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Fundamental Frequency Estimation In Speech
Signals With Variable Rate Particle Filters

Geliang Zhang, and Simon Godsill, Member, IEEE

Abstract—Fundamental frequency estimation, known as pitch
estimation in speech signals is of interest both to the research
community and to industry. Meanwhile, the particle filter is
known to be a powerful Bayesian inference method to track
dynamic parameters in non-linear state-space models. In this
paper, we propose a speech model under a time-varying source-
filter speech model, and use variable rate particle filters (VRPF)
to develop methods for estimation of pitch periods in speech
signals. A Rao-Blackwellised variable rate particle filter (RB-
VRPF) is also implemented. The proposed VRPF and RBVRPF
are compared with a state-of-the-art pitch estimation algorithm,
the YIN algorithm. Simulation results show that more accurate
estimation of pitch can be obtained by VRPF and RBVRPF even
under strong background noise conditions.

Index Terms—variable rate particle filters, pitch estimation,
Rao-Blackwellisation, source-filter model

I. INTRODUCTION

ROBUST pitch estimation algorithms for speech signals
have wide application and thus have been proposed in

many papers. Previous algorithms are mainly based on time
domain and frequency domain techniques; for example, a ro-
bust algorithm for pitch tracking (RAPT) algorithm and YIN,
a fundamental frequency estimator for speech and music [1]
[2] [3]. Most time domain algorithms are based on autocorre-
lation methods and the average magnitude difference function
(AMDF) method, which can be used to estimate the periods
of speech signals [4]. Recently a robust frequency domain
algorithm for pitch estimation has also been proposed [5].
Some researchers have proposed a statistical method which
chooses peaks from short time spectrum of speech signals [6].
Other methods which have been proposed to estimate glottal
waves can also be used to extract pitch periods, include [7] [8].
However, very few of them can give satisfactory pitch tracking
results under strong noise conditions, for example, when the
Signal-to-Noise Ratio (SNR) is as poor as -5 dB to -10 dB.

Particle filters have been used widely in tracking applica-
tions since their development in recent decades [9] [10] [11].
However, little work has been done to apply the particle filter
to pitch tracking. Recently it has been shown that the particle
filter approach can be used to track pitch period, using a quasi-
periodic speech signal model [12]. In this paper, we propose
another particle filter approach to address the pitch tracking
problem using a source-filter speech signal model, which is
capable of tracking pitch period under very noisy conditions.

The authors are with the Signal Processing and Communication Laboratory,
Engineering Department, University of Cambridge, CB2 1PZ, UK. e-mail:
(gz246@cam.ac.uk; sjg30@cam.ac.uk.

A possible source-filter model that can be used to capture
the pitch period of speech signals is the time-varying autore-
gressive (AR) model driven by some source signals. Because
of the near-periodic properties of voiced speech signals, the
driving sources should themselves be near-periodic signals. A
promising driving source model is proposed here in this paper,
with an accompanying speech waveform model. Experiments
have been carried out to test the performance of the proposed
algorithm in various SNR conditions, showing that the pro-
posed method can track pitch periods more successfully than
state-of-the-art algorithms under noisy conditions.

The paper is organised as follows. Section 2 describes the
source-filter speech model. In Section 3, a detailed description
of the application of variable rate particle filters of the problem
is presented. An initialization step for the particle filter using
a joint optimization approach is derived in Section 4. Section
5 describes the details of the Rao-Blackwellisation approach
to the previous variable rate particle filter. Section 6 gives
experiment results for the proposed methods and compares
them with the YIN algorithm. Finally, conclusions are drawn
in Section 7.

II. SPEECH MODEL

A. A time-varying AR source-filter model

It is known that in human speech the fundamental period
has a lower bound Tlow and an upper bound Tupp. The n-th
period Tn is thus modeled as,

Tn = Tn−1 + τn, Tlow < Tn < Tupp. (1)

The speech signal at time t in the current period nt are
represented as a periodic source input to a M -th order time-
varying AR model,

st =

M∑
p=1

apnt
s(t−p) + Vt, (2)

where Vt denotes the input source to the AR model and
can be modeled as either near-periodic signals or glottal pulse
sequences, while the current period nt is n : t ∈ [Pn, Pn+1].
Pn is the time when the n-th period starts, i.e. Pn =

∑n−1
i=1 Ti.

