white noise of the same power (denoted n1(t)):

y1(t) = z1(t) ∗ x(t) + n1(t) + n(t), (4)

for which we define the capacity C1:

C1 = sup
x(t)

I(x(t); y1(t)). (5)

In the OFDM scheme that we will now describe, z2(t) is
essentially the inter-symbol interference (ISI) plus the inter-
carrier interference (ICI). Treating this interference as AWGN
is consistent with the initial assumption of treating noise as
AWGN (which itself is likely to comprise of interference from
signals transmitted on other channels in the vicinity). As long
as the power in n1(t) is small relative to the power in the
actual signal and the noise, then we can assert that

C ≈ C1, (6)

and we can reason that this is in-fact a worst case scenario
where the interference is not correlated with the signal and so
cannot be used to improve the information transfer capability,
and that when combined with the other interference and noise
sources that it manifests itself as AWGN. We deal with the
specific process of separating zH(t) into z1(t) and z2(t) for
actual channels in Section IV.

A. Using orthogonal frequency division multiplexing to find
an achievable rate

The previous deductions lead to a block fading model
[26], [27]. To find an achievable rate, an OFDM [26], [27]
scheme is used, with block length TB ≈ τB and cyclic
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prefix length Tt > τt. TB and Tt must be chosen such that
WTB and WTt are integers (where W is the bandwidth, and
N = WTB is the total number of subcarriers) – and indeed it
is sensible to choose the smallest value of Tt which satisfies
this condition. According to the Sampling Theorem [7], [14],
the waveform in one block can be reconstructed from samples
spaced 1/2W s apart. Performing an Inverse Discrete Fourier
Transform (IDFT) on the resulting vector of samples (i.e., in
the time domain) yields a vector of samples in the frequency
domain. These are spaced 1/TB Hz apart, which we define
as ∆f . Choosing to define the input signal in the frequency
domain, the channel output can be expressed:

y = z � x+ n, (7)

where y is a vector of outputs, z is a vector of the channel
frequency response, x is a vector of the channel symbols,
n is a vector of AWGN samples and � denotes element-
wise multiplication. All these vectors are of size N = WTB .
Since all the elements of the vectors are complex, (7) can be
expressed:

y = z � x+ n. (8)

Noting that the cyclic prefix means that cyclic convolution
is identical to linear convolution performed on a Linear Time
Invariant channel. This means that z is a vector of the channel
frequency responses evaluated at intervals of ∆f Hz.

It is important to note that in order to find a capacity, we
must consider an infinite number of these time blocks (as for
any single time-block there is a non-zero probability that the
noise power will be such that the channel is in outage), and
also owing to the power constraint we will impose on x(t), it
is necessary to consider this over an infinite number of blocks
as for any finite number of blocks it may be the case that
the power constraint is not satisfied. With these two issues
taken into consideration, we can define the achievable rate, R,
in terms of the mutual information between the discretised x
and y (i.e., for a single block):

R =
1

N
I(xN−1

0 ;yN−1
0 ) bit s−1 Hz−1, (9)

which in turn can be related to the capacity of the original
channel in (1):

C ≈ C1 ≥
TB

TB + Tt
R bit s−1 Hz−1. (10)

B. Channel frequency response

Let PH(τ) be the instantaneous channel Power Delay Profile
(PDP), from which a truncated version is defined:

P′H(τ) =

{
PH(τ) if 0 ≤ τ < τt
0 otherwise. (11)

The bounding method requires information regarding the
channel characterisation in the frequency domain. At a ran-
domly chosen frequency, over a time period which is short
compared to the delay spread of the signal, the distribution
of the phase of the various multipath components will be
uniform, and thus the frequency response will be a Zero Mean

Circularly Symmetric (ZMCS) Gaussian random variable;
defining this as z(ω), let:

P (z(ω)) = N (z(ω); 0,Σz) , (12)

where N is the Gaussian distribution and ω is angular fre-
quency (i.e., ω = 2πf where f is frequency in Hz) :

Σz =

[
σ2
z 0

0 σ2
z

]
, (13)

where σ2
z is the variance.

The bounding method also requires the conditional distribu-
tion of the frequency response, given the frequency response at
a known separation, (∆ω = 2π∆f ), i.e., P (z(ω)|z(ω−∆ω)).
To formally derive this conditional probability distribution, it
is necessary to make the assumption that the temporal length
of z1(t) is divisible into an integer, k, of arbitrarily short time
intervals of duration, ∆τ , each of which is a ZMCS Gaussian
random variable, with power equal to the integral of P′H(τ)
over its duration. The joint distribution of the signal from
these intervals can thus be expressed as a multivariate complex
Gaussian distribution: The discrete signal vector, z, is of size
K where K = τt/∆τ and the kth element occurs at τ = k∆τ :

P (z)=CN (z; 0,Γ, 0), (14)
Γ=E

(
z(z∗T )

)
=diag(2σ2

k), (15)

where CN (.;µ,Γ,C) is the complex Gaussian distribution
with mean µ, covariance matrix Γ and relation matrix C (that
is zero here, and for all subsequent occurrences), also for small
∆τ :

σ2
k ≈ (P′H(k∆τ)) ∆τ. (16)

Whilst this may seem to be an unreasonable assumption,
it is actually the case that the following analysis will be a
good model if P′H(t) can be split into time intervals in which
many rays arrive, but P′H(t) itself only negligibly changes in
value. By the WSSUS assumption these arriving rays will be
independent, and with sufficiently high carrier frequency their
phase can be considered to be independently drawn from a
uniform distribution.

Proposition 1

For the channel with PDP defined in (11), the conditional
distribution of the frequency response, given the frequency
response at a known separation can be expressed:

P (z(ω)|z(ω −∆ω)) = N
(
z(ω);µa,Σa

)
, (17)

where:

µa =Az(ω −∆ω), (18)

Σa =σ2
z

[
1− |a|2 0

0 1− |a|2
]
, (19)

where A is the matrix version of the complex number a (i.e.,
according to the notation in Section I-C) and:

a =

∫ τt
0

P′H(τ)e−j∆ωτ dτ∫ τt
0

P′H(τ) dτ
. (20)



5

Proof:

In the appendix. Experimental evidence using the frequency
responses measured in [5] show that the theory developed in
Proposition 1 is a good fit for actual channels.

