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ABSTRACT Aging and developmental programming
are both associated with oxidative stress and endothelial
dysfunction, suggesting common mechanistic origins.
However, their interrelationship has been little explored.
In a rodent model of programmed cardiovascular dys-
functionwedetermined endothelial function and vascular
telomere length in young (4 mo) and aged (15 mo) adult
offspring of normoxic or hypoxic pregnancy with or with-
out maternal antioxidant treatment. We show loss of en-
dothelial function [maximal arterial relaxation to
acetylcholine (71 6 3 vs. 55 6 3%) and increased vascu-
lar short telomere abundance (4.2–1.3 kb) 43.06 1.5 vs.
55.1 6 3.8%) in aged vs. young offspring of normoxic
pregnancy (P < 0.05). Hypoxic pregnancy in young off-
spring accelerated endothelial dysfunction (maximal arte-
rial relaxation to acetylcholine: 426 1%, P < 0.05) but this
was dissociated from increased vascular short telomere
length abundance. Maternal allopurinol rescued maximal
arterial relaxation to acetylcholine in aged offspring of
normoxic or hypoxic pregnancy but not in young offspring
of hypoxic pregnancy. Aged offspring of hypoxic allopu-
rinolpregnancycomparedwithagedoffspringofuntreated
hypoxic pregnancy had lower levels of short telomeres
(vascular short telomere length abundance 35.1 6 2.5 vs.
48.2 6 2.6%) and of plasma proinflammatory chemokine
(24.6 6 2.8 vs. 36.8 6 5.5 pg/ml, P < 0.05). These data
provide evidence for divergence of mechanistic pathways
mediating cardiovascular aging and developmental pro-
gramming of cardiovascular disease, and aging being
decelerated by antioxidants even prior to birth.—Allison,
B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C.,
Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B.,
Tarry-Adkins, J. L.,Ozanne, S.E.,Giussani,D.A.Divergence
ofmechanistic pathwaysmediating cardiovascular aging and
developmental programming of cardiovascular disease.
FASEB J. 30, 1968–1975 (2016). www.fasebj.org
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Cardiovascular disease is the leading cause of death today,
imposing a staggering burden on nearly every country’s
health and wealth (1, 2). Across the world, heart disease
results in 1 in 3 deaths per year and the economic load
amounts to over £30 billion annually in the United King-
dom and over $130 billion per year in the United States
and Canada (3, 4). Consequently, there is great interest
in identifying therapeutic targets against risk factors pro-
moting cardiovascular disease. Such risk factors include
established concepts, such as aging (5), andmore recently
accepted ideas, such as developmental programming.
Overwhelming evidence derived from human epidemiol-
ogy and experimental studies in animal models now shows
that adverse conditions during pregnancy increases sus-
ceptibility to cardiovascular disease in later life (6–8).

Interestingly, cardiovascular degeneration associated
with normal aging and developmental programming of
cardiovascular disease share a number of common fea-
tures. These include loss of endothelial-dependent vaso-
dilation inperipheral resistance circulations (7, 9–13) and
shortened telomere length (14, 15). This raises the possi-
bility that cardiovascular degeneration associated with
normal aging and developmental programming of car-
diovascular disease may share common mechanistic
pathways. Indeed, many studies have suggested that
developmental programming of diseasemay be a form of
accelerated aging (16–21).

One candidate mechanism involved in both cardiovascu-
lar aging and developmental programming of cardiovascu-
lar disease is oxidative stress. Harman’s free radical theory of
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aging (22), which stated that inappropriate accumulation of
free radicals was linked with cumulative cell damage, has
stood the test of time. Since then, numerous reports have
linked aging with enhanced oxidative/inflammatory stress
and/or impaired antioxidant defenses (23–25). Similarly,
many studies have reported that maternal treatment with
antioxidants in complicated pregnancy protects against
programmed cardiometabolic dysfunction in later life (11,
16, 26–31).