The AR coefficients apnt
are assumed to change randomly

between periods, but remain fixed within each period,

apnt
= apnt−1 + τa,p, (3)

where τn ∼ U(τmin, τmax). U refers to the uniform
distribution and N denotes the Gaussian distribution through
out the paper. τmin = max[−τT , Tlow − Tn−1], and τmax =
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min[τT , Tupp − Tn−1], where τT is a fixed hyperparameter.
τa,p can be sampled from N (0, σ2

a,p).
Finally, the voiced speech signal st is observed in Gaussian

noise:
yt = st +Gt. (4)

Gt is sampled from N (0, σ2
G). Values of hyperparameters

such as σG and τT in these distributions are related with the
extent of variations of parameters in the speech model and are
given in the experiment section. We use ant to denote a1:Mnt

.
The characteristics of the speech signal model are largely

determined by the input source, Vt. Vt can potentially be
modeled using different quasi-periodic models, resulting in
different performances. A particular source model is proposed
here, described in the following subsection.

B. Input sources modeled as almost periodic signals

Because the voiced speech signal is almost periodic, with
time-varying period, it is suggested that the input source can be
modeled as an almost periodic signal itself. Such an approach
has previously been used to model spectroscopy signals and
music signals [13] [14]. Here it is proposed that a similar
method can be used to model the input source to the speech
production model as well,

Vt =

K∑
k=0

Ak
nt

cos(kwnt
0 t) +Bk

nt
sin(kwnt

0 t) +Wt (5)

Ak
nt

= Ak
nt−1 + εA,k (6)

Bk
nt

= Bk
nt−1 + εB,k (7)

Wt ∼ N(0, τ2w) (8)

Here εA,k and εB,k can be sampled from Gaussian distri-
butions N(0, σ2

A,k) and N(0, σ2
B,k).

In equation (5), K + 1 denotes the number of harmonic
components, i.e. cosine and sine waves, used in the input
source model. The variable wnt

0 refers to the fundamental
frequency of the current speech signal, which is the inverse of
current pitch period Tn. Here we assume that Ak

nt
and Bk

nt

change slowly that they can be assumed fixed within each
pitch period. In order to simplify the notation, we use Ant

and Bnt
to denote A1:K

nt
and B1:K

nt
.

III. IMPLEMENTATION OF VARIABLE RATE PARTICLE
FILTER

We can use Bayesian filtering to recursively estimate hidden
states x1:t from observable states y1:t [10], [15], using the
following prediction and updating equations,

p(x1:t|y1:t−1) = p(xt|x1:t−1)p(x1:t−1|y1:t−1) (9)

p(x1:t|y1:t) ∝ p(yt|x1:t, y1:t−1)p(x1:t|y1:t−1) (10)

Thus if we can set the initial prior p(x1), we can use (9)
and (10) to calculate the posterior distribution of p(x1:t|y1:t)

and its marginal distributions once a new observable state yt
is received [10].

The variable rate particle filter approach uses a set of
random, weighted ‘particles’ x(i)1:t to approximate the posterior
distribution for the unknown state variable sequence x1:t from
the noisy data y1:t,

p(x1:t|y1:t) ≈
N∑
i=1

w
(i)
t δ(x1:t − x(i)1:t), (11)

where N denote the number of total particles.
In order to deal with the analytic intractability of the speech

signal model and considering the fact that the period T is
asynchronous with the sample time t, we adopt the variable
rate particle filter here. Compared with the standard particle
filter, the variable rate particle filter (VRPF) applies to cases
when the state variables arrive at unknown times relative to
the observation process [16]. This makes VRPF suitable for
this speech signal model in which the pitch period arrives at
a random rate relative to the observed speech signal samples.

In the VRPF, at a time t, the unknown parameters in the
problem are s1:t, T1:nt

, A1:nt
, B1:nt

, and a1:M1:nt
. Fixed hy-

perparameters (σT , σG, σV , σa,p, τw, σA,k, σB,k) are assumed
here. Thus the hidden state vector x1:t is defined as,

x1:t = [s1:t, a
1:M
1:nt

,A1:nt ,B1:nt , T1:nt ]. (12)

The algorithm of variable rate particle filter used here can
be summarized as follows.