III. A LOWER BOUND ON THE CHANNEL CAPACITY

Recall from (9), and introducing a power constraint:

R =
1

N
I(xN−1

0 ;yN−1
0 ) bit s−1 Hz−1 (21)

subject to:

Pave ≥ lim
N ′→∞

1

N ′

N ′−1∑
i=0

|x′i|2, (22)

where x′ is a vector comprising x across an infinite number
of times blocks and Pave is the average power constraint. Note
that this average is defined across an infinite number of input
symbols, xi, and thus an infinite number of time blocks.

The input distribution on x is chosen to be a series of
Independent Identically Distributed (IID) ZMCS Gaussian
random variables:

P (xi) = N (xi; 0,Σx), (23)

where:

Σx =

[
σ2
x 0

0 σ2
x

]
. (24)

Likewise, the additive white noise is modelled as IID ZMCS
Gaussian random variables:

P (ni) = N (ni; 0,Σn), (25)

where:

Σn =

[
σ2
n 0
0 σ2

n

]
. (26)

A. Bounding idea

The aim is to lower bound (21). In essence, the bounding
method is similar to a Kalman filter, where the ‘state’ is the
channel response at the discrete frequencies corresponding
to the input (i.e., where successive frequency responses are
correlated, as shown in Proposition 1) and the noisy mea-
surement is formed by the information signal input-output
pair. For each successive discrete frequency response, some
CSI is learned, and thus eventually (assuming the frequency
separation between discrete frequency responses is small) the
CSI approaches perfect CSI.

There is no feedback in the system, i.e., because successive
values of xi have no dependence on previous values of yi, zi
or ni. This property is used throughout the bounding process
to simplify various expressions.

Theorem 2
There exists a lower bound, L1, on the achievable rate:

R ≥ L1 =
1

N

N−1∑
i=0

Ii bit s−1 Hz−1, (27)

where:
Ii = E

(
log2

(
|µ′i|2σ2

x + σ2
n

|xi|2σ2
i + σ2

n

))
, (28)

and:

σ2
i=

{ σ2
z if i = 0,

(1− |a|2)σ2
z

+|a|2(σ−2
i−1 + |xi−1|2σ−2

n )−1 if i > 0,
(29)

P (µ′i)=N
(
µ′i; 0,

[
σ2
z − σ2

i 0
0 σ2

z − σ2
i

])
. (30)

The terms σ2
i and µ′i represent the variance and mean of the

estimate of the ith frequency response respectively. Notice that
we have the coherent setting when σ2

i = 0, and it is reassuring
to notice that in this situation, Ii = E

(
log2

(
1 + |zi|2σ2

x/σ
2
n

))
(where zi is equivalent to z(ω) as defined in (12) and (13)) i.e.,
the coherent channel capacity. Another important observation
is that Ii is a monotonically non-decreasing function with i,
which is proved in Lemma 3 (in the appendix).

Proof (of Theorem 2):
The chain rule of mutual information is used to lower bound

the right-hand side (RHS) of (21):

1

N
I(xN−1

0 ;yN−1
0 ) =

1

N

N−1∑
i=0

I(xi;y
N−1
0 |xi−1

0 )

=
1

N

N−1∑
i=0

N−1∑
j=0

I(xi; yj |xi−1
0 ,yj−1

0 )

≥ 1

N

N−1∑
i=0

I(xi; yi|xi−1
0 ,yi−1

0 ). (31)

Lemma 4
For the channel defined in (7), (12) and (17), the conditional

distribution of the frequency response, zi, given all previous
realisations of the input, xi, and output, yi is a Gaussian
distribution:

P (zi|xi−1
0 ,yi−1

0
) = N (zi;µi,Σi − Σε), (32)

where :

Σi =

[
σ2
i 0

0 σ2
i

]
, (33)

σ2
i =

{ σ2
z if i = 0,

(1− |a|2)σ2
z

+|a|2(σ−2
i−1 + |xi−1|2σ−2

n )−1 if i 6= 0,
(34)

≤σ2
z , (35)

P (µi) =N (µi; 0,Σz − (Σi − Σε)) (36)

and Σε is some Positive Definite Symmetric (PDS) matrix or
zero. Note that the evolution of σ2

i is essentially in the form
of a Kalman filter, with σ2

n|xi−1|−2 as the noisy measurement
variance.
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Proof:

In the appendix.

Lemma 5

Using Lemma 4, for the channel defined in (7), (12) and
(17), the mutual information can be evaluated thus:

I(xi; yi|xi−1
0 ,yi−1

0 ) = I(xi; yi|µi, (Σi − Σε)). (37)

Lemma 5 proves that µi and (Σi − Σε) are sufficient to
calculate the mutual information.

Proof:

In the appendix.

Proof of Theorem 2 (continued):

Using Lemma 5 to consider only the ith frequency response,
zi, which is itself a random variable, from (8):

yi = Zixi + ni, (38)

and as shown in Lemma 4, zi is a circularly symmetric
Gaussian random variable, thus decomposing zi such that:

P (z′i) = N (z′i; 0, (Σi − Σε)) , (39)

it follows that:

yi = M ixi + Z ′ixi + ni, (40)

where M is the capitalised version of µ, i.e., for the purposes
of representing complex multiplication as a matrix operation.
Further decomposing µ, such that:

P (µ′i) =N (µ′i; 0,Σz − Σi), (41)
P (µ′′i ) =N (µ′′i ; 0,Σε), (42)

(40) can be expressed:

yi = M ′ixi +M ′′i xi + Z ′ixi + ni. (43)

Consider the mutual information:

I(xi; yi|µi, (Σi − Σε))=H(yi|µi, (Σi − Σε))

−H(yi|xi, µi, (Σi − Σε)). (44)

Now consider the first term of the RHS of (44):

H(yi|, µi, (Σi − Σε))≥H(yi|µi, (Σi − Σε), z
′
i)

=E(log2(2πe|M ′iΣx(M ′i)
T

+M ′′i Σx(M ′′i )T

+Z ′iΣx(Z ′i)
T + Σn|1/2))

≥E(log2(2πe||µ′i|2Σx + Σn|1/2)),

(45)

and also consider the second term of the RHS of (44):

H(yi|xi, µi, (Σi − Σε))

= E(log2(2πe|Xi(Σi − Σε)X
T
i + Σn|1/2))

= E
(

log2

(
2πe||xi|2(Σi − Σε) + Σn|1/2

))
= E

(
log2

(
2πe||xi|2Σi + Σn|1/2|I − Σε 2|1/2

))
(46)

≤ E(log2(2πe||xi|2Σi + Σn|1/2)), (47)

where I is the identity matrix and (47) is derived by noticing
that Σi and Σn are proportional to the identity, and Σε is PDS
(as (Σi −Σε) is a covariance matrix). The expression is then
normalised, with the term Σε 2 introduced to equal Σε divided
by the appropriate scale factor. The resultant term |I − Σε 2|
is shown to be less than one in Lemma 8, hence the lower
bound.

