Title Page

Breast milk nutrient content and infancy growth

Authors & affiliations:

Dr Philippa Prentice, Department of Paediatrics, University of Cambridge MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, UK

Dr Ken K Ong, Department of Paediatrics, University of Cambridge MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, UK, MRC Epidemiology Unit, University of Cambridge, UK

Dr Marieke H Schoemaker, Mead Johnson Pediatric Nutrition Institute, Nijmegen, Netherlands

Dr Eric AF van Tol Mead Johnson Pediatric Nutrition Institute, Nijmegen, Netherlands

Professor Jacques Vervoort Wageningen University, Netherlands

Professor Ieuan A Hughes, University of Cambridge MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, UK

Dr Carlo L Acerini Department of Paediatrics, University of Cambridge MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, UK

Professor David B Dunger Department of Paediatrics, University of Cambridge MRL Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, UK

Short title: Breast milk and infancy growth

Corresponding author: Professor David Dunger, Box 116, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ Tel: +44 1223 336886 Fax: +44 1223 336996 Email: dbd25@cam.ac.uk

Statement of financial support: PP was supported by a MRC Clinical Training Fellowship (G1001995). The Cambridge Baby Growth Study has been supported by the European Union, the World Cancer Research Foundation International, the Medical Research Council, the NIHR Cambridge Comprehensive Biomedical Research Centre, the Newlife Foundation for disabled children, the Mothercare Group Foundation, and Mead Johnson Nutrition.

1 Abstract

2	Aim: Benefits of human breast milk (HM) in avoiding rapid infancy weight-gain and
3	later obesity could relate to its nutrient content. We tested the hypothesis that
4	differential HM total calorie content (TCC) or macronutrient contents may be
5	associated with infancy growth. Methods: HM hindmilk samples were collected at
6	ages 4-8 weeks from 614 mothers participating in a representative birth cohort, with
7	repeated infancy anthropometry. HM triglyceride (fat), lipid analytes and lactose
8	(carbohydrate) were measured by ¹ H-NMR, and protein content by the Dumas
9	method. TCC and %macronutrients were determined. Results: In 614 HM samples,
10	fat content was: [median(IQR)]:2.6 (1.7-3.6)g/100mls, carbohydrate:8.6 (8.2-
11	8.8)g/100mls, protein:1.2 (1.1-1.2)g/100mls; TCC:61.8 (53.7-71.3)kcal/100mls. HM
12	of mothers exclusively breast-feeding vs. mixed-feeding was more calorific with
13	higher %fat, lower %carbohydrate and lower %protein. Higher HM TCC was
14	associated with lower 12m body mass index (BMI)/adiposity, and lower 3-12m gains
15	in weight/BMI. HM %fat was inversely related to 3-12m gains in weight, BMI and
16	adiposity, whereas %carbohydrate was positively related to these measures. HM
17	%protein was positively related to 12m BMI. Conclusion: HM analysis showed wide
18	variation in %macronutrients. Although data on milk intakes were unavailable, our
19	findings suggest functional relevance of HM milk composition to infant growth.
20	
21	Keywords: breast milk, macronutrients, nutrition, weight, growth
22	

24 Keynotes

25	•	Breast feeding is associated with lower rates of infancy weight-gain and later
26		obesity, however data on breast milk composition and relationships with
27		growth are sparse.
28	•	Macronutrient contents of 614 hindmilk samples were: fat: [median(IQR)]:2.6
29		(1.7-3.6)g/100mls, carbohydrate:8.6 (8.2-8.8)g/100mls, protein:1.2 (1.1-
30		1.2)g/100mls.
31	•	Whilst %carbohydrate was positively related to later infant weight and
32		adiposity, %fat was inversely related, with % protein only positively related to
33		body mass index, suggesting functional implications of breast milk
34		macronutrient contents.
35		
36		

37 Introduction

38 It is increasingly recognised that early postnatal nutrition, as well as being 39 critical for optimal infancy growth, may also be associated with long-term health 40 outcomes (1). Rapid early infant weight gain predisposes to an adverse metabolic 41 phenotype in later life, with increased risk of overweight (2), central adiposity and 42 insulin resistance (3). The type of infant milk feeding (exclusive breast-feeding, 43 formula-feeding or mixing feeding), as well as specific dietary compositions and 44 volume of intake, may be important factors.