Algorithm 1:
Goal: Tracking T1:nt

which are contained in x1:t, given y1:t
and T1.

1) Initialize {x(i)1 }
N

i=1. Set up all the fixed hyperparameters

and {w(i)
1 }

N

i=1 = 1
N . To initialize {x(i)1 }

N

i=1, use the joint
estimation technique based on the first period of speech
data y1:T1 , according to (14), see later. Then sample
{s(i)1 }Ni=1 based on a1,A1,B1, T1 according to (2) and
(5). Set P (i) = T1.

2) for t = 1:tend do
a) for i = 1:N do

i) Set n(i)t = n
(i)
(t−1).

ii) While t > P (i):
A) Add a new pitch period, n(i)t ← n

(i)
t + 1.

B) Sample a new pitch period and other coeffi-
cients:

T (i)
nt
∼ U(max[T (i)

nt−1
− σT , Tlow],

min[T (i)
nt−1

+ σT , Tupp]),

a
n
(i)
t

(i),p ∼ N (a
n
(i)
t −1

(i),p , σ2
a,p),

A
n
(i)
t

(i),k ∼ N (A
n
(i)
t −1

(i),k , σ2
A,k),

B
n
(i)
t

(i),k ∼ N (B
n
(i)
t −1

(i),k , σ2
B,k),

C) Update P (i) ← P (i) + T
(i)
nt .
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iii) Sample new signal value: sti based on

a
n
(i)
t

i,p , A
n
(i)
t

i,k , B
n
(i)
t

i,k , T
(i)

n
(i)
t

as (2) and (5). Now

[x
(i)
1:t] = [x

(i)
1:t−1, x

(i)
t ], as defined in (34).

iv) Compute importance weight w(i)
t of each particle:

w
(i)
t ∝ w

(i)
t−1p(yt|s

(i)
t , σG).

b) end for
c) Renormalize w̃(i)

t =
w

(i)
t∑N

i=1 w
(i)
t

, i = 1, 2, ..., N .
d) If t = k ∗BlockSize, where k is a positive integra,

i) Resample {x(i)1:t}Ni=1 when Neff < N/2. Neff

denotes the effective sample size and is calculated
as Neff = 1/

∑N
i=1 w̃

(i)
t .

ii) T̂nt
=
∑N

i=1 w̃
(i)
t T

(i)
nt .

3) end for
One thing we would like to mention here is that it is not
suggested that we make the decision of whether or not to
resample when every signal sample becomes available, as it
will decrease the robustness of the algorithm. Rather, we make
the decision only after a certain length of samples have been
processed, which is equal to the length of a pre-determined
window size. The time length of this window function is
usually about 32, 64 or 128 ms depending on the context.

IV. INITIALIZATION OF PARTICLE FILTERS

A. Motivation

In order to apply the particle filter to estimate the pitch
period T0 of speech signal using the time-varying AR model,
it is necessary to estimate all the parameters used in the
model except for the fixed parameters. However, if too many
parameters need to be tracked simultaneously without any
prior knowledge about their initial value, it means we need
to estimate the state vector within a high dimensional space,
which needs exponentially growing computation and number
of particles to track them [17]. For example, in the case
of modeling input sources as almost periodic signals, if 20
harmonics are assumed to be existing in the input source
(K = 20) and a 11-order AR model is used (M = 11),
the number of parameters involved in the whole model is
2 ∗ K + M + 1, which is 52. In order to estimate a 52-
dimensional vector using a moderate number of particles, for
example, 1000 particles, it will be necessary to have a good
initialization method at the beginning of the algorithm to make
the particle filter work.

B. Joint source-filter estimation method

It has been proposed in [8] that a joint source-filter optimiza-
tion approach can be used to estimate glottal flow using the LF
model of the glottal flow derivative when the input source is
modeled as glottal pulses. It is suggested in our paper that after
some modification on the model used in the input source, this
joint source-filter optimization approach can be also applied
here when the input source is modeled as almost periodic
signals as a joint source-filter estimation technique to initialize
the parameters used in the whole model. Details of how this

technique can be modified to apply when input sources are
modeled as almost periodic signals here are described in A.