Substituting (45) and (47) into (44):

I(xi; yi|µi, (Σi − Σε))=H(yi|µi, (Σi − Σε))

−H(yi|xi, µi, (Σi − Σε))

≥E(log2(2πe||µ′i|2Σx + Σn|1/2))

−E(log2(2πe||xi|2Σi + Σn|1/2))

=E
(

log2

(
|µ′i|2σ2

x + σ2
n

|xi|2σ2
i + σ2

n

))
,

=Ii, (48)

which proves Theorem 2.

Corollary 9

A very important corollary to Theorem 2 is:

Ii = E
(

log2

(
SNR|µ′′′′i |2 + 1

SNR|x′′′i |2(σ′′′i )2 + 1

))
. (49)

where:

P (x′′′i )=N
(
x′′′i ; 0,

[
1 0
0 1

])
, (50)

(σ′′′i )2=

{ 1 if i = 0,
(1− |a|2)

+|a|2
(
(σ′′′i−1)−2 + SNR|x′′′i−1|2

)−1
if i > 0,

(51)

P (µ′′′′i )=N
(
µi
′′′′; 0,

[
1− (σ′′′i )2 0

0 1− (σ′′′i )2

])
. (52)

SNR=
σ2
zσ

2
x

σ2
n

. (53)

That is, the bound can be expressed such that it only relies
on the SNR and not the individual realisations of σ2

z , σ2
x and

σ2
n.

Proof:

In the appendix.

Corollary 10

There exists a lower bound, L2, on the achievable rate:

R ≥ L2 =
1

N

N−1∑
i=0

I ′i bit s−1 Hz−1, (54)

where:

I ′i = E
(

max

(
log2

(
|µ′i|2σ2

x + σ2
n

|xi|2σ2
i + σ2

n

)
, 0

))
. (55)

This corollary simply allows Ii to be replaced with zero
if it is negative. This is useful for computation, and slightly
tightens the bound.



7

Proof:

This corollary is obviously true, as mutual information is
always non-negative and therefore any values of (xi, µ

′
i, σ

2
i )

for which our estimate happens to be negative can be replaced
with zero, without affecting the validity of the bound.

Corollary 11

There exist lower bounds L1A and L2A such that:

R ≥ L1≥L1A =
1

N

N ′′−1∑
i=0

Ii + (N −N ′′)IN ′′

 , (56)

R ≥ L2≥L2A =
1

N

N ′′−1∑
i=0

I ′i + (N −N ′′)I ′N ′′

 , (57)

where:

0 < N ′′ ≤ N. (58)

This is useful as the lower bounds L1 and L2 can themselves
be lower bounded by L1A and L2A respectively. This means
computation of the mutual information could be halted when
a sufficiently tight lower bound has been achieved.

Proof:

The first part of Corollary 11 (56) arises trivially from
the monotonically non-increasing form of Ii, as shown in
Lemma 3. The second part of Corollary 11 follows from this
using the same argument as Corollary 10.

IV. NUMERICAL EXAMPLE

As identified in Section I, in-vehicle channels are of par-
ticular interest, which have PDPs that decay exponentially
with time [5], [28]. For such channels, the delay spread
is infinite, and therefore the underspread property is only
approximate. At sufficiently large SNR, the fact that this is
only an approximation becomes significant, as identified by
Durisi et al [6], and further supported by Koch and Lapidoth
[29] who show that, for a discrete exponentially decaying
channel, the capacity is bounded in the SNR. It is therefore
important not to over-generalise the applicability of our bound,
and thus it is evaluated for a typical example application. A
suitable example application is a Wireless Sensor Network
operating using Zigbee [30] – note that even though this does
not use OFDM, the principle of lower bounding the capacity
using an arbitrary coding scheme to find an achievable rate
still applies. To evaluate the lower bound, it is necessary to
find appropriate parameters to substitute into the expressions
(49) and (51). These parameters derive from the fundamental
parameters (i.e., the cavity time constant and system SNR)
via the parameters required to model the channel as a block
fading system (i.e., the block length, cyclic prefix length and
the adjustment to the SNR to account for the ISI and ICI).

A. Parameters

The coherent capacity can be expressed:

C=E
(

log2

(
1 + |z|2 σ

2
x

σ2
n

))
,

=E
(

log2

(
1 + |z′′|2σ

2
zσ

2
x

σ2
n

))
,

=E
(
log2

(
1 + |z′′|2SNR

))
, (59)

where, by definition:

P (z′′)=N
(
z′′; 0,

[
1 0
0 1

])
. (60)

It can be shown that the specified 250 kbit/s data rate for a
single Zigbee channel (i.e., occupying a frequency band of
width 5 MHz) can be achieved at an SNR of 0.0180 (for
this analysis it is irrelevant that actual Zigbee systems would
typically have a much higher SNR).