45 In contemporary western settings breast-feeding has been associated with 46 slower gains in infancy weight (4) and body fat (5), and although debated has also 47 been linked to lower risk for obesity and associated metabolic disease risk across 48 the life-course (6). It is unclear whether the slower infancy weight gain in breast-fed 49 babies is a result of lower total calorie intake or related to the nutrient composition of 50 human breast milk (HM). Previous studies documenting HM energy or macronutrient 51 contents have been recently reviewed (7) (8). Most were performed in small sample 52 sizes and few attempted to assess the influence of HM composition on subsequent 53 infancy growth outcomes.

54 The evidence on the potential effects of milk nutrient composition on infancy 55 growth is therefore almost entirely limited to trials comparing artificial infant milk 56 formulas. They report that higher milk protein concentrations increase infancy 57 weight gain and predisposition to obesity (9), but there is inconsistent evidence on 58 milk calorie contents (10, 11). In the absence of large population studies, we aimed 59 to investigate the relationships between HM total calorie content, macronutrient 60 contents, or individual lipid species and infancy growth, in a large UK birth cohort 61 study. We hypothesised that specific HM composition may be associated with 62 different patterns of weight and adiposity gain during infancy.

63

64

65

66 Patients & Methods

67 Study Design: The Cambridge Baby Growth Study (CBGS) is a prospective birth 68 cohort, focussing on antenatal and early postnatal determinants of infancy growth, 69 as previously described (5). Mothers were recruited during early pregnancy from a 70 single antenatal centre in Cambridge (2001-2009). The whole cohort included 1585 71 singleton, late preterm / term (gestation \geq 36 weeks) infants with measurements at 72 birth, of whom 924 mothers were breast-feeding their infants at 8 weeks of age. A 73 subcohort of 614 mother-infant dyads, where a breast milk sample was available, is 74 described in the current report. The study was approved by the Cambridge local 75 research ethics committee, and all mothers gave informed written consent. 76

77 Anthropometry: Infants were measured by trained paediatric research nurses, with 78 weight, length, and skinfold thickness assessed in the newborn, and then at 3 and 79 12 months of age. Weight was measured to the nearest 1g using a Seca 757 80 electronic baby scale. Supine length was measured to the nearest 0.1cm using an 81 Infantometer (SECA 416). BMI was then calculated. Skinfold thickness was 82 measured in triplicate at four sites (triceps, subscapular, flank, quadriceps) on the 83 left hand side of the body using a Holtain Tanner/Whitehouse Skinfold Caliper 84 (Holtain Ltd).

85

86 Breast milk collection: To allow for comparable samples and informative

87 macronutrient analysis, mothers who breast-fed their infants were asked to hand 88 express hindmilk samples, after feeding their infant, between 4-8 weeks postnatally, 89 expressing from the same breast that they last used to feed their infant. They 90 repeated this process multiple times, keeping milk samples frozen, and a total of 91 100 mls of hindmilk was collected over a two week period, in order to reduce within-92 day and day-to-day variations. Samples were then kept frozen at -20°C, until 93 processed at a single time point. The pooled sample was thoroughly mixed before94 analysis.

95 Overall, infant feeding practise (exclusive breast- vs. mixed-feeding) was assessed 96 by questionnaire at age 3 months, with detailed questions about current feeding, 97 and age at starting supplementary formula milk feeds, as well as completely 98 stopping breast-feeding. From this information, infants were categorised as either 99 exclusive breast- or mixed-feeding at 8 weeks of age, contemporaneous with the 100 breast milk collections.

101

102 Breast milk assays: Triglyceride (fat) and lactose (carbohydrate) concentrations 103 were measured in homogenised HM samples using ¹H-Nuclear magnetic resonance 104 (NMR) spectra. To determine the lipid concentrations (in mM), 400 microlitres of a 105 homogenised HM sample was mixed with 400 microlitres CDC1₃ solvent for 10 106 minutes, and then centrifuged for 30 minutes at 10.000rpm. The non-polar fraction 107 was then used to measure lipid concentrations, from ¹H-NMR spectra. Triglyceride 108 concentration was used as a surrogate for total fat content, since this contributes 109 95-98% of total HM lipid content (12). A further ten lipid species were also 110 quantified: linoleic acid, diglycerides, monoglycerides, docosahexaenoic acid, 111 18:1/16:1, esterified cholesterol, free cholesterol, total cholesterol, omega 3, 112 monounsaturated fatty acid and polyunsaturated fatty acids, as described previously 113 (13). Lactose, the major HM carbohydrate, was measured from the polar fraction of 114 the milk sample, using ¹H 1D NOESY spectroscopy. Reproducibility of the NMR 115 methods were assessed: the coefficient of variation (CV) for NMR itself was 0.03-116 0.3% for lipid analysis, and 0.1-0.6% for analysis of polar metabolites, such as 117 lactose. Analysis of different aliquots from the same sample showed CVs of 0.3-118 5.8% for lipids and 0.4-4.7% for the polar metabolites. NMR spectral peaks were 119 calibrated using Topspin and analysed based on previous work (14). For protein,

120 total nitrogen was measured by the Dumas method, and the protein factor

121 conversion of 6.25 used to calculate crude protein content.

