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ABSTRACT: Developments in genome-wide association studies and the increasing availability of summary genetic association
data have made application of Mendelian randomization relatively straightforward. However, obtaining reliable results from a
Mendelian randomization investigation remains problematic, as the conventional inverse-variance weighted method only gives
consistent estimates if all of the genetic variants in the analysis are valid instrumental variables. We present a novel weighted
median estimator for combining data on multiple genetic variants into a single causal estimate. This estimator is consistent
even when up to 50% of the information comes from invalid instrumental variables. In a simulation analysis, it is shown to
have better finite-sample Type 1 error rates than the inverse-variance weighted method, and is complementary to the recently
proposed MR-Egger (Mendelian randomization-Egger) regression method. In analyses of the causal effects of low-density
lipoprotein cholesterol and high-density lipoprotein cholesterol on coronary artery disease risk, the inverse-variance weighted
method suggests a causal effect of both lipid fractions, whereas the weighted median and MR-Egger regression methods suggest
a null effect of high-density lipoprotein cholesterol that corresponds with the experimental evidence. Both median-based and
MR-Egger regression methods should be considered as sensitivity analyses for Mendelian randomization investigations with
multiple genetic variants.
Genet Epidemiol 40:304–314, 2016. Published 2016 Wiley Periodicals, Inc.∗
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Introduction

Over the past decade, Mendelian randomization has become
an established tool for probing questions of causality when
characterizing the etiology of disease (Burgess and Thomp-
son, 2015; Davey Smith and Ebrahim, 2003). The require-
ment for such approaches stems from a fundamental limi-
tation of observational data, namely that causation cannot
automatically be inferred from an association between an
exposure and a disease. The association could be due to un-
observed confounding between the exposure and the out-
come, or reverse causation (the outcome affects the expo-
sure) (Davey Smith and Ebrahim, 2004). These limitations
are generally of no consequence when the aim is merely to
predict the likelihood of future outcomes. However, if an ex-
posure has a noncausal association with an outcome, then
public health or pharmaceutical interventions targeted at the
exposure will realize no material benefit and represent a waste
of resources.

The basic premise of Mendelian randomization relies on
genetic variants that explain variation in the exposure, but do
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not affect the disease outcome except possibly through the ex-
posure. Such genetic variants are known as instrumental vari-
ables (IVs) (Greenland, 2000). Subgroups of individuals with
differing numbers of alleles of a genetic IV can be thought
of as having been randomized to receive a different mean
level of the exposure during their life course (Davey Smith
and Ebrahim, 2005; Nitsch et al., 2006). If the randomiza-
tion is indeed uncontaminated (in the sense that a person’s
genetic subgroup is independent of all factors, except the ex-
posure and any causal consequence of the exposure), then
differences in the outcome between genetic subgroups can
be causally attributed to the exposure (Didelez and Sheehan,
2007). The following three assumptions are necessary for a
genetic variant to be a valid IV (Martens et al., 2006):
� IV1: the variant is predictive of the exposure;
� IV2: the variant is independent of any confounding factors

of the exposure—outcome association;
� IV3: the variant is conditionally independent of the out-

come given the exposure and the confounding factors.

The IV assumptions are illustrated in Figure 1. IV1 is
the only assumption that can be fully empirically tested,
because IV2 and IV3 depend on all possible confounders
of the exposure—outcome association, both measured and
unmeasured. Any statistical method for obtaining causal
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Figure 1. Illustrative diagram representing the hypothesized rela-
tionships between genetic variant G j , exposure X , disease Y , and
confounders U when G j is a valid instrumental variable (IV). Crosses
indicate violations of assumptions IV2 and IV3 that potentially lead to
invalid inferences from conventional methods.

inferences must by necessity make an untestable assump-
tion. The validity of a causal conclusion from a Mendelian
randomization analysis depends on the plausibility of these
assumptions.

Early implementations of the Mendelian randomization
approach were largely constrained by limitations of power
as investigations were undertaken in small sample sizes, and
used only a handful of genetic variants (each explaining a
small proportion of the variance in the exposure). However,
a revolution in the field is under way led by the identifi-
cation of increasing numbers of genetic variants robustly
associated with particular traits, and the public release by
many large consortia of summary association estimates for
hundreds of thousands of genetic variants with exposures
and disease outcomes (Burgess et al., 2015b), such as the
Global Lipids Genetics Consortium (GLGC) for lipid frac-
tions [GLGC, 2013] and the CARDIoGRAM consortium for
coronary artery disease (CAD) risk (CARDIoGRAMplusC4D
Consortium, 2013). The availability of such summary data
has facilitated powerful Mendelian randomization investiga-
tions to be conducted in a two-sample framework by provid-
ing genetic associations precisely estimated in large sample
sizes (Burgess et al., 2013).

The inclusion of multiple variants in a Mendelian random-
ization analysis typically leads to increased statistical power
(Freeman et al., 2013), but presents new challenges (Glymour
et al., 2012). First, if there is substantial overlap in the datasets
from which the association estimates with the exposure and
with the outcome were obtained, then the resulting analysis
suffers from bias and inflated type 1 error rates when the
included variants are “weak” (i.e., they do not explain a sub-
stantial proportion of variation in the exposure in the dataset
under analysis) (Burgess et al., 2011; Pierce and Burgess,
2013). Second, it may not be the case that all included genetic
variants are valid IVs.

In this paper we propose a new method for Mendelian
randomization using summary data that offers protection
against invalid instruments: the weighted median estimator.
This approach can provide a consistent estimate of the causal
effect even when up to 50% of the information contributing to
the analysis comes from genetic variants that are invalid IVs.
We explore the statistical properties of the weighted median

estimator in a realistic simulation study, and compare with
an alternative summary data analysis method also robust to
some violations of the IV assumptions, MR-Egger regression
(Bowden et al., 2015). We explain how the two approaches dif-
fer in their assumptions, and when they each work well or fail.
We provide an illustrative estimate of two-sample Mendelian
randomization using summary data on the associations of
185 genetic variants with high-density lipoprotein choles-
terol (HDL-c), low-density lipoprotein cholesterol (LDL-c),
and triglycerides from the GLGC, and with CAD risk from the
CARDIoGRAM consortium. We conclude with a discussion
of the issues raised and the potential for future research.