From our previous measurements [5], the time constant, τc,
of the exponential decay in a typical vehicle cavity is 17.2 ns.
Regarding the choice of cyclic prefix length, Tt, and noting
that this must correspond to an integer number of samples in
the time domain, consider choosing just a single time sample
duration to be the cyclic prefix, which is equal to 200 ns. From
this, the power contained in the ISI, denoted PISI as a portion
of the signal power, denoted PS, can be found

PISI

PS
=

k1

∫∞
Tt
e−

τ
τc dτ

k1

∫∞
0
e−

τ
τc dτ

, (61)

Substituting Tt = 200 ns and τc = 17.2 ns into (61) yields
PISI/PS = 8.91×10−6, that we deem to be sufficiently small.
Regarding the choice of block length, TB , an appropriate
criteria (i.e., for this example) is the time duration during
which 0.99 of the energy is expected to remain undisturbed.
This is equivalent to stating that the power contained in the
ICI, PICI, is 0.01 of PS which can be found from the work
in [3] in which it was demonstrated that the autocorrelation
function at time separation, t, of the in-vehicle channel could
be modelled in the form σ2e−θt, and that an appropriate value
for the parameter θ is 0.475. Letting t = TB :

0.99=
σ2e−θTB

σ2

=⇒ TB=− loge (0.99)

θ
=0.02 s. (62)

Upon closer inspection of [3] it may seem a little unreasonable
to extrapolate our time correlation model to such a short time
interval when our measurements were spaced 0.125 s apart,
however more sophisticated analysis based around fitting a
curve to the Power Spectral Density plots in [3, Fig. 5] lead to
an estimation of TB = 0.0053 s with the same criteria that 0.99
of the energy does not vary. This provides further evidence
that our value of TB is of the correct order of magnitude, and
we shall continue using the more conservative value of TB =
0.0053 s. The criteria of 0.99 of the energy not varying is
equivalent to defining the variation owing to ICI as PICI/PS =
0.01. According to the definitions in Section II-A, we have
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∆f = 1/TB = 189 Hz and N = WTB = 26500. These
deductions allow us to find an adjusted value of the SNR to
account for the interference, we denote this SNR′. Note that
the following expression is valid for the worst case, where all
of the ICI manifests itself as interference on other subcarriers
(in reality some of it will experience a Doppler shift which will
move it out of the band of interest). Also, it has been assumed
that all of the channel variation occurs in non-truncated part
of the PDP:

SNR′=
PS − PISI − PICI

PN + PISI + PICI

=
1− PISI

PS
− PICI

PS

SNR−1 + PISI
PS

+ PICI
PS

=0.0178, (63)

where PN is the noise power.
The final parameter that it is necessary to find is |a|2. This

is, however, complicated by the fact that we can no longer
assume that z1(t) has the same PDP as zH(t). We can mitigate
this issue by finding the worst case of |a|2, given Tt and TB .
This is a useful result in its own right, as it allows the lower
bounding of the capacity even if only the coherence time and
delay spread are known. First, we must establish how L1, L2,
L1A and L2A, vary with |a|2.

Lemma 12

Ii = F1(|a|2), (64)

for all permissible values of |a|2 and where F1 is a monoton-
ically non-decreasing function. This is sufficient for L1 and
L1A to be monotonically non-decreasing functions of |a|2.

Proof:

In the appendix.

Corollary 13

An important corollary to Lemma 12 is:

I ′i = F2(|a|2), (65)

for all permissible values of |a|2 and where F2 is a monoton-
ically non-decreasing function. This is sufficient for L2 and
L2A to be monotonically non-decreasing functions of |a|2.

Proof:

Corollary 13 can be trivially shown to be true by considering
that I ′i only differs from Ii as defined in (132) because for
some values of x the term in the braces in (132) will be
replaced by zero. For this variation, the analysis in Lemma 12
remains valid.

From Lemma 12 and Corollary 13, we can see that we must
choose P′H(τ) to minimise |a|2 in order to establish the worst
case scenario. Note that as the coding scheme described in the
analysis does not depend on |a|2, this is sufficient to propose a
lower bound, and thus show how the capacity can be bounded
even if only the delay spread and coherence time are known.

Lemma 14

For underspread channels by definition Tt < TB , for highly
underspread channels it is not unreasonable to allow only
channels where Tt < 0.5TB . In this case P′H(τ) which lower
bounds |a|2 according to (20) is:

P′H(τ) =
1

2
(δ(τ) + δ(τ − Tt)) , (66)

where δ(.) is the Dirac delta function. Substituting (66) into
(20) and noting that ∆ω = 2π/TB yields:

|a|2 =
1

4

(
(1 + cos(2πTt/TB))

2
+ (sin(2πTt/TB))

2
)
.

(67)

Proof:

This Lemma arises trivially from a geometric argument.
Notice that P′H(τ)e−j2πTt/TB can be considered to consist of
several complex vectors, each of whose direction must be at an
angle of less than π radians by the inequality Tt < 0.5TB . In
this case, the magnitude of the sum of these vectors (and hence
the magnitude squared) is minimised when P′H(τ) consists of
two equal length vectors separated by the greatest possible
angle. This is expressed mathematically in Lemma 14.

Notice from (67) that as Tt/TB → 0 (i.e., the channel
becomes more underspread) then |a|2 → 1. This corresponds
to the case where the channel response at a certain frequency
is known deterministically given the response at the preceding
frequency. In this instance, perfect estimation of the channel
state information is limited only by the lack of knowledge
concerning the value of initial frequency response and the
noise. Observing (29) with |a|2 → 1 we can see that the effects
of both of these factors, i.e., the lack of knowledge concerning
the value of initial frequency response and the noise, on the
channel state information estimation diminish to zero with an
infinite number of samples. Thus in the infinite bandwidth
limit the channel information capacity will approach coherent
capacity. This result explicitly demonstrates an intuitively
obvious property of the underspread channel. Substituting TB
and τt = Tt into (67) yields |a|2 = 1− 1.45× 10−8.

B. Results

Our lower bounds L1, L2, L1A and L2A, in (27), (54), (56)
and (57) are on R, using (10) we define:

C1≥LC2=
TB

TB + Tt
L2. (68)

Fig. 1(a) shows the variation of LC2 with N , demonstrating
the learning process (recall that each increment in N cor-
responds to a step increase in bandwidth). Fig. 1(b) shows
the capacity bound LC2 as a function of frequency for the
entire 5 MHz band of interest. Note that for both subplots
in Fig. 1 the capacity has been normalised by dividing it by
the coherent capacity. Whilst performing these simulations we
noticed that at low SNR the capacity bound is sensitive to the
value of |a|2. One way to understand this is to consider that
|a|2 characterises how much the channel has changed between
successive subcarriers (where |a|2 = 1 means no change at
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Lower Bound ∆H SNR/ dB Bandwidth/ Hz C/Ccoh