122 Previous work has shown that storage conditions can potentially affect 123 macronutrient content, especially fat content due to the continued activity of lipases 124 and coalescence of fat globules (15). However, we were careful to homogenise the 125 HM samples before analysis. There was no effect of storage time on macronutrient 126 calories, %fat or %carbohydrate, however %protein was modestly positively 127 associated with the storage time [% per year. B (correlation coefficient) 0.01. 128 p=0.01]. For this reason analyses were adjusted for storage time using multiple 129 regression.

130

Calculations: Age and sex-appropriate standard deviation scores (SDS) were
calculated for infant weight, length and BMI measurements, adjusting for gestational
age in the newborn, by comparison to the UK 1990 growth reference (16), using the
LMS Pro software (17). For each of the four skinfold thicknesses an internal SDS
was calculated, adjusted for age, and the mean of the four skinfolds SDS was used
as estimate measure of adiposity in analyses.

137 The metabolisable energy content of HM was calculated using Atwater 138 conversions, taking energy contents of 4, 4 and 9 kcal/g for protein, lactose and fat, 139 respectively (18), and HM total calorie content (TCC) was then calculated as 140 kcal/100mls. The nutrient density method was used to present macronutrient 141 contents as percentages of total calorie content (i.e. %fat, %carbohydrate, and 142 %protein) (19). In order to distinguish independent effects of the individual lipid 143 species investigated, since the lipid species were highly inter-correlated (all 144 Spearman's coefficients > 0.51, p<0.0005), we used a residual nutrient method: 145 each lipid concentration was regressed against the triglyceride concentration, 146 standardised residuals for each lipid species calculated and these values used in 147 subsequent analysis.

148

149 Statistics: The demographics of the cohort subgroup with HM samples were 150 compared to that of the entire CBGS cohort, and in particular to all mother-infant 151 pairs who were breast-feeding (either exclusively or mixed-feeding) at 8 weeks, 152 using t-tests, chi-squared tests or independent sample median tests. 153 Relationships between HM TCC, or %macronutrient contents, and infancy 154 growth were investigated, using multivariate regression models, including the 155 following variables: birthweight, gestational age, infant sex, nutrition type and HM 156 storage time. Analyses were performed using SPSS version 20, and statistical 157

158

159 Results

160 Cohort description:

significance indicated by p value <0.05.

161 The sub cohort of 614 mothers of singleton, term or later preterm infants who

162 provided a HM sample was similar to all mother-infant pairs in CBGS who were

163 breast-feeding (exclusively or in combination with formula-feeding, N=924). There

164 were no differences with respect to gestational age, maternal age, maternal pre-

165 pregnancy BMI, maternal primiparity, ethnicity, infant size at birth and subsequent

166 growth to 12 months of age. Further details of the sub cohort are shown in Table 1.

167

168 Human milk macronutrient contents

169 For the 614 HM samples analysed, TCC was [median (IQR)]: 61.8 (53.7-71.3)

170 kcal/100mls. The macronutrient composition was: fat (triglycerides) 2.6 (1.7-3.6)

171 g/100mls; protein 1.2 (1.1-1.2) g/100mls; carbohydrate (lactose) 8.6 (8.2-8.8)

172 g/100mls. Macronutrient contents expressed as calories per 100 mls and

173 percentages of TCC are shown in Table 2.

174 HM total calorie and macronutrient contents were unrelated to mother's pre-

175 pregnancy BMI, pregnancy weight gain, parity, gestational age at delivery or socioeconomic status (assessed using home postcode-based index of multiple
deprivation scores as reported previously (20)), and were also unrelated to infant
sex (data not shown).

179

180 77% of the mothers who provided a HM sample were exclusively breast-feeding at 8
181 weeks; the others gave their infants both breast milk and infant formula milk (mixed
182 feeding). HM of exclusively breast-feeding mothers contained higher TCC [medians]
183 (62.6 vs. 58.7 kcal/100mls), higher %fat (37.6 vs. 35.0%), but lower %protein (7.3
184 vs. 8.3%) and %carbohydrate (54.7 vs. 57.5%), all p<0.05. All further analyses
185 were adjusted for exclusive breast-feeding versus mixed feeding, using multivariate
186 regression modeling.