Methods

Consider data from a Mendelian randomization study on
J genetic variants G 1, . . . , G J , a continuous exposure X and
a continuous outcome Y. All confounding variables are sub-
sumed into a single variable U. We initially assume that all
genetic variants are valid IVs, and further assume that all the
relationships between variables in Figure 1 are linear without
heterogeneity or effect modification:

X |G j = γ0 + γj G j + εXj

Y|G j = �0 + �j G j + εY j .

Assumption IV1 tells us that all variants are associated with
the exposure, so γj �= 0 for all j . Assumptions IV2 and IV3 tell
us that the genetic associations with the outcome �j are equal
to the genetic associations with the exposure γj multiplied
by the causal effect of the exposure on the outcome β: so
�j = βγj . The error terms εXj and εYj are assumed to be nor-
mally distributed and contain contributions from the con-
founder U and all genetic variants except G j . In a one-sample
setting, the exposure and outcome data are collected on the
same individuals, in which case εXj and εYj are correlated.
If exposure and outcome data are collected on different sets
of individuals (known as two-sample Mendelian randomiza-
tion (Pierce and Burgess, 2013)), then these error terms are
independent. We assume throughout this manuscript that all
genetic variants are uncorrelated (i.e., not in linkage disequi-
librium), so that the information provided by each genetic
variant is independent. Extensions to allow for correlated
variants in a straightforward application of Mendelian ran-
domization have been developed (Burgess et al., 2013), but
the situation of uncorrelated variants is usual in applied prac-
tice.

Inverse-Variance Weighted Method

The causal effect of the exposure on the outcome can be
estimated using the j th variant as the ratio of the gene-
outcome association and the gene-exposure association esti-
mates (Lawlor et al., 2008):

β̂j =
�̂j

γ̂ j
.

If the IV assumptions are satisfied for genetic variant j , then
�j = βγj and the ratio estimate is consistent asymptotically.
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Figure 2. Fictional example of a Mendelian randomization analysis with 10 genetic variants—six valid instrumental variables (hollow circles)
and four invalid instrumental variables (solid circles) for finite sample size (left) and infinite sample size (right) showing IVW (solid line) and simple
median (dashed line) estimates compared with the true causal effect (dotted line). The ratio estimate for each genetic variant is the gradient of the
line connecting the relevant datapoint for that variant to the origin; the simple median estimate is the median of these ratio estimates.

Furthermore, if the genetic variants are uncorrelated (not in
linkage disequilibrium) then the ratio estimates from each
genetic variant can be combined into an overall estimate
using a formula from the meta-analysis literature (Johnson,
2013):

β̂IVW =

∑
j γ̂2

j σ
–2
Y j β̂j∑

j γ̂2
j σ

–2
Y j

,

where σYj is the standard error of the gene-outcome associa-
tion estimate for variant j . This is referred to as the inverse-
variance weighted (IVW) estimator (Burgess et al., 2013).
Provided that the genetic variants are uncorrelated, the IVW
estimate is asymptotically equal to the two-stage least squares
estimate commonly used with individual-level data. If all ge-
netic variants satisfy the IV assumptions, then the IVW es-
timate is a consistent estimate of the causal effect (i.e., it
converges to the true value as the sample size increases), as it
is a weighted mean of the individual ratio estimates.

Simple Median Estimator

The IVW estimate is an efficient analysis method when all
genetic variants are valid IVs. Unfortunately, it will be biased
even if only one genetic variant is invalid. For this reason,
the IVW estimate can be said to have a 0% breakdown level.
However, an estimator exists that enjoys a 50% breakdown
level; that is, it provides a consistent estimate of the causal
effect when up to (but not including) 50% of genetic vari-
ants are invalid. This simple estimator is the median ratio
estimate (Han, 2008). Specifically, let β̂j denote the j th or-
dered ratio estimate (arranged from smallest to largest). If
the total number of genetic variants is odd (J = 2k + 1), the
simple median estimator is the middle ratio estimate β̂k+1. If
it is even (J = 2k), the median is interpolated between the
two middle estimates 1

2 (β̂k + β̂k+1). In terms of notation, we
assume in this manuscript that genetic variants are ordered
according to their ratio estimates.

In order to understand why the median estimator achieves a
50% breakdown level, we consider a fictional analysis using 10
genetic variants, six of which are valid IVs and four of which
are invalid. Figure 2 (left) shows a scatter plot of 10 gene-
exposure (γ̂ j ) and gene-outcome (�̂j ) association estimates
for an Mendelian randomization study with a finite sample
size (Kang et al., 2015). The ratio estimate for each genetic
variant is the gradient of the line connecting the relevant
datapoint for that variant to the origin. The true causal effect
is shown by the dotted black line, the median estimate by the
dashed line, and the IVW estimate by the solid line. Estimates
from valid IVs are shown by hollow circles, estimates from
invalid IVs are shown by solid circles. Although the valid
IVs follow the true slope, the IVW estimate is pulled away
from the true value by the invalid instruments, which yield
biased estimates of the causal effect. Figure 2 (right) shows
the same scatter plot for an infinite sample size. Now the six
valid instruments lie perfectly on the true line, and all yield
the same true causal estimate. The median ratio estimate (in
this case, an average of the fifth and sixth ratio estimates) is
the true causal effect. In contrast, the IVW estimate remains
biased even with infinite data, as the ratio estimate from each
genetic variant always contributes toward the overall IVW
estimate.