LC2 2× 10−5 -17.5 37.8× 103 0.92
LC2 2× 10−5 -17.5 5× 106 >0.99
[6, Fig. 2.4] 10−5 -17.5 1.4× 109 0.99
[6, Fig. 2.10a] 10−4 -17.5 - 0.42
[6, Fig. 2.10b] 10−6 -17.5 - 0.84

TABLE I
COMPARISON OF OUR LOWER BOUND WITH THOSE IN THE LITERATURE

all). At low SNR the Kalman filter estimation is buried in
noise, so even with relatively little change between successive
subcarriers it may be the case that the channel evolves more
rapidly than it can be estimated (for the majority of realisations
of x – noting that the mutual information is averaged over all
realisations of x). For low SNR channels it may be that an
alternative characterisation of the capacity is more appropriate,
for example Kennedy [8]. It should, however, be noted that for
low SNR channels which are extremely stable (i.e., |a|2 ≈ 1)
our lower bound demonstrates explicitly the bandwidth which
is sufficient to achieve a certain proportion of the coherent
capacity – as the Kalman filter could take many subcarriers to
learn the channel sufficiently well to estimate receiver CSI. In
such cases, we contend that our bound is useful for wireless
applications as it demonstrates the role that bandwidth has
in estimating the channel in an intuitive way, which also
explicitly allows the calculation of a sufficient bandwidth
according to a user defined criteria. This contrasts with some
of the other bounds which are only valid as SNR→∞.

Our motivation for this work is not specifically to improve
upon the existing bounds, but to provide an intuitive and com-
putationally simple method of verifying that the noncoherent
capacity is approximately equal to the coherent capacity for
typical real-world underspread fading channels. Nonetheless,
for greater context, we now present a comparison as best we
can with the lower bounds found in the literature, where it
appears that the work by Durisi et al [6] provides the most
appropriate numerical results. These results are presented in
Table I, with the first two rows corresponding to our lower
bound, LC2 evaluated at the right-hand extremities of the two
plots in Fig. 1, and the remaining three rows corresponding
to the most comparable bounds in the literature at the same
SNR (0.0178 = -17.5 dB). Note that the final column of
Table I refers to the respective lower bounds normalised by
the coherent capacity, also note that the value of 2× 10−5 for
∆H of our channel comes from the specific values used, and
is consistent with our previous statement that ∆H is of the
order 10−5 for in-vehicle channels. We can see that our lower
bound performs comparably to those in the literature and,
importantly, it becomes tight at a much lower bandwidth (note
that for the [6, Fig. 2.10] no value was given for bandwidth).
This provides evidence that strengthens our assertion that our
bounding method is suitable for finding a sufficient bandwidth
to achieve a certain fraction of the coherent capacity.

V. CONCLUSIONS

The major contribution that we have made in this paper
is a lower bound on the noncoherent capacity of underspread

fading channels, where only the channel coherence time, delay
spread and bandwidth are known. Our approach is firmly
rooted in our previous experience gained obtaining channel
measurements, and our observation that most real-world chan-
nels are highly underspread and it is therefore useful to provide
a computationally simple technique to verify that for any given
channel the noncoherent capacity is approximately equal to
the coherent capacity. The lower bound is also expressed
as a non-decreasing recursive function, with each iteration
corresponding to a discrete increase in bandwidth, which
we contend makes it suitable for wireless communication
engineering applications, as it explicitly provides a method
of calculating the bandwidth which is sufficient to attain
a user-defined percentage of the coherent capacity. It can
therefore be concluded that our lower-bound complements the
existing work which has largely been undertaken from a pure
information theoretical perspective.

For real-world channels, typically the impulse response will
have infinite time duration and thus the underspread property
is actually an SNR dependent assumption. An important open
problem is evaluating or bounding the noncoherent capacity
of fading channels which may in general be overspread.

APPENDIX A
PROOF OF LEMMAS, PROPOSITIONS AND COROLLARIES

Proposition 1 proof:

By a Fourier transform, (14) can be used to approximate
the frequency response at ω and (ω − ∆ω), for sufficiently
small values of ∆τ :

P

([
z(ω)

z(ω −∆ω)

])
≈ CN

([
z(ω)

z(ω −∆ω)

]
; 0,

[
f
g

]
Γ

[
f
g

]∗T
, 0

)
(69)

where f and g are row vectors, each of size K, with kth

elements:

fk = e−jωk∆τ , (70)
gk = e−j(ω−∆ω)k∆τ . (71)

Let: [
f
g

]
Γ

[
f
g

]∗T
=

[
γ1 γ2

γ3 γ4

]
, (72)

then, noting that τ = k∆τ :

γ1 =

K−1∑
k=0

e−jωτ (2P′H(τ)∆τ) ejωτ , (73)

γ2 =

K−1∑
k=0

e−jωτ (2P′H(τ)∆τ) ej(ω−∆ω)τ , (74)

γ3 =

K−1∑
k=0

e−j(ω−∆ω)τ (2P′H(τ)∆τ) ejωτ , (75)

γ4 =

K−1∑
k=0

e−j(ω−∆ω)τ (2P′H(τ)∆τ) e−j(ω−∆ω)τ . (76)
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Fig. 1. Capacity lower bound: (a) with N ; (b) with bandwidth.

Let: ∆τ → 0 (and thus adjusting K such that τt does not
vary):

γ1 = γ4 =

∫ ∞
0

2P′H(τ) dτ, (77)

γ2 =

∫ ∞
0

2P′H(τ)e−jτ∆ω dτ, (78)

γ3 =

∫ ∞
0

2P′H(τ)ejτ∆ω dτ. (79)

Noticing that [z(ω); z(ω − ∆ω)] is ZMCS complex Gaus-
sian, it can be expressed as a multivariate Gaussian:

P

([
z(ω)

z(ω −∆ω)

])
= N

([
z(ω)

z(ω −∆ω)

]
; 0,Σt

)
, (80)

where:

Σt = σ2
z


1 0 Re(a) −Im(a)
0 1 Im(a) Re(a)

Re(a) Im(a) 1 0
−Im(a) Re(a) 0 1

 , (81)

where a is as defined in (20) and:

σ2
z =

∫ ∞
0

P′H(τ) dτ. (82)

From this multivariate distribution, the conditional distribu-
tion of (z(ω)|z(ω−∆ω)) can be expressed in the form given
in (17), (18) and (19), thus proving Proposition 1.