187

188 Associations with infancy growth:

189 As shown in Table 2, HM TCC at 4-8 weeks was inversely associated with BMI 190 (p=0.02) and adiposity (p=0.008) at age 12 months, and with 3-12 month gains in 191 weight (p=0.02) and BMI (p=0.01). With regard to %macronutrient contents (Table 192 2), HM %fat was inversely associated with BMI and adiposity at 12 months, and 193 inversely associated with 3-12 months gains in weight, BMI and adiposity. In 194 contrast, HM %carbohydrate was positively related to weight, BMI and adiposity 195 gains between 3-12 months. Figure 1 shows that the relationships between guintiles 196 of HM %fat or %carbohydrate and adiposity/BMI at 12 months were broadly linear. 197 HM %protein was positively correlated to BMI at 12 months (p=0.04), with no 198 association with 12 month weight or adiposity, or 3-12 month gains. Figure 1 also 199 shows adiposity/BMI for 271 exclusively formula-fed CBGS infants at the time of HM 200 sample collection, for comparison. HM %macronutrient contents showed no 201 relationships with infant length at any age.

202

Sensitivity analyses were carried out, separately by feeding group (exclusive breastfeeding versus mixed feeding at 8 weeks). These showed the same directions of associations as in the total population (full data not shown). For example, in the exclusively breast-feeding subgroup (N=389), the associations with 12 month adiposity were: % HM protein: B 0.02, p=0.3, % carbohydrate: B 0.009, p=0.01, % fat: B -0.007, p=0.02, total calories: B -0.005, p=0.07.

209

210

211 Human milk specific lipid species

212

213 Concentrations of ten specific HM lipid species are shown in Table 3. In separate 214 models for each lipid species (adjusted for birthweight, gestational age, sex and 215 exclusive breast- vs. mixed-feeding), all ten lipid species showed inverse 216 associations with infant adiposity at 12 months (data not shown). Using the residual 217 nutrient method, linoleic acid was the only lipid species that remained inversely 218 related to infant adiposity at 12 months (p=0.05).

219

220 Discussion

221 To our knowledge, this study of 614 mother-infant pairs is the largest report 222 describing HM macronutrient contents, and the first extensive study to investigate 223 their relationships with infancy growth. We showed inverse associations between 224 HM total calorie content and subsequent gains in weight and BMI, and also later 225 adiposity. Regarding individual HM macronutrients, %carbohydrate was positively 226 correlated to subsequent infant weight, BMI and adiposity gains, whereas %fat was negatively associated with these infancy outcomes. HM %protein was weakly 227 228 positively associated with BMI at 12 months but not gains in adiposity. 229 Associations between HM contents and infancy growth have not been 230 previously reported, largely due to the lack of other large studies. However, in

support of our study design, the observed positive association between HM
%protein content and 12m BMI is consistent with experimental evidence from large
clinical trials that tested isocaloric infant milk formulas containing high versus usual
protein contents. Unfortunately, HM intakes were not assessed in our study and
therefore we cannot assess whether the associations observed with HM contents
were mediated by nutrient intakes.

237 Of relevance, a recent study reported an inverse association between fat 238 intake at 2 years of age and body fat, assessed by bioelectrical impedance analysis 239 at 20 years (21), also suggesting that early diet containing greater fat may benefit 240 later body composition, either directly or indirectly. A higher proportion of ingested 241 carbohydrate may promote storage of glycogen and fat. Alternatively, it is possible 242 that infants fed HM with lower %fat may feel less satiated and drink larger volumes 243 of milk, hence gaining more weight. This hypothesis is supported by previous 244 observations that HM % fat was inversely related to the volume of HM intake. 245 whereas %lactose was positively correlated (22), and by older studies reporting that 246 infants consuming formula milk with lower energy, had higher dietary intakes (11). 247 A recent systematic review concluded that higher protein intake in infancy 248 and early childhood is associated with faster weight gain and greater BMI in 249 childhood (23). We did not have further detailed body composition data, making it 250 difficult to distinguish between gains in lean mass or fat mass. We found relatively 251 less inter-person variability in %protein than in other macronutrients and it may be 252 that larger differences in %protein, such as those seen in formula milk studies (9), 253 are needed to observe significant influences of protein content on infancy weight 254 gain.

It is difficult to directly compare our results with other previous studies of HM constituents, due to differences in the timing of HM collection with pooling of samples, sampling of solely hindmilk, HM assays, and the nature of the populations sampled. A recent systematic review summarised the results of 'mature' HM

11

samples (taken 2-4 weeks postnatally) (7), a total of: 415 for protein, 476 for
carbohydrate and 567 for lipids, pooling data from a minimum of 18 studies
worldwide, with the largest sample size of 71 in any single study. Our study is
therefore far larger than any other reported, allowing informative associations with
HM macronutrient contents in the range of the previously pooled meta-analysed
values.