Weighted Median Estimator

The simple median estimator is inefficient, especially when
the precision of the individual estimates varies considerably.
In order to account for this, a weighted median can be defined
as follows. Let wj be the weight given to the j th ordered ratio

estimate, and let sj =
∑j

k=1 wk be the sum of weights up to
and including the weight of the j th ordered ratio estimate.
Weights are standardized, so that the sum of the weights sJ

is 1. The weighted median estimator is the median of a dis-
tribution having estimate β̂j as its p j = 100(sj –

wj

2 )th per-
centile. For all other percentile values, we extrapolate linearly
between the neighboring ratio estimates. The contribution
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Table 1. Weights and percentiles of weighted median function

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

Simple median
Weight (wj ) 1

10
1

10
1

10
1

10
1

10
1

10
1

10
1

10
1

10
1

10
Percentile (p j ) 5 15 25 35 45 55 65 75 85 95

Weighting 1
Weight (wj ) 1

30
2

30
3

30
4

30
5

30
5

30
4

30
3

30
2

30
1

30
Percentile 1.67 6.67 15.00 26.67 41.67 58.33 73.33 85.00 93.33 98.33

Weighting 2
Weight (wj ) 2

36
3

36
10
36

8
36

5
36

3
36

2
36

1
36

1
36

1
36

Percentile (p j ) 2.78 9.72 27.78 52.78 70.83 81.94 88.89 93.06 95.83 98.61

Weights and percentiles of the empirical distribution function assigned to the ordered
ratio instrumental variable estimates (β̂j ) for the hypothetical examples given in
Figure 3.

Figure 3. Empirical distribution functions of ordered ratio instrumen-
tal variable estimates (β̂ j ) used for calculation of the simple median
estimate (black) and two weighted median estimates (shown in red and
blue) using the weights given in Table 1.

of the j th genetic variant to the empirical distribution is pro-
portional to its weight wj . The simple median estimator can
be thought of as a weighted median estimator with equal
weights. Although the simple median provides a consistent
estimate of causal effect if at least 50% of IVs are valid, the
weighted median will provide a consistent estimate if at least
50% of the weight comes from valid IVs. We assume that no
single IV contributes more than 50% of the weight, otherwise
the 50% validity assumption is equivalent to assuming that
this IV is valid (in which case, an analysis should simply be
based on this one IV). Some technical remarks on weighted
medians are given in Supporting Information Appendix 1.

As an illustration, two sets of weights are given in
Table 1, and percentiles are calculated for each set of weights
as well as for the simple median (equal weights). As the first
set of weights are symmetric, the weighted median in this
case equals the simple median. However, less weight is given
to outlying estimates, and the empirical distribution func-
tion (Fig. 3, red line) is close to the median value across a
wider range of the distribution. Confidence intervals for the
weighted median, which can be obtained by a parametric

bootstrap method, should therefore be narrower. In the sec-
ond set of weights, smaller estimates happen to receive more
weight (Fig. 3, blue line). The weighted median estimate will
be interpolated between ratio estimates β̂3 and β̂4, but will be
closer to β̂4 as the percentile p 4 is closest to 50%. The exact
weighted median estimate in this case will be

β̂WM = β̂3 + (β̂4 – β̂3) × 50 – 27.78

52.78 – 27.78
.

The weighted median can also be thought of as the simple
median from a set of values (a pseudopopulation) in which
the ratio estimate β̂1 for variant 1 appears 100 × w1 times,
ratio estimate β̂2 for variant 2 appears 100 × w2 times, and
so on. R code to calculate weighted median estimates, confi-
dence intervals, standard errors and P-values is provided in
Supporting Information Appendix 2.

Analogously to the IVW method, we suggest using the
inverse of the variance of the ratio estimates as weights:

w ′
j =

γ̂2
j

σ2
Y j

.

These weights are derived from the delta method for the vari-
ance of the ratio of two random variables, and represent the
reciprocal of the variance of the ratio estimates (the inverse-
variance weights) (Thomas et al., 2007). Standardized weights

are wj =
w ′

j∑
j w ′

j
. The unstandardized weights are identical to

those used in the IVW estimator. Only the first-order term
from the delta expansion is used here; further terms could be
considered, although we found that they did not affect esti-
mates or standard errors from the weighted median method
substantially.

Penalized Weighted Median Estimator

In Figure 2 (left side), although the invalid IVs do not
contribute directly to the median estimate, they do influence
it. The simple median estimate in this case is an average of
the fifth and sixth ratio estimates. If the invalid IVs were
not present, the median estimate would be the average of
the third and fourth ratio estimates. The presence of invalid
instruments does not affect the median estimate asymptot-
ically, but in this example it will bias the estimate in finite
samples, as the fifth and sixth ratio estimates will always be
larger than the third and fourth ratio estimates. This is likely
to be a problem when the estimates from invalid IVs are not
balanced about the true causal effect (as in this example, all
four invalid estimates are greater than the true causal effect).

One way of minimizing this problem is downweighting the
contribution to the analysis of genetic variants with heteroge-
neous ratio estimates. Heterogeneity between estimates can
be quantified by Cochran’s Q statistic:

Q =
∑

j

Q j =
∑

j

w ′
j (β̂j – β̂)2,

where we take β̂ to be the IVW estimate (Greco et al., 2015).
The Q statistic has a chi-squared distribution on J – 1 de-
grees of freedom under the null hypothesis that all genetic
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variants are valid IVs and the same causal effect is identified
by all variants. Under this null hypothesis, the components of
the Q statistic corresponding to the individual genetic vari-
ants (Q j ) approximately have chi-squared distributions with
1 degree of freedom. So as not to distort the weightings
of the majority of variants, we propose penalization using
the one-sided upper P-value (denoted qj ) on a chi-squared
1 distribution corresponding to Q j , by multiplying the weight
by the P-value multiplied by 20 (or by 1 if the P-value is greater
than 0.05). The (unstandardized) penalized weights (w∗

j ) are
therefore

w∗
j = w ′

j × min(1, 20qj ).

This means that most variants will be unaffected by the penal-
ization, but outlying variants will be severely downweighted.

MR-Egger Regression

An alternative robust method for Mendelian random-
ization with summary data has been recently proposed by
Bowden et al. [2015], referred to as “MR-Egger regression.”
This approach was motivated from a method in the meta-
analysis literature for the assessment of small-study bias (of-
ten called “publication bias”) (Egger et al., 1997). This per-
forms a weighted linear regression of the gene-outcome co-
efficients �̂j on the gene-exposure coefficients γ̂ j :

�̂j = β0E + βE γ̂ j

in which all the γ̂ j associations are orientated to be positive
(the orientation of the �̂j associations should be altered if
necessary to match the orientation of the γ̂ j parameters),
and the weights in the regression are the inverse variances
of the gene-outcome associations (σ–2

Y j ). Reorientation of the
variants is performed as the orientation of genetic variants is
arbitrary (i.e., estimates can be presented with reference to
either the major or minor allele), and different orientations
of genetic variants change the estimate of the intercept, as
well as the sign and magnitude of the pleiotropic effect of the
genetic variant. If there is no intercept term in the regression
model, then the MR-Egger slope estimate β̂E will equal the
IVW estimate (Burgess et al., 2015a).