Although aging and a suboptimal intrauterine environ-
ment are independent risk factors for cardiovascular dys-
function in later life, investigationof their interrelationship
has been restricted to few studies (13, 32). Furthermore,
whether maternal antioxidant therapy protects against
cardiovasculardisease in the youngadult aswell as the aged
offspringofhealthyor suboptimal pregnancy is not known.
The most common feature of suboptimal pregnancy is
chronic fetal hypoxia (7, 12, 33), and a powerful pro-
oxidant mechanism stimulated by chronic hypoxia is
activation of the xanthine oxidase pathway (34, 35).
Therefore, in this study, we have used an established ro-
dent model of programmed cardiovascular dysfunction
to test the interrelated hypotheses: 1) that developmental
hypoxia leads to an earlier loss of endothelial function as-
sociated with accelerated vascular telomere shortening in
young adult offspring, and 2) thatmaternal treatment with
the xanthine-oxidase inhibitor allopurinol protects against
cardiovascular dysfunction in young and aged adult off-
spring of hypoxic pregnancy by maintaining vascular
telomere length. The young adult offspring were in-
vestigated at 4mo and the aged adult offspring at 15mo.

MATERIALS AND METHODS

Experiments were carried out under the United Kingdom
Animals (Scientific Procedures) Act 1986 and approved by the
University of Cambridge Animal Welfare and Ethics Com-
mittee. Wistar rat pregnancies were established as described
(27, 29, 36). On d 6 of pregnancy (term is 21 d), rats were
randomly divided into 4 groups (n = 20 per group): control or
hypoxic pregnancy, with or without maternal treatment with
allopurinol (30 mg/kg/d in jelly). This dose and route of
treatment with allopurinol crosses the placenta and inhibits
xanthine oxidase activity in the maternal, placental, and fetal
tissues (37). Hypoxic pregnancy was started on d 6 of gestation
as exposure prior to this point markedly enhances pregnancy
loss (28). Pregnancies undergoing hypoxia were maintained
at a constant inspired fraction of oxygen of 13% inside a poly-
vinylchloride isolator, which was fed compressed air and nitr-
ogen from a nitrogen generator to the required inspirate
mixture (27, 28, 36). The isolator could hold 9 rat cages at any
one time and it contained a transfer box, which permitted
cages to be exchanged for clean ones without losing the hyp-
oxic environment. The environment within the hypoxic iso-
lator was changed 12–20 times per hour; it was quiet and
tranquil and similar to that provided by cages in which nor-
moxic pregnancies were maintained. These were individually
ventilated and both normoxic cages and the hypoxic isolator
were housed in the same room with a controlled 12 h light:
dark cycle (27, 28, 36). Litters were allowed to deliver sponta-
neously. Following determination of birth weight, litter size, and
the sex of the pups (anogenital distance), litters were culled to 3
males and 3 females to standardize nutritional access and mater-
nal care. To control for sex differences, only male offspring were
studied. At 4 and 15 mo, following weighing, 1 male from each

litter per outcome variable underwent euthanasia. Femoral ar-
teries were isolated and mounted for in vitro wire myography (n =
8/group). Descending aortas were frozen for molecular
analysis of telomere shortening (n = 8/group), and blood
samples were taken (n = 6/group).

In vitro wire myography

Second-order femoral arteries were mounted on a 4-chamber
small-vessel wire myograph (Multi Wire Myograph System 610M;
DMT, Aarhus, Denmark) (38). Relaxant responses to methacho-
line (10210–1024mM)were determined after precontractionwith
phenylephrine (submaximal). Concentration–response curves
were analyzed using an agonist–response best-fit line. The maxi-
mal relaxant response was expressed as percentage of the con-
traction induced by phenylephrine and the vascular sensitivity was
expressed as pD2 (2logEC50) (38).