265 Heinig et al (1993) showed that total energy and protein intakes were 266 positively correlated to weight, not only in formula-fed infants (N=46) but also in 267 those exclusively breast-fed (N=73) (24). Specifically, total protein intake was 268 positively correlated with 3-6 month and 6-9 month weight gain in breast-fed infants. 269 Butte et al (2000) reported that intakes of HM protein, fat and carbohydrate, were all 270 positively correlated with weight gain and fat free mass gain (assessed using a 271 multicomponent body composition model) at 3-6 months, but not with fat mass gain, 272 in 40 breast-fed infants and 36 formula-fed infants (25). These studies assessed 273 intakes, not HM content, and were also much smaller cohorts, assessing 274 anthropometry at different time points, with different methods for HM collection and 275 nutrient analysis. Further, larger studies, across different populations, with 276 information on both composition and intakes are needed, using a standardised 277 sampling protocol.

278 It is interesting to note that the associations between HM macronutrient 279 contents and infant anthropometry in our study were mainly with weight, BMI and 280 adiposity, with no apparent influence on length gains. This is surprising as weight 281 gain and statural growth are closely linked in infancy, hence it may be speculated 282 that other confounders could explain the findings with adiposity. Maternal 283 characteristics could be one source of confounding. Some small previous reports 284 have shown correlations between specific maternal factors and HM fat content 285 including parity (26) and maternal anthropometric status (27). However, these 286 associations have not been extended to all macronutrients or been well replicated,

12

and we found no associations between such maternal factors and HM nutrient
contents. We did not assess maternal diet but other studies have reported no
relationship with HM contents (27).

290 Alternatively, it may be that other constituents in breast milk, such as 291 individual lipid moieties, could explain the relationships seen with HM 292 macronutrients and in particular the inverse relationships between lipid and infancy 293 adiposity. Disentangling the potential independent contribution to growth from 294 individual fatty acids, which are highly correlated with total lipid proved to be difficult. 295 Only the omega-6 fatty acid, linoleic acid showed a consistent independent inverse 296 relationship with later infancy adiposity. Of note, in the literature n-3 and n-6 long-297 chain polyunsaturated fatty acids have received interest with respect to growth and 298 development, with for example with suggested beneficial effects on growth with 299 alpha-linoleic/DHA supplementation in developing countries, (28), however 300 generally there is an overall paucity of data for n-3 or n-6 LC-PUFAs (15-17). 301 Further detailed LC-PUFA analyses and subsequent studies are required to confirm

302 our finding, and investigate this area further.

303 The higher total calorie content found in HM from mothers who were 304 exclusively breast-feeding, when compared to those mixed-feeding, is consistent 305 with other observations, maintaining sufficient continued nutrition (29), and 306 suggesting that HM energy content may be down-regulated by infants mixed-307 feeding. The higher %fat, with lower %protein and %carbohydrate, seen in milk of 308 mothers exclusively breast-feeding, may support our findings of growth associations 309 in indicating that this is a beneficial HM composition with regard to subsequent 310 infant adiposity. It could also be speculated that a higher %fat results in greater 311 infant satiation, resulting in continued breast-feeding, whereas hungrier babies 312 consuming HM with lower fat content are more likely to be given supplementary 313 formula milk.

314 Alternatively, there may be differences in HM production, regulated by the 315 suckling infant, or even potential confounding by the collection techniques used by 316 mothers expressing milk. Hindmilk contains more fat than foremilk (30) and 317 therefore it is not implausible that the exclusively fed infants consumed more milk, 318 and their HM samples contained relatively more hindmilk. We adjusted for exclusive 319 breast-versus mixed-feeding in our subsequent analytical models, with no 320 interaction seen between feeding type and macronutrient content in analyses, and 321 thus this issue is unlikely to confound the associations with infant growth. Similar 322 trends between HM macronutrient contents and infancy body size/growth were also 323 apparent in the exclusively breast-fed subgroup: although generally less significant 324 in this smaller group, correlations were in the same direction, and with similar effect 325 sizes.

326 Limitations of our study include the lack of information on HM intakes, and 327 therefore it was not possible to calculate total energy and macronutrient intakes. HM 328 lipid and protein contents are known to vary between individual feeds and with 329 different stages of lactation(7, 8). Mothers were encouraged to pool, over a period of 330 2 weeks, their collections of expressed hindmilk; however it is possible that 331 systematic differences existed between collections and information on the timings of 332 milk collection was not recorded. Some of these limitations will be tackled and 333 subject of further studies.