Here we just display the results. If we write the parameters
of the proposed almost periodic source-filter model except for
Tn, i.e., {ap, Ak, Bk}p=1:M, k=0:K (upper index nt omitted
here, see A), into a vector a, where

a =
(
a1, . . . , aM , A0, . . . , AK , B0, . . . , BK

)T
(13)

Then it is possible to jointly estimate the parameters in a using
the following equation:

a = R−1p (14)

where
R =

(
R1 −R2

−RT
2 R3

)
(15)

where

R1 =

 Cxx(1, 1) . . . Cxx(M, 1)
... . . .

...
Cxx(1,M) . . . Cxx(M,M)

 (16)

R2 =
(

R2A R2B

)
(17)

where

R2A =

 C0
Ax(0, 1) . . . CK

Ax(0, 1)
... . . .

...
C0

Ax(0,M) . . . CK
Ax(0,M)

,

 (18)

and

R2B =

 C0
Bx(0, 1) . . . CK

Bx(0, 1)
... . . .

...
C0

Bx(0,M) . . . CK
Bx(0,M)

,

 (19)

R3 =


C0,0

CC(0, 0) . . . C0,2K+2
CC (0, 0)

C1,0
CC(0, 0) . . . C1,2K+2

CC (0, 0)
...

... . . .
...

...
C2K,0

CC (0, 0) . . . C2K,2K+1
CC (0, 0)

C2K+1,0
CC (0, 0) . . . C2K+1,2K+1

CC (0, 0)

,


(20)

and

p =



−Cxx(0, 1)
...

−Cxx(0,M)
C0

Ax(0, 0)
...

CK
Ax(0, 0)

C0
Bx(0, 0)

...
CK

Bx(0, 0)

.


(21)

And those parameters used in the paper have been defined
as, 

Cxx(i, j) =
∑NT

t=1 x
t−ixt−j

Ck
Ax(i, j) =

∑NT

t=1 x
t−iAk cos(kw0(t− j))

Ck
Bx(i, j) =

∑NT

t=1 x
t−iBk sin(kw0(t− j))

Cm,n
CC =

∑NT

t=1 cm(t)cnt

(22)
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And ck(t) denotes the k−th element of the vector c(t) which
is defined as follows:

c(t) =



A0 cos(0w0t)
A1 cos(1w0t)

...
AK cos(Kw0t)
B0 sin(0w0t)
B1 sin(1w0t)

...
BK sin(Kw0t)


(23)

V. RAO-BLACKWELLISATION OF VARIABLE RATE
PARTICLE FILTER

It is well known that the optimal solution for linear state
space models and Gaussian noise is the Kalman filter [18]. The
Rao-Blackwellised particle filter separates the linear part and
the nonlinear part of the model. Then it utilizes the Kalman
filter to solve the linear and Gaussian part, and uses the
particle filter to solve the nonlinear/non-Gaussian part of the
model. This strategy enables the Rao-Blackwellised particle
filter to save a lot of computing effort and reduce variance.
As a reference for Rao-Blackwellised particle filters, please
see [9] [15]. Some people have already adapted the Rao-
Blackwellisation strategy to the variable rate particle filter in
some other applications, such as for tracking and financial
applications [19] [20].

Here we adapt the Rao-Blackewellisation method to the
variable rate particle filter used in the previous section. To
illustrate the process, we mainly rely on the framework pro-
vided in the section II.G in [9].

Recall that the dynamic model of speech signals used in the
time-varying AR model is:

yt = st +Gt,

st =

M∑
p=1

an(t)p s(t−p) + V t.

an(t)p = an(t)−1p + τa,p,

Tn = Tn−1 + τn,

V t = gt +W t

=

K∑
k=0

A
n(t)
k cos(kw0t) +B

n(t)
k sin (kw0t) +W t

A
n(t)
k = A

n(t)−1
k + εA,k

B
n(t)
k = B

n(t)−1
k + εB,k.

(24)

Once the nonlinear parameter Tn is determined, this model
can be written into the standard linear Gaussian state-space
model as follows,

xL
t = Atx

L
(t−1) + uL

t ,

st = Btx
L
(t) + vLt ,

yt = st +Gt,

(25)

where xt
L is defined as

xL
t =



a
n(t)
1
...

a
n(t)
M

A
n(t)
0
...