Measurement of telomere length

The descending aorta was removed and snap frozen in liquid
nitrogen. The entire tissue sample was powdered on dry ice, and
then nonsheared high molecular weight DNA was isolated
from the finely powdered aorta sample using the phenol/
chloroform/isoamyl alcohol DNA extraction procedure as
detailed elsewhere (39). DNA integrity and quantity were de-
termined using agarose gel electrophoresis and spectrophoto-
metrically (Nanodrop;NanodropTechnologies,Wilmington,DE,
USA). High molecular weight DNA (1.2 mg) was digested with
Hinf1 and Rsa1 restriction enzymes for 2 h at 37°C from collected
descending aortas. The restricted DNA samples were quenched
with 5 3 SDS loading buffer (Roche Diagnostics, Mannheim,
Germany) and loaded onto agarose gels containing SYBR safe
stain (Invitrogen, Paisley, United Kingdom). DNA was separated
using pulse field gel electrophoresis, for 7.5 h at 6 V/cm at a
switching time of 1–30 s. The gels were checked for nonspecific
degradation of an undigested DNA control and complete di-
gestion of the enzyme-restricted DNA and visualized under UV
light (Gel Doc, Syngene, Cambridge, United Kingdom). The
separated DNA fragments were transferred to nylon membrane
(Roche Diagnostics) by Southern blott using a vacuum blotter
(Biorad, Hemel Hempstead, United Kingdom) for 90 min. The
transferredDNAwas cross-linked onto themembrane using a UV
cross-linker (Stratagene, La Jolla, CA, USA). Telemeric repeat
length was determined using a commercial method of chemilu-
minescent detection; TeloTAGGG telomere length assays (Roche
Diagnostics) according to manufacturer’s instructions. Molecular
weight markers on each gel were a high range Pulsed Field Gel
marker (New England Biolabs, Ipswich, MA, USA) and dioxyge-
nin (low-range) molecular weight marker (Roche Diagnostics).
Standard undigested and digested genomic samples of DNA from
a 4-mo-old control animal were also included on each gel to verify
digestion efficiency. Telomere signals were analyzed using Adobe
Photoshop (Adobe Systems Inc., San Jose, CA, USA) andMacBas
software (Fujifilm UK, Bedford, United Kingdom). Telomere
length was determined as the percentage intensity (% telomere
length) of the telomeric signal in four molecular size regions, as
defined by molecular weight markers (40). Discrete grid squares
were placed around the telomeric smear according to the fol-
lowingmolecular weights: 145–48.5, 48.5–8.6, 8.6–4.2, and 4.2–1.3
kb. The percentage intensity in each molecular weight range was
measured (% intensity = intensity of a defined region 2 back-
ground3 100/total lane intensity2 background).

Plasma analysis

To determine possible changes in circulating inflammatory
markers,plasmaconcentrationof thecytokines/chemokines IFN-g,
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IL-5, C-reactive protein, and proinflammatory chemokine [kera-
tinocytechemoattractant/growth-regulatedoncogene(KC/GRO),
the rodent equivalent of human IL-8] (41) were measured using
the Multiplex MAP Magnetic bead-based immunoassay kits (Mil-
lipore Corp., Billerica, MA, USA) at the Core Biochemical Assay
Laboratory, Cambridge, United Kingdom.

Data and statistical analyses

The experimental and statistical design was stringent to account
for sex differences and within litter variation. Comparisons of
variables derived from more than 1 offspring per litter, such as
birth weight and birth characteristics were performed using
mixed linearmodel analysis.Other comparisonswereofoutcome
variables derived from only 1 male offspring per litter per ex-
perimental group. These comparisons were assessed using a 2-way
ANOVA with the Tukey post hoc test. For all comparisons, signif-
icance was accepted when P, 0.05.

RESULTS

Effects of aging

Endothelial vasodilator function was investigated using in
vitro wire myography of second-order femoral arterial seg-
ments. Vascular telomere shortening was investigated by
determining aortic telomere length by Southern blot.
Femoral arterial segments isolated from aged (15 mo) rel-
ative to young adult (4 mo) offspring of normoxic preg-
nancy had impaired relaxant responses to the acetylcholine
analog methacholine following preconstriction with phen-
ylephrine (Fig. 1A). Vascular tissue isolated from aged rel-
ative to young adult offspring of normoxic pregnancy also
showedan increased frequency of short telomeres (Fig. 1B).

Effects of developmental hypoxia

Offspring of hypoxic relative to offspring of normoxic
pregnancy showed impaired femoral endothelial relaxa-
tion already at 4 mo of young adult age (Fig. 1A). The vas-
cular relaxant deficit in young adult offspring of hypoxic
pregnancy at 4 mo was significantly greater than that
measured in aged offspring of normoxic pregnancy at
15 mo, but was not exacerbated by aging (Fig. 1A). How-
ever, this accelerated loss of endothelial function in young
adult offspring of hypoxic pregnancy was not associated
withan earlier increase in the frequency of short telomeres
(Fig. 1B) or an earlier decrease in the frequency of long
telomeres(Fig.1C–E) in vascular tissue relative tooffspring
of normoxic pregnancy.