334

335 *Conclusion:* In conclusion, in this large study of HM macronutrient content, we found

that HM nutrient composition in early infancy differs between exclusively breast-

feeding and mixed-feeding mothers. Of note, HM %fat and %carbohydrate,

338 predicted changes in infancy weight and adiposity gains up to age 12 months, with

339 %protein positively related to 12 month BMI. There were no associations with length

340 gains. Although data on milk intakes were unavailable, our findings suggest that

higher HM %fat but lower %carbohydrate may be associated with lower gains inadiposity and BMI.

Acknowledgements: We acknowledge the CBGS research nurses Suzanne Smith,

343

344

345	Ann-Marie Wardell & Karen Forbes. We thank all the families who contributed to the			
346	study, the staff at the Addenbrooke's Wellcome Trust Clinical Research Facility, the			
347	NIHR Cambridge Comprehensive Biomedical Research Centre, and the midwives at			
348	the Rosie Maternity Hospital, Cambridge, UK.			
349				
350	Conflict of Interest Statement: This study received unconditional funding support			
351	from Mead Johnson Nutrition. MH Schoemaker and EAF van Tol are employees of			
352	Mead Johns	on Nutrition. No other authors declare a conflict of interest.		
353				
354				
355				
356	Abbreviatio	ns		
357	ALA	Alpha-linolenic acid		
358	BMI	Body mass index		
359	CBGS	Cambridge Baby Growth Study		
360	DHA	Docosahexaenoic acid		
361	LC-PUFA	Long chain polyunsaturated fatty acid		
362	НМ	Human breast milk		
363	IQR	Interquartile range		
364	m	Month		
365	NMR	Nuclear magnetic resonance		
366	NOESY	Nuclear Overhauser effect spectroscopy		
367	SDS	Standard deviation score		

368 TCC Total calorie content

References

Lanigan J, Singhal A. Early nutrition and long-term health: a practical approach.
 Proc Nutr Soc 2009; 68:422-9

2. Ong KK, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. *Acta paediatr* 2006; 95:904-8

3. Leunissen RW, Kerkhof GF, Stijnen T, Hokken-Koelega A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. *JAMA* 2009; 301:2234-42

4. Ziegler EE. Growth of breast-fed and formula-fed infants. *Nestle Nutrition workshop series Paediatric programme* 2006; 58:51-9; discussion 9-63

Ong KK, Langkamp M, Ranke MB, Whitehead K, Hughes IA, Acerini CL, et al.
 Insulin-like growth factor I concentrations in infancy predict differential gains in body
 length and adiposity: the Cambridge Baby Growth Study. *Am J Clin Nutr* 2009; 90:156-61

6. Horta BL VC. Long-term effects of breastfeeding: A Systematic review. *World Health Organisation* 2013

7. Hester SN, Hustead DS, Mackey AD, Singhal A, Marriage BJ. Is the macronutrient intake of formula-fed infants greater than breast-fed infants in early infancy? *J Nutr Metab* 2012;1-13

8. Reilly JJ, Ashworth S, Wells JC. Metabolisable energy consumption in the exclusively breast-fed infant aged 3-6 months from the developed world: a systematic review. *Br J Nutr* 2005; 94:56-63

9. Koletzko B, Beyer J, Brands B, Demmelmair H, Grote V, Haile G, et al. Early influences of nutrition on postnatal growth. *Nestle Nutrition Institute workshop series* 2013; 71:11-27

10. Singhal A, Kennedy K, Lanigan J, Fewtrell M, Cole TJ, Stephenson T, et al. Nutrition in infancy and long-term risk of obesity: evidence from 2 randomized controlled trials. *Am J Clin Nutr* 2010; 92:1133-44

11. Fomon SJ, Filmer LJ, Jr., Thomas LN, Anderson TA, Nelson SE. Influence of formula concentration on caloric intake and growth of normal infants. *Acta paediatr Scand* 1975; 64:172-81

12. Bittman J, Carlson SE, Couch SC, et al. Milk lipids. In: Jensen RG, editor *Handbook of Milk Composition*: Academic Press, San Diego, Calif, USA; 1995 p.495-573

Hoek-van den Hil EF, Keijer J, Bunschoten A, Vervoort JJ, Stankova B,
Bekkenkamp M, et al. Quercetin induces hepatic lipid omega-oxidation and lowers
serum lipid levels in mice. *PLoS One* 2013; 8:e51588