The value of the intercept term β̂0E can be interpreted
as an estimate of the average pleiotropic effect across the
genetic variants (Bowden et al., 2015). The pleiotropic effect
is the effect of the genetic variant on the outcome that is
not mediated via the exposure. An intercept term that differs
from zero is indicative of overall directional pleiotropy; that
is, pleiotropic effects do not cancel out and the IVW estimate
is biased.

MR-Egger regression additionally provides an estimate for
the true causal effect β̂E that is consistent even if all genetic
variants are invalid due to violation of IV3, but under a weaker
assumption known as the InSIDE (instrument strength inde-
pendent of direct effect) assumption. If the association of the
j th genetic variant with the outcome �j = βγj + αj , where
αj is the pleiotropic (direct) effect of the variant, then the
InSIDE assumption states that the pleiotropic effects αj must

be distributed independently of the instrument strength pa-
rameters γj (Kolesár et al., 2014). (Formally, the consistency
property holds both as the sample size and the number of in-
struments increases. For a fixed number of instruments, con-
sistency only holds asymptotically if the correlation between
the αj and γj parameters is zero.) The InSIDE assumption is
likely to be satisfied if pleiotropic effects on the outcome are
direct (i.e., not via a confounder). There is some empirical
evidence supporting the proposition that genetic effects on
separate exposures are independent (Pickrell, 2015). How-
ever, if the pleiotropic effects of genetic variants are all via a
single confounder, then they will be correlated with instru-
ment strength, and the InSIDE assumption will be violated.

Simulation Study

In order to investigate the performance of the weighted
median method in realistic settings, as well as to determine in
what scenarios it performs well or badly in comparison with
the IVW and MR-Egger regression methods, we perform a
simulation study. We assume there are 25 genetic variants
that are candidate IVs, and consider three scenarios:

1. Balanced pleiotropy, InSIDE assumption satisfied—
pleiotropic effects are equally likely to be positive as neg-
ative, these effects are uncorrelated with the instrument
strength.

2. Directional pleiotropy, InSIDE assumption satisfied—
only positive pleiotropic effects are simulated, these ef-
fects are uncorrelated with the instrument strength.

3. Directional pleiotropy, InSIDE assumption not
satisfied—pleiotropic effects are via a confounder, these
effects on the outcome are therefore positive and are
correlated with the instrument strength.

The status of a genetic variant as an invalid IV is determined
by a random draw for each variant. The probability of being
an invalid variant is taken as 0.1, 0.2, and 0.3. We consider
cases with 10,000 and 20,000 participants.

We generated 10,000 simulated datasets for each scenario
in a two-sample setting with two values of the causal ef-
fect (β = 0, null causal effect; β = 0.1, positive causal ef-
fect); the simulations are repeated in Supporting Information
Appendix 3 in a one-sample setting. Only the summary data
on the genetic associations with the exposure and with the
outcome (and their standard errors) are used as data inputs
in the analysis methods (individual-level data are not used).
Details of the data-generating model and the parameters used
in the simulation study are given in Supporting Information
Appendix 3.

Simulation Results

The simulation results in the two-sample setting are given
in Table 2 (null causal effect) and Table 3 (positive causal
effect). In Scenario 1 (balanced pleiotropy), the methods all
give close to unbiased causal estimates, and have reasonable
Type 1 error rates (power under the null is equal to Type 1
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Table 2. Results from simulation study in two-sample setting with null causal effect

Inverse-variance
weighted

Weighted
median

Penalized
weighted median

MR-Egger
regression

Proportion of Mean estimate Mean estimate Mean estimate Mean estimate
N invalid IVs F R2 (mean SE) Power (mean SE) Power (mean SE) Power (mean SE) Power

Scenario 1. Balanced pleiotropy, InSIDE assumption satisfied
10,000 0.1 10.7 2.6% –0.001 (0.114) 5.4 –0.001 (0.093) 3.2 –0.001 (0.093) 3.4 –0.003 (0.287) 6.3
10,000 0.2 10.7 2.6% 0.001 (0.153) 6.2 0.001 (0.098) 4.5 0.001 (0.098) 4.0 –0.001 (0.386) 6.2
10,000 0.3 10.7 2.6% 0.003 (0.185) 6.3 0.001 (0.103) 6.2 0.001 (0.104) 5.2 0.000 (0.467) 6.0
20,000 0.1 20.5 2.5% –0.001 (0.107) 5.1 0.000 (0.067) 3.4 0.000 (0.067) 3.6 0.000 (0.305) 6.0
20,000 0.2 20.5 2.5% 0.002 (0.150) 5.3 0.001 (0.071) 4.4 0.001 (0.071) 4.4 –0.004 (0.426) 6.1
20,000 0.3 20.5 2.5% –0.004 (0.184) 5.7 –0.001 (0.075) 6.4 –0.001 (0.077) 6.3 –0.004 (0.523) 6.2

Scenario 2. Directional pleiotropy, InSIDE assumption satisfied
10,000 0.1 10.7 2.6% 0.126 (0.111) 14.6 0.033 (0.093) 4.9 0.024 (0.093) 4.2 0.013 (0.279) 6.3
10,000 0.2 10.7 2.6% 0.256 (0.145) 37.0 0.078 (0.100) 10.7 0.071 (0.102) 9.6 0.037 (0.363) 6.5
10,000 0.3 10.7 2.6% 0.384 (0.169) 62.7 0.139 (0.109) 21.8 0.149 (0.114) 22.1 0.046 (0.421) 6.3
20,000 0.1 20.5 2.5% 0.134 (0.104) 15.0 0.026 (0.067) 4.9 0.026 (0.068) 5.2 0.003 (0.295) 6.1
20,000 0.2 20.5 2.5% 0.271 (0.141) 42.9 0.061 (0.072) 11.9 0.080 (0.078) 15.8 0.011 (0.398) 6.2
20,000 0.3 20.5 2.5% 0.404 (0.166) 70.4 0.115 (0.080) 25.4 0.177 (0.095) 35.9 0.016 (0.467) 6.0