Lemma 3

For the definition of Ii in (28), for i ≥ 0:

Ii+1 − Ii ≥ 0. (83)

Proof:

Lemma 3 is proven by demonstrating that, for any sequence
of inputs x, an extra input directly prior to this (i.e., an
extra subcarrier usage a single frequency interval lower than
that used by x0) will never decrease the mutual information.
Starting from (28):

Ii+1=

∫
x

∫
(|µ′′′|2)

P (x)P (|µ′′′|2){
log2

( |µ′′′|2(σ2
z − σ2

i+1)σ2
x + σ2

n

|xi+1|2σ2
i+1 + σ2

n

)}
d(|µ′′′|2) dx,

(84)

where

P (µ′′′) = N
(
µ′′′; 0,

[
1 0
0 1

])
. (85)

As x is simply a variable of integration, we define x′ =
xi+1

1 . Using this to re-write (84) yields

Ii+1=

∫
x′

∫
x0

∫
(|µ′′′|2)

P (x′)P (x0)P (|µ′′′|2){
log2

(
|µ′′′|2(σ2

z − (σ′i)
2)σ2

x + σ2
n

|x′i|2(σ′i)
2 + σ2

n

)}
d(|µ′′′|2) dx0 dx′, (86)

where, from (29)

(σ′i)
2 =

{ σ2
z if i = −1,

(1− |a|2)σ2
z

+|a|2(σ−2
z + |x0|2σ−2

n )−1 if i = 0,

(1− |a|2)σ2
z

+|a|2((σ′i−1)−2 + |x′i−1|2σ−2
n )−1 if i > 0.

Again, noticing that x′ and µ′′′ are simply variables of
integration, without loss of generality we can write from (28)

Ii=
∫
x′

∫
(|µ′′′|2)

P (x′)P (|µ′′′|2){
log2

(
|µ′′′|2(σ2

z − (σ′′i )2)σ2
x + σ2

n

|x′i|2(σ′′i )2 + σ2
n

)}
d(|µ′′′|2) dx′ (87)

=

∫
x′

∫
x0

∫
(|µ′′′|2)

P (x′)P (x0)P (|µ′′′|2){
log2

(
|µ′′′|2(σ2

z − (σ′′i )2)σ2
x + σ2

n

|x′i|2(σ′′i )2 + σ2
n

)}
d(|µ′′′|2) dx0 dx′,

(88)
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where

(σ′′i )2 =

{ σ2
z if i = 0,

(1− |a|2)σ2
z

+|a|2((σ′′i−1)−2 + |x′i−1|2σ−2
n )−1 if i > 0.

Noticing that (88) is equivalent to (87) as there is no depen-
dence on x0 in the expression. We can therefore see that

Ii+1 − Ii=
∫
x′

∫
x0

∫
(|µ′′′|2)

P (x′)P (x0)P (|µ′′′|2){(
log2

(
|µ′′′|2(σ2

z − (σ′i)
2)σ2

x + σ2
n

)
− log2

(
|µ′′′|2(σ2

z − (σ′′i )2)σ2
x + σ2

n

))

+

(
log2

(
|x′i|2(σ′′i )2 + σ2

n

)
− log2

(
|x′i|2(σ′i)

2 + σ2
n

))}
d(|µ′′′|2) dx0 dx′.

(89)

Given that log2 is a monotonically increasing function, we
can see that (σ′i)

2 ≤ (σ′′i )2 is a sufficient condition to prove
Lemma 3 (as in (89) log2 always operates on positive terms).
We can prove this by induction, consider first i = 0 (note that
even though we have allowed i = −1 in (86), however for
the expression in question, (89) we are only concerned with
i ≥ 0):

(σ′i)
2=(1− |a|2)σ2

z + |a|2(σ−2
z + |x0|2σ−2

n )−1

≤σ2
z

=(σ′′i )2. (90)

We can also see that the evolution of (σ′i)
2 and (σ′′i )2 is

defined by the same function, which is of the form

γ′1=(1− |a|2)σ2
z + |a|2((γ′0)−1 + |xi−1|2σ−2

n )−1 (91)

where γ′1 and γ′0 are variables, and |a|2, |xi−1|2 and σ2
n are

constants. We can see that

dγ′1
dγ′0

=|a|2(γ′0)−2((γ′0)−1 + |xi−1|2σ−2
n )−2

≥0. (92)

This result can be understood by visualising the plot of
γ′1 versus γ′0 as a monotonically increasing curve. As both
((σ′i)

2, (σ′i+1)2) and ((σ′′i )2, (σ′′i+1)2) are points on this curve,
this means that (σ′i)

2 ≤ (σ′′i )2 =⇒ (σ′i+1)2 ≤ (σ′′i+1)2,
completing the inductive proof, which in turn proves Lemma 3.

Lemma 4 proof:

Lemma 4 is proven using mathematical induction, for i = 0:

P (z0) = N (z0; 0,Σz), (93)

which is true by definition, as there are no previous values of
xi and yi upon which z0 is conditioned.

Next, it is shown that if Lemma 4 is true for zi−1 then it
is also true for zi

P (zi|xi−1
0 ,yi−1

0 )=

∫
zi−1

P (zi|zi−1,x
i−1
0 ,yi−1

0 )

P (zi−1|xi−1
0 ,yi−1

0 ) dzi−1. (94)

Consider the first term in the integrand in (94)

P (zi|zi−1,x
i−1
0 ,yi−1

0 ) = P (zi|zi−1,x
i−2
0 ,yi−2

0 ), (95)

it is valid to drop xi−1 and yi−1 from the conditioning, as
these are only correlated with zi through zi−1 as z are in
effect the states of a hidden Markov process. It is known from
Proposition 1 that:

P (zi|zi−1) = N (zi;Azi−1,Σa). (96)

Consider the multivariate Gaussian:

P

([
zi | zi−1,x

i−2
0

yi−2
0 | zi−1,x

i−2
0

])

= P

([
zi | zi−1

yi−2
0 | zi−1,x

i−2
0

])

= N

([
zi
yi−2

0

]
;

[
Azi−1

α

]
,

[
Σa β
βT δ

])
, (97)

where the values of α, β and δ are unimportant for this
analysis. Therefore:

P (zi|zi−1,x
i−1
0 ,yi−1

0 ) = N (zi;Azi−1 +µε,Σa−Σ′ε). (98)

An alternative expression is useful for the subsequent analysis:

P (zi|zi−1,x
i−1
0 ,yi−1

0 )=P (A−1zi|zi−1,x
i−1
0 ,yi−1

0 )

=N (A−1zi; zi−1

+A−1µε, A
−1ΣaA

−T

−A−1Σ′εA
−T ), (99)

where the value of µε is unimportant for this analysis, as is
Σ′ε = βT δ−1β which is a PDS matrix (i.e., because δ is a
covariance matrix), or zero if the underlying process is actually
a Markov process.