14. Vinaixa M, Rodriguez MA, Rull A, Beltran R, Blade C, Brezmes J, et al. Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease. *J Proteome Res* 2010; 9:2527-38

15. Neville M. Sampling and storage of human milk. In: Jensen RG, editor *Handbook of Milk Composition*: Academic Press, San Diego, Calif, USA; 1995 p. 63-79

16. Freeman JV, Cole TJ, Chinn S, Jones PR, White EM, Preece MA. Cross sectional stature and weight reference curves for the UK, 1990. *Arch Dis Child* 1995; 73:17-24

17. Pan H CT. LMSgrowth, a Microsoft Excel add-in to access growth references based on the LMS method. Version 2.76. *www.healthforallchildren.com* 2011

18. de Kanashiro HC, Brown KH, Lopez de Romana G, Lopez T, Black RE.
Consumption of food and nutrients by infants in Huascar (Lima), Peru. *Am J Clin Nutr*1990; 52:995-1004

19. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. *Am J Clin Nutr* 1997; 65:1220S-8S; discussion 9S-31S

20. Lauzon-Guillain B, Wijndaele K, Clark M, Acerini CL, Hughes IA, Dunger DB, et al. Breastfeeding and infant temperament at age three months. *PLoS One* 2012; 7:e29326

21. Rolland-Cachera MF, Maillot M, Deheeger M, Souberbielle JC, Peneau S, Hercberg S. Association of nutrition in early life with body fat and serum leptin at adult age. *Int J Obes* 2013; 37:1116-22

22. Nommsen LA, Lovelady CA, Heinig MJ, Lonnerdal B, Dewey KG. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: the DARLING Study. *Am J Clin Nutr* 1991; 53:457-65

23. Hornell A, Lagstrom H, Lande B, Thorsdottir I. Protein intake from 0 to 18 years of age and its relation to health: a systematic literature review for the 5th Nordic Nutrition Recommendations. *Food & nutrition research* 2013; 57

24. Heinig MJ, Nommsen LA, Peerson JM, Lonnerdal B, Dewey KG. Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: the DARLING Study. *Am J Clin Nutr* 1993; 58:152-61

25. Butte NF, Wong WW, Hopkinson JM, Smith EO, Ellis KJ. Infant feeding mode affects early growth and body composition. *Pediatrics* 2000; 106:1355-66

26. Jensen RG. Miscellaneous factors affecting composition and volume of human and bovine milks. In: Jensen RG, editor Handbook of Milk Composition: Academic Press, San Diego, Calif, USA; 1995 p. 237-72

27. Villalpando S, del Prado M. Interrelation among dietary energy and fat intakes, maternal body fatness, and milk total lipid in humans. *J Mammary Gland Biol Neoplasia* 1999; 4:285-95

28. Huffman SL, Harika RK, Eilander A, Osendarp SJ. Essential fats: how do they affect growth and development of infants and young children in developing countries? A literature review. *Matern Child Nutr* 2011; 7 Suppl 3:44-65

Wells JC, Jonsdottir OH, Hibberd PL, Fewtrell MS, Thorsdottir I, Eaton S, et al.
Randomized controlled trial of 4 compared with 6 mo of exclusive breastfeeding in
Iceland: differences in breast-milk intake by stable-isotope probe. *Am J Clin Nutr* 2012;
96:73-9

30. Jensen RG. The lipids in human milk. *Prog Lipid Res.* 1996; 35:53-92

Table 1: Description of the study members who provided a breast milk sample, in relation to the wider Cambridge Baby Growth Study cohort. Median & IQR are displayed.

	Mothers providing HM samples (N=614)	All CBGS mothers exclusively breast- & mixed-feeding (N=924)
Demographics		
Gestational age (weeks)	40.1 (39.1-41.0)	40.0 (39.1-41.0)
Maternal age (years)	33.9 (31.1-36.5)	34.0 (31.2-36.5)
Maternal BMI (kg/m2)	22.8 (20.9-25.2)	22.7 (20.8-25.2)
Index of deprivation	9.0 (6.9-9.0)	9.0 (6.8-9.0)
Maternal primiparity (%)	43%	42%
White Caucasian (%)	96%	96%
Infant sex (% male)	51%	51%
Exclusive breast-feeding (%)	73%	77%
Growth data		
Birth		
Weight (kg)	3.56 (3.22-3.87)	3.55 (3.22-3.85)
Length (cm)	51.5 (50.0-53.5)	51.5 (50.0-53.3)
Mean skinfold thickness (mm)	6.2 (5.3-7.4)	6.1 (5.2-7.3)
BMI (kg/m2)	13.3 (12.2-14.3)	13.3 (12.2-14.2)
3 months		
Weight (kg)	6.10 (5.60-6.64)	6.09 (5.59-6.62)
Length (cm)	61.2 (59.4-63.0)	61.2 (59.5-63.0)
Mean skinfold thickness (mm)	10.8 (9.4-11.9)	10.7 (9.4-11.9)
BMI (kg/m2)	16.3 (15.4-17.2)	16.2 (15.3-17.2)
12 months		
Weight (kg)	9.85 (9.10-10.60)	9.88 (9.15-10.60)
Length (cm)	75.8 (74.0-77.7)	75.6 (73.9-77.7)
Mean skinfold thickness (mm)	11.0 (9.8-12.5)	11.0 (9.7-12.4)
BMI (kg/m2)	17.1 (16.2-18.0)	17.1 (16.3-18.1)