Scenario 3. Directional pleiotropy, InSIDE assumption not satisfied
10,000 0.1 13.5 3.3% 0.182 (0.092) 48.0 0.145 (0.095) 29.9 0.062 (0.094) 12.6 0.363 (0.195) 50.9
10,000 0.2 16.3 3.9% 0.318 (0.105) 77.2 0.303 (0.097) 61.3 0.186 (0.097) 37.9 0.555 (0.204) 72.5
10,000 0.3 19.2 4.6% 0.421 (0.110) 91.1 0.435 (0.092) 82.5 0.335 (0.095) 65.9 0.651 (0.204) 83.2
20,000 0.1 26.0 3.1% 0.189 (0.084) 53.5 0.131 (0.072) 32.4 0.059 (0.070) 13.2 0.412 (0.184) 57.5
20,000 0.2 31.7 3.8% 0.327 (0.100) 81.0 0.290 (0.075) 63.8 0.176 (0.077) 40.5 0.607 (0.198) 77.1
20,000 0.3 37.2 4.4% 0.427 (0.105) 93.5 0.428 (0.072) 83.9 0.321 (0.077) 68.4 0.697 (0.197) 86.9

Mean estimates, mean standard errors, and power of 95% confidence interval to reject null hypothesis of inverse-variance weighted, weighted median, and MR-Egger regression
methods in simulation study for two-sample Mendelian randomization with a null (β = 0) causal effect.
Abbreviations: IV, instrumental variable; SE, standard error.

Table 3. Results from simulation study in two-sample setting with positive causal effect

Inverse-variance
weighted

Weighted
median

Penalized
weighted median

MR-Egger
regression

Proportion of Mean estimate Mean estimate Mean estimate Mean estimate
N invalid IVs F R2 (mean SE) Power (mean SE) Power (mean SE) Power (mean SE) Power

Scenario 1. Balanced pleiotropy, InSIDE assumption satisfied
10,000 0.1 10.7 2.6% 0.090 (0.116) 16.2 0.085 (0.098) 12.3 0.086 (0.098) 12.4 0.049 (0.292) 6.7
10,000 0.2 10.7 2.6% 0.092 (0.155) 11.7 0.088 (0.103) 13.5 0.089 (0.103) 12.7 0.052 (0.390) 6.5
10,000 0.3 10.7 2.6% 0.094 (0.186) 9.4 0.088 (0.109) 13.4 0.089 (0.109) 12.8 0.053 (0.470) 6.4
20,000 0.1 20.5 2.5% 0.095 (0.108) 22.1 0.092 (0.071) 24.0 0.093 (0.071) 24.2 0.064 (0.309) 6.8
20,000 0.2 20.5 2.5% 0.097 (0.150) 13.7 0.093 (0.075) 24.4 0.094 (0.075) 24.1 0.060 (0.428) 6.5
20,000 0.3 20.5 2.5% 0.092 (0.184) 9.6 0.091 (0.079) 22.6 0.092 (0.080) 22.7 0.061 (0.525) 6.3

Scenario 2. Directional pleiotropy, InSIDE assumption satisfied
10,000 0.1 10.7 2.6% 0.217 (0.114) 45.9 0.121 (0.099) 20.9 0.111 (0.099) 18.3 0.066 (0.285) 7.4
10,000 0.2 10.7 2.6% 0.348 (0.148) 68.0 0.168 (0.107) 32.5 0.160 (0.108) 28.7 0.090 (0.367) 7.3
10,000 0.3 10.7 2.6% 0.475 (0.171) 84.3 0.232 (0.116) 47.6 0.239 (0.121) 46.1 0.099 (0.425) 7.0
20,000 0.1 20.5 2.5% 0.230 (0.105) 61.4 0.120 (0.071) 37.2 0.119 (0.072) 36.0 0.067 (0.298) 7.1
20,000 0.2 20.5 2.5% 0.366 (0.143) 80.3 0.157 (0.077) 52.5 0.173 (0.082) 53.9 0.076 (0.401) 6.7
20,000 0.3 20.5 2.5% 0.500 (0.168) 92.3 0.213 (0.086) 66.3 0.269 (0.099) 72.0 0.081 (0.469) 6.4

Scenario 3. Directional pleiotropy, InSIDE assumption not satisfied
10,000 0.1 13.5 3.3% 0.274 (0.095) 71.1 0.238 (0.101) 48.5 0.154 (0.099) 29.1 0.432 (0.202) 55.5
10,000 0.2 16.3 3.9% 0.411 (0.107) 89.9 0.400 (0.103) 75.8 0.283 (0.103) 55.6 0.634 (0.209) 76.5
10,000 0.3 19.2 4.6% 0.515 (0.112) 96.8 0.533 (0.099) 90.5 0.433 (0.101) 78.5 0.736 (0.209) 86.9
20,000 0.1 26.0 3.1% 0.285 (0.085) 81.1 0.229 (0.076) 63.8 0.153 (0.074) 47.6 0.491 (0.189) 62.1
20,000 0.2 31.7 3.8% 0.423 (0.101) 93.4 0.391 (0.079) 85.0 0.274 (0.081) 71.1 0.694 (0.201) 81.2
20,000 0.3 37.2 4.4% 0.525 (0.106) 98.0 0.529 (0.076) 94.7 0.420 (0.082) 87.1 0.788 (0.200) 90.2

Mean estimates, mean standard errors, and power of 95% confidence interval to reject null hypothesis of inverse-variance weighted, weighted median, and MR-Egger regression
methods in simulation study for two-sample Mendelian randomization with a positive (β = 0.1) causal effect.

error). However, the power of the estimates with a positive
causal effect differs substantially. The weighted median meth-
ods have lower mean standard errors than the IVW method,
and generally have greater power with a positive causal effect
(although not uniformly so), particularly as the proportion
of invalid IVs increases. This is because invalid IVs do not
influence the median estimates directly. Although Type 1

error rates from MR-Egger regression are at nominal levels,
estimates from the MR-Egger method are considerably less
precise (mean standard errors are around three times larger
than IVW standard errors), and power to detect a causal
effect is considerably reduced. Precision in the MR-Egger
method depends on the genetic variants having different asso-
ciations with the exposure; if all genetic variants had the same

Genetic Epidemiology, Vol. 40, No. 4, 304–314, 2016 309



magnitude of association with the exposure, then the MR-
Egger regression estimate would not be identified.