Consider the second term of the integrand in (94), and notice
that it can be split into two conditionally independent terms:

P (zi−1|xi−1, yi−1) = N
(
zi−1; (Xi−1)−1yi−1, |xi−1|−2Σn

)
,

(100)
and:

P (zi−1|xi−2
0 ,yi−2

0
) = N

(
zi−1;µi−1,Σi−1 − Σ′′ε

)
, (101)

i.e., from the definition of Lemma 4 in (32). This expression
is valid for i = 1, as xi−2

0 ,yi−2
0

consists of no elements, and
thus it represents the unconditional distribution of z0, which
is valid by the definition in (34), i.e., with Σ′′ε = 0. Note that
in general Σ′′ε is a PDS matrix, or zero and this notation is
simply used to distinguish it from Σε.

The conditional independence allows (100) and (101) to
be fused together as a Kalman filter, i.e., in which the pair
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(xi−1, yi−1) forms a measurement, and there exists some prior
estimate of the state P (zi−1|xi−2

0 ,yi−2
0 ). This leads to:

P (zi−1|xi−1
0 ,yi−1

0
) = N (zi−1;µα,Σα), (102)

where the value of µα is unimportant for this analysis, and:

Σα=
(
|xi−1|2Σ−1

n + (Σi−1 − Σ′′ε )−1
)−1

(103)

=
(
|xi−1|2Σ−1

n + Σ−1
i−1 + (Σ′′′ε )−1

)−1
(104)

=
(
|xi−1|2Σ−1

n + Σ−1
i−1

)−1 − Σ′′′′ε , (105)

where Σ′′′ε and Σ′′′′ε are PDS matrices. Lemma 6 is applied to
(Σi−1−Σ′′ε )−1 in (103), noticing that Σi−1 is proportional to
the identity, to derive (104). Lemma 7 is applied to the RHS
of (104), noticing that (|xi−1|2Σ−1

n + Σ−1
i−1) is proportional

to the identity, to derive (105). The Lemmas are stated and
proved subsequently in this appendix.

Substituting (99) and (102) into (94), and performing the
resulting convolution yields:

P (zi|xi−1
0 ,yi−1

0 ) =N (A−1zi;A
−1µε + µα, A

−1ΣaA
−T

−A−1Σ′εA
−T + Σα)

=N
(
zi;µε +Aµα,Σa − Σ′ε +AΣαA

T
)

=N
(
zi;µi,Σi − Σε

)
, (106)

where µi is defined later in (111), and by performing substi-
tutions from (19) and (105):

Σε = Σ′ε + Σ′′′′′ε , (107)
Σi = Σa + |a|2(Σ−1

i−1 + |xi−1|2Σ−1
n )−1

= (1− |a|2)Σz + |a|2(Σ−1
i−1 + |xi−1|2Σ−1

n )−1. (108)

Noticing that if Σi−1 is proportional to the identity, then so
is Σi, let:

Σi =

[
σ2
i 0

0 σ2
i

]
, (109)

where:

σ2
i = (1− |a|2)σ2

z + |a|2(σ−2
i−1 + |xi−1|2σ−2

n )−1. (110)

Consider that the overall distribution of z must be preserved,
regardless of the input and noise, therefore:

P (µi) = N (µi; 0,Σz − (Σi − Σε)). (111)

To prove the final part of Lemma 4, i.e., that σ2
z ≥ σ2

i ,
consider again proof by induction. From (93) it is known that
σ2

0 = σ2
z , and thus consider (110):

σ2
z ≥σ2

i−1

≥ (σ−2
i−1 + |xi−1|2σ−2

n )−1

≥ (1− |a|2)σ2
z + |a|2(σ−2

i−1 + |xi−1|2σ−2
n )−1

=σ2
i . (112)

Lemma 5 proof:

I(xi; yi|xi−1
0 ,yi−1

0 ) =H(xi|xi−1
0 ,yi−1

0 )

−H(xi|yi,xi−1
0 ,yi−1

0 )

=H(xi)

−H(xi|yi,xi−1
0 ,yi−1

0 ), (113)

where the conditioning in the first term of the RHS is dropped
as xi are IID random variables, and there is no feedback in
the channel. Regarding the second term of the RHS of (113),
consider:

P (xi|yi,xi−1
0 ,yi−1

0 ) =

∫
zi

P (xi|zi, yi,xi−1
0 ,yi−1

0 )

P (zi|yi,xi−1
0 ,yi−1

0 ) dzi

=

∫
zi

P (xi|zi, yi)

P (zi|yi,xi−1
0 ,yi−1

0 ) dzi, (114)

where the conditioning in the first term of the integral has
been dropped, because xi is conditionally independent of
(xi−1

0 ,yi−1
0 ) given (zi, yi). Notice also that, for the second

term on the RHS of (114), yi and (xi−1
0 ,yi−1

0 ) are condition-
ally independent given zi, thus:

P (zi|yi,xi−1
0 ,yi−1

0 )=
P (yi,x

i−1
0 ,yi−1

0 |zi)P (zi)

P (yi,x
i−1
0 ,yi−1

0 )

=
P (yi|zi)P (xi−1

0 ,yi−1
0 |zi)P (zi)

P (yi,x
i−1
0 ,yi−1

0 )

=
P (zi|yi)P (yi)

P (zi)

×P (zi|xi−1
0 ,yi−1

0 )P (xi−1
0 ,yi−1

0 )

P (zi)

× P (zi)

P (yi,x
i−1
0 ,yi−1

0 )

=k
P (zi|yi)P (zi|xi−1

0 ,yi−1
0 )

P (zi)

=F(zi, yi, µi, (Σi − Σε))