Table 2: Human milk macronutrient contents and their associations with infancy growth (based on N=614 samples).

	Fat	Carbohydrate	Protein	Total calorie content
Macronutrient contents*				
Calories (kcal) per 100 mls	23.1 (15.4-32.4)	34.3 (32.9-35.3)	4.6 (4.2-5.1)	
%macronutrient content ¹	37.3 (28.4-48.9)	55.2 (47.6-62.9)	7.5 (6.4-9.0)	
Associations with growth				
Weight SDS at 3 mo	B -0.001, p=0.7	B 0.001, p=0.8	B 0.02, p=0.3	B -0.002, p=0.4
Weight SDS at 12 mo	B -0.005, p=0.1	B 0.006, p=0.2	B 0.03, p=0.1	B -0.005, p=0.1
Delta weight SDS 3-12 mo	B -0.007, p=0.02	B 0.008, p=0.02	B 0.03, p=0.1	B -0.006, p=0.02
Mean skinfolds SDS at 3 mo	B -0.004, p=0.2	B 0.004, p=0.1	B 0.02, p=0.3	B -0.003, p=0.3
Mean skinfolds SDS at 12 mo	B -0.009, p=0.001	B 0.01, p<0.0005	B 0.03, p=0.1	B -0.007, p=0.008
Delta skinfolds SDS 3-12 mo	B -0.007, p=0.04	B 0.008, p=0.03	B 0.02, p=0.4	B -0.005, p=0.08
BMI SDS at 3 mo	B -0.004, p=0.3	B 0.004, p=0.3	B 0.02, p=0.4	B -0.002, p=0.4
BMI SDS at 12 mo	B -0.01, p=0.002	B 0.01, p=0.002	B 0.04, p=0.04	B -0.008, p=0.02
Delta BMI SDS 3-12 mo	B -0.01, p=0.005	B 0.01, p=0.005	B 0.04, p=0.08	B -0.008, p=0.01
Length SDS at 3 mo	B 0.002, p=0.5	B -0.003, p=0.4	B 0.01, p=0.5	B -0.001, p=0.6
Length SDS at 12 mo	B 0.004, p=0.3	B -0.005, p=0.2	B 0.003, p=0.9	B 0.000, p=0.9
Delta length SDS 3-12 mo	B 0.001, p=0.6	B -0.003, p=0.6	B -0.005, p=0.7	B 0.001, p=0.6

*median (IQR) ¹%macronutrient was calculated as macronutrient energy / total energy content

Models were adjusted for exclusive breast- vs. mixed feeding at 8 weeks, sex, GA, birthweight, duration of sample storage

Table 3: Concentrations of human milk lipid species (mmol/ L) N=614

	Lipid species	Median (IQR) mmol/ L
	Linoleic acid	6.62 (4.39-9.17)
	Diglycerides	1.95 (1.19-3.02)
	Monoglycerides	0.63 (0.38-0.94)
	DHA	0.32 (0.22-0.44)
	18:1/16:1	0.77 (0.53-1.08)
	Esterified cholesterol	0.18 (0.13-0.24)
	Free cholesterol	0.20 (0.14-0.29)
	Total cholesterol	0.37 (0.26-0.49)
	Omega 3	2.48 (1.62-3.53)
	MUFA & PUFA	80.96 (54.66-110.56)
DHA: Docosahexaenoic acid	18:1/16:1 : Oleic/palmitoleic acid	MUFA & PUFA: Monounsaturated fatty acid

Figure 1: Infant adiposity at 12 months by quintiles of human milk macronutrient contents at 4-8 weeks.

a) 12 month SF SDS: skinfold standard deviation score as the mean SDS of measurements at four sites. Error bars indicate group means & 95% confidence intervals.

b) 12 month BMI SDS. Error bars indicate group means & 95% confidence intervals.