In Scenario 2 (directional pleiotropy, InSIDE assumption
satisfied), estimates from the IVW method are biased with
inflated Type 1 error rates. Estimates from the weighted me-
dian methods are less biased, although there is a consistent
bias in the direction of the pleiotropic variants. Nominal Type
1 error rates are maintained when only 10% of genetic vari-
ants are invalid IVs, although Type 1 error rates are above
the expected 5% rate when 20% or more genetic variants are
invalid IVs. However, even though they are inflated, Type 1
error rates are far lower for the median-based methods than
those from the IVW method. The penalized weighted me-
dian estimates are less biased when a few genetic variants
are invalid, but when 30% of genetic variants are invalid, it
seems that the invalid IVs are often retained in the analysis
(as their estimates are homogeneous with each other) and
valid IVs are excluded. Estimates from MR-Egger regression
are close to unbiased, and Type 1 error rates are at nominal
levels, suggesting its utility as a sensitivity analysis method
when the InSIDE assumption is satisfied. However, the wide
confidence intervals and low power with a true causal effect
(close to 5%) mean that MR-Egger regression is not likely to
be a discerning sensitivity analysis, but rather giving conser-
vative findings as to whether a causal effect is present or not.
Although power to detect a causal effect is greater in the IVW
method, this is achieved at the cost of the Type 1 error rate;
comparisons of power that do not make reference to the Type
1 error rate are meaningless.

In Scenario 3 (directional pleiotropy, InSIDE assumption
not satisfied), all methods suffer from bias and inflated Type
1 error rates. Most concerning are results from the MR-Egger
method, which are more biased than those from the IVW
method and have similar Type 1 error rates. The weighted
median methods, and in particular the penalized weighted
median method, give lower Type 1 error rates, suggesting their
potential use as a sensitivity analysis method when InSIDE is
not satisfied, as well as when it is satisfied.

In Supporting Information Tables A1 and A2, results are
presented in a one-sample setting. Each of the methods suf-
fers from weak instrument bias in this setting, and Type 1
error rates are inflated. Estimates from MR-Egger regres-
sion are substantially more biased than those from other
methods. However, the median-based methods remain a rea-
sonable sensitivity analysis, as Type 1 error rates are similar
to those of the IVW method in Scenario 1, and substan-
tially lower in Scenarios 2 and 3. In Supporting Information
Table A3, results are presented in a two-sample setting for the
simple median estimator, and a weighted median estimator
using inverse-standard error weights rather than the inverse-
variance weights used above. Simple median estimates are
slightly less precise than those from the weighted median
methods, and have similar bias and Type 1 error properties
in Scenarios 1 and 2, but much improved Type 1 error rates
in Scenario 3. This is because the invalid variants in this
scenario are stronger than the valid variants, and so receive
more weight in the weighted analyses. It is unclear that this
would occur in applied practice, although it suggests that

the simple median method is a worthwhile additional sensi-
tivity analysis. The inverse-standard error weighted median
estimator has improved Type 1 error properties compared
with the IVW median estimator particularly in Scenario 3
(although not uniformly), indicating the potential to use dif-
ferent choices of weights in median-based methods to provide
further sensitivity analyses.

Example: Lipid Concentrations and Coronary
Artery Disease Risk

LDL-c is observationally positively associated with CAD
risk (Di Angelantonio et al., 2009). Evidence from random-
ized trials of pharmaceutical interventions to lower LDL-c
concentrations (such as statins (Pedersen et al., 1994; Cheung
et al., 2004)), and from Mendelian randomization (Linsel-
Nitschke et al., 2008; Do et al., 2013) suggests that this asso-
ciation is reflective of a causal effect of LDL-c on CAD risk.
On the contrary, although HDL-c is observationally inversely
associated with CAD risk, interventions to raise HDL-c con-
centrations (Schwartz et al., 2012) and focused Mendelian
randomization investigations (Voight et al., 2012) suggest
that there is not even a moderate causal effect of HDL-c on
CAD risk. However, a more liberal Mendelian randomization
analysis including genetic variants associated with other lipid
fractions (in particular, triglycerides) did suggest a causal ef-
fect of HDL-c on CAD risk (Holmes et al., 2015). As a proof
of concept example, we use summary data from the GLGC
on genetic associations with lipid fractions, and from CAR-
DIoGRAM on associations with CAD risk, and perform the
analysis methods discussed in this paper to see whether the
causal effect of LDL-c is preserved by the weighted median
and MR-Egger regression methods, as well as whether the
spurious causal effect of HDL-c is contradicted by the ro-
bust methods. We use data provided by Do et al. [2013] on
185 genetic variants for this analysis. The genetic associations
with the lipid fractions are in standard deviation units, and
with the outcome are log odds ratios, so the causal effects
represent log odds ratios per 1 standard deviation increase in
the lipid fraction. Further details of the analysis are provided
in Supporting Information Appendix 4.

Taking each of LDL-c, HDL-c, and additionally triglyc-
erides as the exposure variable in turn, we consider two anal-
ysis strategies. First, we take all genetic variants associated
with the exposure at a genome-wide level of significance
(taken as P < 10–8). Second, we restrict to genetic variants for
which the P-value for association with the target exposure
(say, HDL-c) is less than the P-values for association with the
nontarget exposures (say, LDL-c and triglycerides). We per-
form each of the methods presented in the manuscript (IVW,
simple median, weighted median, penalized weighted me-
dian, MR-Egger regression). The data are presented as scatter
plots in Figure 4 and Supporting Information Figure A1, and
as funnel plots in Supporting Information Figure A2.