Effects of maternal treatment with allopurinol

When comparing treated vs. untreated pregnancy, ma-
ternal treatment with allopurinol significantly decreased
the magnitude of endothelial relaxation in young adult
offspring of normoxic pregnancy (Fig. 1A vs. Fig. 2A;
2-way ANOVA, P , 0.05). When comparing treated vs.
untreated normoxic pregnancy,maternal treatmentwith
allopurinol significantly decreased short telomere length in
vascular tissue of adult offspring irrespective of age (Fig. 1B
vs. Fig. 2B; 2-way ANOVA, P, 0.05). In contrast to untreat-
ed normoxic pregnancy, aged relative to young adult

offspring of normoxic pregnancy treated with maternal
allopurinol no longer showed a significant impairment in
the femoral relaxant response to methacholine (Fig. 2A).
Similarly, in contrast to untreated normoxic pregnancy,
aged relative to young adult offspring of normoxic preg-
nancy treated with maternal allopurinol no longer showed
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Figure 1. Effects of aging and developmental hypoxia on
endothelial function and vascular telomere length. Values are
means 6 SEM for the femoral artery maximal dilator response
to methacholine (A, endothelial relaxation) expressed as a
percentage of the phenylephrine-induced maximal constric-
tion (%PEmax) and for the frequency (%) of aortic telomere
length ranges (B, 4.2–1.3 kb; C, 8.6–4.2 kb; D, 48.5–8.6 kb; and
E, 145–48.5 kb) in 4- and 15-mo-old offspring of normoxic
(white bars) or of hypoxic (black bars) pregnancy. Numbers
of animals for each group are in brackets. Bars with different
letters are significantly (P , 0.05) different (2-way ANOVA
and post hoc Tukey’s test).
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a significant increase in the frequency of short telomeres
in vascular tissue (Fig. 2B). However, they still showed a
modest decrease in the frequency of long telomeres in
vascular tissue (Fig. 2E). Compared with untreated hypoxic
pregnancy, maternal treatment with allopurinol during
hypoxic pregnancy restored femoral endothelial function
in aged but not in young adult offspring (Fig. 2A), and this
effect was associated with a lack of an increase in the

frequency of short telomeres (Fig. 2B) and a significant,
albeit modest increase in the frequency of long telomeres
(Fig. 2E) in vascular tissue at 15 mo of age.

Effects on inflammatory markers

Plasma concentrations of the inflammatory markers IFN-g,
IL-5, and C-reactive protein were similar in offspring of
normoxic or hypoxic pregnancy at 4 and 15 mo of age
(Table 1). However, the plasma concentration of the
proinflammatory chemokine KC/GRO, the rodent equiv-
alent of human IL-8 (41), was significantly elevated in
aged offspring of hypoxic pregnancy relative to aged
offspring of normoxic pregnancy (Fig. 3). Furthermore,
maternal treatment with allopurinol prevented the in-
crease in plasma KC/GRO in aged offspring of hypoxic
pregnancy (Fig. 3).

Effects on pregnancy characteristics

There were no significant effects of hypoxic pregnancy or
of allopurinol treatment on gestation length, litter size,
fetal pup sex ratio, birth weight, or body weight at 4 and
15 mo of age (Table 1).