=P (zi|yi, µi, (Σi − Σε)), (115)

where k is a constant, and F is a function. Therefore, substi-
tuting (115) into (114):

P (xi|yi,xi−1
0 ,yi−1

0 ) =

∫
zi

P (xi|zi, yi)

P (zi|yi, µi, (Σi − Σε)) dzi

=

∫
zi

P (xi|zi, yi, µi, (Σi − Σε))

P (zi|yi, µi, (Σi − Σε)) dzi

=P (xi|yi, µi, (Σi − Σε))

=⇒ H(xi|yi,xi−1
0 ,yi−1

0 ) =H(xi|yi, µi, (Σi − Σε)), (116)

substituting (116) into (113)

I(xi; yi|xi−1
0 ,yi−1

0 ) =H(xi)−H(xi|yi, µi, (Σi − Σε))

= I(xi; yi|µi, (Σi − Σε)), (117)

which proves Lemma 5.
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Lemma 6

For identity matrix, I , and PDS matrix D, there exists a
PDS matrix D′ such that:

(I −D)−1 = I +D′. (118)

Proof:

From [31, pp. 151]:

(I −D)−1 = I + (I −D)−1D. (119)

Given that (I−D) is a PDS matrix, (I−D)−1 is also a PDS
matrix. Also, since D is a PDS matrix, then (I−D)−1D must
be a PDS matrix, which is renamed D′ to prove Lemma 6.

Lemma 7

For identity matrix, I , and PDS matrix D, there exists a
PDS matrix D′ such that:

(I +D)−1 = I −D′. (120)

Proof:

From [31, pp. 151]:

(I +D)−1 = I − (I +D)−1D. (121)

Given that (I+D) is a PDS matrix, (I+D)−1 is also a PDS
matrix. Also, since D is a PDS matrix, then (I+D)−1D must
be a PDS matrix, which is renamed D′ to prove Lemma 7.

Lemma 8

For 2×2 identity matrix, I , and 2×2 PDS matrix, D, with
(I −D) also a 2× 2 PDS matrix, it follows that:

|I −D| < 1. (122)

Proof:

Let:

D =

[
d1 d2

d2 d4

]
, (123)

therefore:

|I −D|= (1− d1)(1− d4)− d2
2

= 1− d1 − d4 + d1d4 − d2
2, (124)

consider 0 < d1, d4 < 1, therefore:

d1, d4>d1d4 (125)
=⇒ 1> 1− d1 − d4 + d1d4 − d2

2

= |I −D|, (126)

thus proving Lemma 8.

Corollary 9 proof:

Rearranging (29) we can see:

(σ′′′i )2=
1

σ2
z

σ2
i , (127)

furthermore, using the location scale property of the Gaussian
distribution we can make the following substitutions without
loss of generality:

x′′′i =
1

σx
xi, (128)

µ′′′′i =
1

σz
µ′i, (129)

substituting these into (28) yields:

Ii=E
(

log2

(
σ2
z |µ′′′′i |2σ2

x + σ2
n

σ2
x|x′′′i |2σ2

z(σ′′′i )2 + σ2
n

))

=E

log2

 σ2
zσ

2
x

σ2
n
|µ′′′′i |2 + 1

σ2
zσ

2
x

σ2
n
|x′′′i |2(σ′′′i )2 + 1

 , (130)

and thus making the substitution, SNR = σ2
zσ

2
x/σ

2
n, proves

Corollary 9.

Lemma 12 proof:

A sufficient condition to prove the Lemma is that the
differential, d(Ii)/d(|a|2), is non-negative in the region of
interest. Thus by the chain rule, it is sufficient that both
d(Ii)/d(σ2

i ) and d(σ2
i )/d(|a|2) are non-positive in the region

of interest:

d(Ii)
d(|a|2)

=
d(Ii)
d(σ2

i )
× d(σ2

i )

d(|a|2)
. (131)

Consider the first term in the RHS of (131), starting from
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(28), and using the definition of µ′′′ in (85):

Ii=
∫
x

P (x)

∫
(|µ′′′|2)

P (|µ′′′|2){
log2

(
|µ′′′|2(σ2

z − σ2
i )σ2

x + σ2
n

|xi|2σ2
i + σ2

n

)}
d(|µ′′′|2) dx

=

∫
x

P (x)

∫
(|µ′′′|2)

P (|µ′′′|2){
log2

(
|µ′′′|2(σ2

z − σ2
i )σ2

x + σ2
n

)
− log2

(
|xi|2σ2

i + σ2
n

)}
d(|µ′′′|2) dx (132)

=⇒
dIi
dσ2

i

=

∫
x

P (x)

∫
(|µ′′′|2)

P (|µ′′′|2){
d
(
log2

(
|µ′′′i |2(σ2

z − σ2
i )σ2

x + σ2
n

))
dσ2

i

−
d
(
log2

(
|xi|2σ2

i + σ2
n

))
dσ2

i

}
d(|µ′′′|2) dx

=

∫
x

P (x)

∫
(|µ′′′|2)

P (|µ′′′|2){
− |µ′′′|2σ2

x

loge(2) (|µ′′′|2(σ2
z − σ2

i )σ2
x + σ2

n)

− |xi|2

loge(2) (|xi|2σ2
i + σ2

n)

}
d(|µ′′′|2) dx

≤0. (133)

Consider the second term in the RHS of (131). As σ2
i forms

a series, we use proof by induction. Consider σ2
0 which is equal

to σ2
z :

d(σ2
0)

d(|a|2)
=0

≤0. (134)

Now consider σ2
i , from (29) assuming that d(σ2

i )/d(|a|2) ≤
0:

d(σ2
i )

d(|a|2)
=−σ2

z + (σ−2
i−1 + |xi−1|2σ−2

n )−1

+
|a|2

(σ−2
i−1 + |xi−1|2σ−2

n )2(σ2
i−1)2

d(σ2
i−1)

d(|a|2)
(135)

≤0, (136)

which is obtained by noticing that (35) means that the mag-
nitude of the second term on the RHS of (135) is smaller
than the magnitude of the first term on the RHS of (135),
and thus these two terms sum together to give a non-positive
number. The remainder of the proof follows by the induction.
Substituting (133) and (136) into (131) proves Lemma 12.
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