Results are given in Table 4. The causal effects of LDL-c
and triglycerides are robustly detected by all the analysis
methods. In contrast for HDL-c, both MR-Egger regression
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Figure 4. Scatter plots of genetic associations with the outcome (coronary artery disease risk, CAD) against genetic associations with the
exposure (low-density lipoprotein cholesterol, LDL-c; high-density lipoprotein cholesterol, HDL-c; triglycerides). Left side: all genetic variants, right
side: genetic variants having primary association with the target exposure. Solid line represents IVW estimate, dashed line represents weighted
median estimate, and dotted line represents MR-Egger estimate.

and the weighted median methods suggest that the “causal
effect” of HDL-c on CAD risk detected by the IVW method is
suspect. With the exception of the simple median estimates,
all other robust analysis methods give estimates compatible
with the null. The test for directional pleiotropy in the MR-
Egger regression method suggested pleiotropy for HDL-c, but
not for LDL-c or triglycerides. Although similar results for
HDL-c can be obtained by filtering out genetic variants that
are suspected to have pleiotropic effects, by omitting genetic
variants there is a loss of power (e.g., in Holmes et al. a liberal
genetic risk score explained 3.8% of the variance in HDL-c,
whereas a conservative score omitting potentially pleiotropic
variants explained only 0.3%).

By way of comparison between the robust methods, similar
results were seen in this example as in the simulation study.
The median-based methods were consistently and substan-
tially more precise than the MR-Egger regression method,
with standard errors reduced by around 30–50%. The pre-
cision of the weighted median methods, in particular the
penalized weighted median method, was not much worse

than that of the IVW method, and in some cases was slightly
better. The simple median method was not as impressive,
suggesting a causal effect of HDL-c on CAD risk, and giving
less precise estimates than those from the weighted median
methods. The MR-Egger regression method performed well
despite doubts about the InSIDE assumption in the case of
HDL-c; many variants associated with HDL-c are also asso-
ciated with LDL-c and triglycerides, and these associations
are approximately proportional (see Supporting Information
Figure A1), hence pleiotropic effects on CAD risk may oper-
ate via LDL-c and triglycerides. This may be the reason why
the MR-Egger estimate changed sign in the analysis using
variants having primary association with HDL-c.

Discussion

In this paper, we have introduced a weighted median
method for the estimation of a causal effect using multiple
IVs. Unlike other methods commonly used in Mendelian ran-
domization, this method can give consistent estimates when
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Table 4. Results from applied example

Primary association
All genetic variants with target exposure

Analysis method Estimate (SE) P-valuea Estimate (SE) P-valuea

Low-density lipoprotein cholesterol (LDL-c)
Inverse-variance weighted 0.482 (0.060) ∗∗∗ 0.470 (0.055) ∗∗∗

Simple median 0.429 (0.070) ∗∗∗ 0.429 (0.079) ∗∗∗

Weighted median 0.458 (0.065) ∗∗∗ 0.457 (0.065) ∗∗∗

Penalized weighted median 0.457 (0.063) ∗∗∗ 0.457 (0.067) ∗∗∗

MR-Egger regression: slope 0.617 (0.103) ∗∗∗ 0.562 (0.094) ∗∗∗

intercept –0.009 (0.005) –0.006 (0.005)

High-density lipoprotein cholesterol (HDL-c)
Inverse-variance weighted –0.254 (0.070) ∗∗∗ –0.137 (0.066) ∗

Simple median –0.267 (0.090) ∗∗ –0.224 (0.085) ∗∗

Weighted median –0.069 (0.071) –0.066 (0.065)
Penalized weighted median –0.071 (0.068) –0.064 (0.066)
MR-Egger regression: slope –0.013 (0.115) 0.092 (0.107)

intercept –0.014 (0.005) ∗ –0.013 (0.005) ∗

Triglycerides
Inverse-variance weighted 0.416 (0.081) ∗∗∗ 0.417 (0.095) ∗∗

Simple median 0.512 (0.101) ∗∗∗ 0.565 (0.105) ∗∗∗

Weighted median 0.516 (0.084) ∗∗∗ 0.521 (0.087) ∗∗∗

Penalized weighted median 0.528 (0.078) ∗∗∗ 0.539 (0.089) ∗∗∗

MR-Egger regression: slope 0.422 (0.140) ∗∗ 0.464 (0.155) ∗∗

intercept –0.000 (0.008) –0.004 (0.009)

Estimates (standard errors) of causal effects of lipid fractions on coronary artery
disease risk. Estimates are log odds ratios per 1 standard deviation increase in the
exposure. The intercept term in MR-Egger regression provides a test of directional
pleiotropy.
aP-values are indicated as: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.0001.

some of the genetic variants in the analysis are not valid IVs.
We have shown how the method performs in a simulation
study and in an applied example.

A summary of the median-based and other methods con-
sidered in this paper is given in Table 5. Of particular in-
terest is the comparison between the weighted median ap-
proach and MR-Egger regression. MR-Egger regression can
give consistent estimates when 100% of genetic variants are
invalid IVs, whereas the weighted median method requires
50% of the weight to come from valid IVs. However, the
weighted median approach allows the IV assumptions to be
violated in a more general way for the invalid IVs, whereas
MR-Egger regression replaces one set of untestable assump-
tions (IV2 and IV3) with a weaker, but still untestable as-
sumption (the InSIDE assumption). Additionally, weighted
median estimates were substantially more precise than those
from MR-Egger regression in the simulation study and ap-
plied example. MR-Egger regression estimates are likely to
be particularly imprecise if all genetic variants have similar
magnitudes of association with the exposure.

Although the only mechanism for generating invalid IVs
considered in this paper was pleiotropy, median-based meth-
ods are agnostic to the mechanism by which the invalid IVs
violate the IV assumptions. Consistent estimates would be
guaranteed if some genetic variants were invalid IVs due to
other mechanisms, such as linkage disequilibrium, popu-
lation stratification, or differential survival (Bochud et al.,
2008). One potential source of bias that may not be resolved
by the proposed robust methods is selection bias (Hernán
et al., 2004). This could arise from differential selection of
individuals in the datasets from which the genetic associa-

tions are obtained, or else the selection of genetic variants
based on their strength in the dataset under analysis, or if ge-
netic variants were discovered as associated with the exposure
in the dataset under analysis. Selection bias may affect all ge-
netic variants in a particular analysis, and so is unlikely to be
addressed by the use of the median-based methods proposed
in this paper.