DISCUSSION

The current findings show that aging in offspring of nor-
moxic pregnancy promoted endothelial dysfunction in
peripheral resistance circulations and that this effect was
associated with shortening of telomere length in the vas-
culature.Maternal treatment with allopurinol in normoxic
pregnancy protected the adult offspring against loss of
endothelial function with aging. Developmental hypoxia
programmed an earlier loss of endothelial function in
peripheral resistance circulations in young adult offspring.
However, maternal treatment with allopurinol in hypoxic
pregnancy only rescued endothelial function in aged but
not in young adult offspring. This protective effect of al-
lopurinolonprogrammedendothelial dysfunction inaged
but not in young adult offspring of hypoxic pregnancy was
matchedwith themaintenanceof vascular telomere length
at 15 but not at 4 mo of age. In addition, 15-mo-old off-
spring of hypoxic pregnancy had significantly increased
plasma levels of the proinflammatory chemokine KC/
GRO. In contrast, this increase in plasma KC/GRO did not
occur in 15-mo-old offspring of hypoxic pregnancy fol-
lowingmaternal treatment with allopurinol. Collectively,
the data partially support the hypotheses tested and re-
veal that developmental hypoxia leading to an earlier loss
of endothelial function is not associated with accelerated
vascular telomere shortening in young adult offspring.
Furthermore, activation of the xanthine oxidase pathway
and increased inflammation aremechanisms involved in
promoting endothelial dysfunction in aged offspring of
hypoxic pregnancy; therefore maternal treatment with al-
lopurinol under these circumstances is protective against
endothelial dysfunction. Conversely, accelerated loss of
endothelial function in young adult offspring of hypoxic
pregnancy occurs via mechanisms other than xanthine
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Figure 2. Effects of maternal treatment with allopurinol on
endothelial function and vascular telomere length in young
and aged offspring of normoxic or hypoxic pregnancy. Values
are means 6 SEM for the femoral response to methacholine
(A, endothelial relaxation) expressed as a percentage of the
phenylephrine-induced maximal constriction (%PEmax) and
for the frequency (%) of aortic telomere length ranges (B,
4.2–1.3 kb; C, 8.6–4.2 kb; D, 48.5–8.6 kb; and E, 145–48.5 kb)
in 4- and 15-mo-old offspring of normoxic (stippled bars) or
of hypoxic (gray bars) pregnancy following maternal treat-
ment with allopurinol. Numbers of animals for each group are
in brackets. Bars with different letters are significantly dif-
ferent (P , 0.05). *P , 0.05 offspring of treated vs. untreated
pregnancy (2-way ANOVA and post hoc Tukey’s test).
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oxidase activation; under these conditions, maternal
treatment with allopurinol is not protective.

Several studies have shown that aging promotes vascular
stiffness (42) and vascular dysfunction (9) leading to de-
creased blood flow (43). Studies in humans and ro-
dents show that vascular dysfunction and reduced blood
flow with aging is associated with endothelial-dependent
mechanisms (43–46). Aging decreases the ability of the
endotheliumtoproduceNO(45), due inpart toenhanced
production of reactive oxygen species and reduced ex-
pression of endothelial NO synthase, with consequent
reduction in vascular NO bioavailability (44). Previous
studies have also reported that vascular telomere length is
inversely related with advancing age, with decreased telo-
mere length thought to be associated with endothelial se-
nescence in vascular dysfunction (15, 47, 48). Data in the
present study showing that aging in offspring of normoxic
pregnancy promoted endothelial dysfunction in periph-
eral resistance circulations and that this effect was associ-
ated with shortening of vascular telomere length are
therefore consistent with the literature.

Independent studies have reported that chronic fetal
hypoxia can program endothelial dysfunction in later life
(7, 28, 49). Chronic fetal hypoxia, leading to a significant
increase in fetal hematocrit, promotes fetal aortic wall
thickening and increased oxidative stress in the fetal heart
and vasculature by the end of gestation (28). In the fetal
vasculature, increased generation of reactive oxygen spe-
cies during hypoxic pregnancy react with NO decreasing
its bioavailability (26, 28, 50–52). Chronic fetal hypoxia
therefore promotes a sustained increase in the vascular
oxidant tone leading to the abnormal development of
endothelial function, in particular in peripheral resis-
tance circulations (7, 12, 28).By adulthood, oxidative stress
levels in the cardiovascular system between offspring
of normoxic or hypoxic pregnancy are not different.

However, chronic fetal hypoxia sets functional deficits in
both the heart and the peripheral circulation of the adult
offspring (28). In the peripheral circulation, this is reflec-
ted byNO-dependent endothelial dysfunction (28). These
adverse effects of hypoxic pregnancy on the cardiovascular
system are prevented by maternal treatment with antioxi-
dants such as vitamin C (27, 28, 53) or resveratrol (30, 54),
suggesting a role for oxidative stress in the developmental
programming of endothelial dysfunction. As aging also
involves oxidative stress (22–25, 55), several studies have
suggested that developmental programming of cardiovas-
cular dysfunction by adverse intrauterine conditions may
be a form of accelerated aging (16–21). In support of this
idea, past (13) and present data show that developmental
hypoxia programmed an earlier loss of endothelial func-
tion in peripheral resistance circulations in young adult
offspring. Furthermore, rodentmodels ofmaternal under-
(16) as well as overnutrition (56) program accelerated
cardiovascular degeneration with normal aging with re-
ductions in telomere lengthand in life span(18).However,
additional data in the present study show that the effect of
developmental hypoxia on endothelial function was not
associated with accelerated vascular telomere shortening
in young adult offspring. These data therefore oppose the
idea that programming of vascular dysfunction by de-
velopmental hypoxia is just a form of accelerated vascular
aging, adding new conceptual insight to the fields of aging
and of developmental programming. The data also high-
light that different suboptimal conditions during preg-
nancy may program cardiovascular dysfunction in the
adult offspring via several mechanisms.