We clarify that the objective of this paper is not to provide
guidance on how to choose genetic variants for a Mendelian
randomization analysis. This is an important question, but
not one that it is possible to answer in a general way, in
that it requires biological as well as statistical considerations
of the specific analysis question in each case. The robust
analysis methods presented in this paper are able to weaken
the assumptions necessary for the consistent estimation of
a causal effect. However, they do not eliminate the need to
assess the validity of the IV assumptions. This is particularly
true for the median-based approaches, as the assumption that
50% of the information in the analysis comes from valid IVs is
still required. As a corollary, these robust methods should not
be used to promote analysis approaches based on the whole
genome for causal inference without further justification.

One assumption that we have made in this paper is that
of no causal effect heterogeneity. This means that the same
change in the outcome is expected no matter how the ex-
posure is intervened on, and so the same causal effect is
identified by different genetic variants that are valid IVs. In
practice, it may be that genetic variants influence the expo-
sure via different biological mechanisms. However, empirical
evidence for the causal effect of LDL-c on CAD risk provides
no evidence of causal effect heterogeneity despite genetic
variants having different mechanisms and substantially dif-
ferent magnitudes of association with LDL-c (Davey Smith
and Hemani, 2014).

Other approaches for the estimation of causal effects with
some invalid IVs have been proposed. Kang et al. have pro-
posed a method based on penalized regression for detecting
and accounting for invalid instruments that provides a con-
sistent estimate of causal effect if at least 50% of the genetic
variants are valid (Kang et al., 2015). Han has proposed a
similar penalized estimator within the generalized method
of moments framework, again with a 50% breakdown level
(Han, 2008). Kolesár et al. have proposed a method within
the framework of k-class estimators with a 100% breakdown
level under the InSIDE assumption (Kolesár et al., 2014).
The first two methods are similar to the median-based ap-
proaches proposed here, and the final method is similar to
MR-Egger regression. An alternative approach was proposed
by Windmeijer et al. based on Hansen’s overidentification
test, a test of the homogeneity of the ratio estimates from
different candidate IVs (Windmeijer et al., 2015). The ba-
sic idea of this approach is to report a causal estimate based
on genetic variants whose ratio estimates are mutually sim-
ilar. A related approach based on step-wise selection using a
heterogeneity test statistic was proposed by Johnson [2013].
Although the exclusion of certain variants to consider their
potential impact on the overall estimate may be a reasonable
sensitivity analysis, a potential danger of such an approach
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Table 5. Summary of methods considered in this paper

Method Breakdown IV2 IV3 Comments

Two-stage least squares 0% ✗ ✗ Requires individual-level data. Biased when at least one genetic variant is
an invalid IV.

Inverse-variance weighted (IVW) 0% ✗ ✗ Equivalent to two-stage least squares method with summary data. Also
biased when at least one genetic variant is an invalid IV.

Simple median 50%
√ √

Consistent when 50% of genetic variants are valid IVs. Inefficient
compared with IVW and weighted median methods.

Weighted median 50%
√ √

Consistent when 50% of weight contributed by genetic variants is valid.
Efficiency is similar to that of IVW method.

Penalized weighted median 50%
√ √

Equivalent to weighted median when there is no causal effect
heterogeneity. Downweights the contribution of heterogeneous
variants, so may have better finite sample properties, particularly if
there is directional pleiotropy.

MR-Egger regression 100% ✗
√

Consistent when 100% of genetic variants are invalid, but requires
variants to satisfy a weaker assumption (the InSIDE assumption). This
assumption is not automatically violated by an association between a
genetic variant and a confounder, but it would be violated if several
variants were associated with the same confounder. Substantially less
efficient than IVW and median-based methods, and more susceptible
to weak instrument bias in a one-sample setting.

Breakdown refers to the breakdown level, the proportion of information that can come from invalid instrumental variables (IVs) before the method gives biased estimates. IV2
and IV3 refer to whether violations of the second (no association with confounders) and third (no direct effect on the outcome) instrumental variable assumptions are allowed
(
√

) or not allowed (✗).

is that of post hoc or data-driven analysis, in which genetic
variants are cherry-picked for inclusion in the analysis model,
and dissenting variants are filtered out.

We have chosen in this paper to focus on the two-
sample situation using summary data as this is most rel-
evant to Mendelian randomization; all the other methods
have been developed for use with individual-level data in
a one-sample setting, and hence are not considered in this
manuscript. We look forward to further methodological de-
velopments in this area. One particular area that may be fruit-
ful for such developments is bias-correction methods in the
meta-analysis literature; two particular examples are the
trim-and-fill method (Duval and Tweedie, 2000) and the
use of pseudodata (Bowden et al., 2006). Equivalently, there
may be application of the median-based methods proposed
in this paper in the field of meta-analysis, to provide a more
robust pooled estimate.

From a practical perspective, it is important to acknowl-
edge the limitations of all methods for obtaining causal in-
ferences. Our aim in presenting the median-based methods
in this paper is not to recommend a single authoritative
method for all Mendelian randomization analyses. Rather,
examining the results from different methods that make dif-
ferent assumptions (IVW, simple median, weighted median,
MR-Egger regression) provides a sensitivity analysis that ei-
ther adds to or questions the robustness of a finding from a
Mendelian randomization investigation. If, as in the case of
the effect of LDL-c on CAD risk, a causal effect is reported
across all methods, then a causal finding is far more plausible
than if the methods give contradictory findings. Our advice
in Mendelian randomization investigations using multiple
genetic variants where the IV assumptions are in doubt for
some or all genetic variants, would therefore be to perform
and report results from a range of sensitivity analyses us-
ing robust methods, including the simple median, weighted

median, and MR-Egger regression methods, in addition to
the main analysis result.
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MK, Hindy G, Hólm H, Ding EL, Johnson T and others. 2012. Plasma HDL
cholesterol and risk of myocardial infarction: a Mendelian randomisation study.
Lancet 380(9841):572–580.

Windmeijer F, Farbmacher H, Davies N, Davey Smith G, White I. 2015. Select-
ing (in)valid instruments for instrumental variables estimation. Available at
http://www.hec.unil.ch/documents/seminars/iems/1849.pdf.

314 Genetic Epidemiology, Vol. 40, No. 4, 304–314, 2016