The purine analog allopurinol is a known inhibitor of
xanthine oxidase (37), a powerful pro-oxidantmechanism
stimulated by chronic hypoxia primarily due to accumu-
lation of the substrate hypoxanthine (35, 57). Indeed,
there is evidence of increased xanthine oxidase expression

TABLE 1. Pregnancy characteristics, offspring body weight and offspring inflammatory markers

Variable N H HA NA

Days of gestation 22.0 6 0.1 22.1 6 0.1 22.2 6 0.1 22.0 6 0.1
Litter size 13.4 6 0.5 13.5 6 0.5 12.5 6 0.6 14.2 6 0.5
Male:female ratio 0.9 6 0.2 0.9 6 0.2 1.0 6 0.2 1.2 6 0.2
Birth weight (g) 6.4 6 0.3 6.4 6 0.2 6.7 6 0.1 6.3 6 0.1
Weight (g)
4 mo 568.3 6 13.6 552.3 6 12.5 556.2 6 11.5 548.2 6 11.1
15 mo 810.2 6 21.3 767.1 6 29.1 785.9 6 26.4 801.4 6 27.2

Inflammatory markers
IFN g (pg/ml)
4 mo 11.09 6 1.2 9.6 6 0.8 9.2 6 1.5 11.6 6 0.7
15 mo 11.2 6 1.2 12.0 6 1.4 12.0 6 1.7 12.0 6 1.4

IL-5 (pg/ml)
4 mo 88.0 6 4.5 82.5 6 3.3 78.3 6 5.3 96.4 6 4.7
15 mo 62.8 6 6.6 63.2 6 7.9 62.5 6 5.4 73.9 6 6.3

CRP (mg/L)
4 mo 255.3 6 16.4 243.6 6 11.1 266.9 6 12.3 235.9 6 11.5
15 mo 279.4 6 20.7 257.3 6 14.2 279.2 6 16.6 269.9 6 11.2

Values are means 6 SEM for the duration of pregnancy (days of gestation), litter size, male: female
pup sex ratio, birth weight and body weight at 4 and 15 mo, as well as plasma concentration of the
inflammatory markers at 4 and 15 mo. Groups are normoxic or hypoxic pregnancy with (NA, n = 22; HA,
n = 25) or without (N, n = 20; hypoxic H, n = 23) maternal treatment with allopurinol. Inflammatory
markers were obtained in a subset of offspring of n = 6 in each group. CRP, C reactive protein ; H,
hypoxic; HA, hypoxic allopurinol; N, normoxic; NA, normoxic allopurinol.
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in vascular endothelial cells in response to hypoxia (58).
Additionally, increased xanthine oxidase activity is associ-
ated with excessive generation of reactive oxygen species,
along with the induction of oxidative stress and of cardio-
vascular dysfunction, and treatment with allopurinol is
protective in cardiovascular disease states (59–63). We
have previously reported that daily ingestion of allopurinol
by the pregnant rat at the dosing regimen used in this study
not only crossed the placenta, but also promoted inhibition
of xanthine oxidase within maternal, placental, and fetal
tissues (37). In the present study, we show that maternal
treatment with allopurinol has the pronounced effect to
shift the population distribution of different lengths of
telomeres toward a reduction in short telomere length in
vascular tissue of adult offspring of normoxic or hypoxic
pregnancy. Furthermore, we show that maternal treatment
with allopurinol in hypoxic pregnancy rescued endothelial
function but only in aged and not in young adult offspring.
This protective effect of allopurinol on programmed en-
dothelial dysfunction in aged but not in young adult off-
spring of hypoxic pregnancy was matched with the
maintenance of vascular telomere length at 15 but not at
4 mo of age. Combined, therefore, the data show that al-
though prenatal treatment with the xanthine oxidase in-
hibitor allopurinol does not protect against endothelial
dysfunction in young adult offspring of hypoxic pregnancy,
it does in aged offspring of normoxic or of hypoxic preg-
nancy. Therefore, activation of the xanthine oxidase path-
way is a mechanism involved in promoting endothelial
dysfunction in aged offspring independent of normoxic or

hypoxic pregnancy. Conversely, accelerated loss of endo-
thelial function in young adult offspring of hypoxic preg-
nancy occurs via mechanisms other than activation of
xanthine oxidase. The lack of association between
accelerated endothelial dysfunction and accelerated vas-
cular telomere shortening in young adult offspring of
hypoxic pregnancy, coupled with a protective effect of al-
lopurinol only in aged offspring of either normoxic or
hypoxic pregnancy but not in young adult offspring of
hypoxic pregnancy, are findings that again suggest that
programming of endothelial dysfunction in adulthood by
developmental hypoxia is not just a form of accelerated
aging. Furthermore, vascular aging in the form of endo-
thelial dysfunction involves oxidative stress derived in part
fromactivationof xanthineoxidase evenprior tobirthand
maternal treatment with allopurinol during pregnancy
may protect against vascular aging in the adult offspring
irrespective of normoxic or hypoxic pregnancy.

Aging has been associated with shortening of telomere
length and increased inflammatory markers (9, 64, 65).
Therefore, in the present study, plasma samples obtained
from young adult and aged offspring of normoxic or hyp-
oxic pregnancy were processed for circulating indices
of inflammation. Aged offspring of hypoxic pregnancy
had significantly increased plasma levels of the proin-
flammatory chemokine KC/GRO. In contrast, this in-
crease in plasma KC/GROwas significantly diminished in
aged offspring of hypoxic pregnancy with maternal allo-
purinol treatment. Increased vascular expression of KC/
GRO has been reported to be central to the progression
of vascular aging (66). Therefore, protection against
inflammation provides an additional mechanism for the
maintenance of vascular telomere length during aging in
hypoxic pregnancy treated with allopurinol.

Finally, data in the present study also show that hypoxic
pregnancy or allopurinol treatment did not affect the
pregnancy characteristics, birthweight, or bodyweight at 4
or 15 mo of age. Although several models of more severe
(10%) hypoxic pregnancy in rodents in the last third of
gestation do induce a decrease in birth weight (10, 13, 32,
49), this rodent model of developmental hypoxia is dif-
ferent as it is milder (13%) and is early in onset, starting
at d 6 of gestation. Because of the temporal pattern of
placental growthduringgestation(67), early onsethypoxic
pregnancy permits placental compensation (68). This pro-
tects fetal growth despite hypoxic pregnancy, yielding a nor-
mal birth weight (28, 53). This finding is also important
because the literature has previously linked fetal growth
restriction and postnatal accelerated growth with the
greatest increased risk of cardiovascular disease in later life
(69). Therefore, the present data underline that neither
intrauterine growth restriction nor alterations in postnatal
growth are necessary prerequisites for endothelial dys-
function in later life programmed by adverse intrauterine
conditions.

In conclusion, the data show that vascular aging involves
xanthine oxidation activation even prior to birth and that
maternal treatment with the xanthine oxidase inhibitor
allopurinol during pregnancy can decelerate vascular ag-
ing in the offspring. The data also provide the first evi-
dence, to our knowledge, that premature endothelial
dysfunction programmed by developmental hypoxia is
different from accelerated vascular aging, that it does not
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Figure 3. Effects of aging, developmental hypoxia and
maternal allopurinol inflammatory markers. Values are
means 6 SEM for the plasma concentration (pg/ml) of the
proinflammatory chemokine KC/GRO in 4- and 15-mo-old
offspring of untreated normoxic (white bars) or hypoxic
(black bars) pregnancy (A) and in 4- and 15-mo-old offspring
of normoxic (stippled bars) or hypoxic (dark gray bars)
pregnancy treated with allopurinol (B). Bars with different
letters are significantly (P , 0.05) different (2-way ANOVA
and post hoc Tukey’s test).
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involve xanthine oxidase activation and thereby it re-
quires different treatment.
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