A
n(t)
K

B
n(t)
0
...

B
n(t)
K



. (26)

while At and Bt are functions of nonlinear states xN1:t and are
defined later in (30) and (31).

Meanwhile, the nonlinear part of state, x0:tN can be expressed
as

xN
1:t = [T1:nt

, s1:t]. (27)

The other terms in the state space model are as follows,

ut ∼
{
N (0,Σ), t > Pi ≥ t− 1,

0, t ≤ Pi
(28)

which accounts for the fact that xL is fixed during each pitch
period.

Σ is a diagonal matrix with the leading diagonal as:

σ2
a,1
...

σ2
a,M

σ2
A,0
...

σ2
A,K

σ2
B,0
...

σ2
B,K

,


. (29)

And Bt is defined as

Bt =



st−1

...
st−M

cos (0w0φ (t))
...

cos (Kw0φ (t))
sin (0w0φ (t))

...
sin (Kw0φ (t))



T

(30)

φ(t) refers to the time since the start of the current period, i.e.
φ(t) = t−

∑nt−1
i=1 Ti.

And,
At = I; (31)

Thus, it is possible to separate the linear/Gaussian and
nonlinear/non-Gaussian parts of the model and apply the Rao-
Blackwellisation to the variable rate particle filter described in
the last section.
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Here we give the details of the derivation to estimate
p(xN1:t|y1:t) recursively from p(xN1:t−1|y1:t−1), using Bayes’
Theorem and the prediction error decomposition (PED) as
below, mainly either taken directly or modified from the
section II.G of [9].

Generally, we want to choose two proposal functions, i.e.
q(st|xN1:t−1) and q(Tnt |Tnt−1), for the following probability
distribution:

p(xN
1:t|y1:t) = p(T1:nt , s1:t|y1:t)

∝ p(yt|st, Tnt
)p(Tnt

, st|T1:nt−1
, s1:t−1)p(x

N
1:t−1|y1:t−1)

= p(yt|st)p(Tnt , st|T1:nt−1 , s1:t−1)p(x
N
1:t−1|y1:t−1)

= p(yt|st)p(Tnt
|T1:nt−1

)p(st|s1:t−1, T1:nt
)p(xN1:t−1|y1:t−1),

(32)

and the PED term can be obtained as follows,

p(st|s1:t−1, T1:nt
) = N (st|µst , Cst) , (33)

where
µst = Btµt|1:t−1,

Cst = BtCt|1:t−1B
T
t + Cv.

(34)

.
Then the weight wt can be obtained by:

wt ∝
p(yt|st)p(Tnt

|T1:nt−1
)p(st|s1:t−1, T1:nt

)p(xN1:t−1|y1:t−1)
q(st|xN1:t−1)q(Tnt

|Tnt−1)
(35)

The second proposal function here is chosen as
q(Tnt |Tnt−1) = p(Tnt |T1:nt−1) so that these two terms
cancel out. And the first proposal function can be chosen as
q(st|xN1:t−1) = p(st|s1:t−1, T1:nt

, yt). This is calculated as
follows,

q
(
st|xN1:t−1

)
= p (st|s1:t−1, yt, T1:nt

)

= N (ŝt, 1/φt) ,
(36)

where
ŝt = θt/φt,

θt = yt/σ
2
G + µst/Cst ,

φt = 1/σ2
G + 1/Cst .

(37)

Terms used here such as µst and Cst involves calcu-
lating µt|1:t−1 and Ct|1:t−1, i.e. the first two moments of
p(xLt |y1:t−1, xN1:t−1) obtained through the standard Kalman
filter described as below. As a starting point, suppose we know
p(xL

t−1|y1:t−1,xN
1:t−1), which a Gaussian, denoted by

p(xL
t−1|y1:t−1,xN

1:t−1) = N
(
xL
t−1|µt−1|1:t−1, Ct−1|1:t−1

)
.

(38)

Then, to predict the linear part of state at step t while new
data point st is not yet available, use the following:

p(xL
t |y1:t−1,xN

1:t) = N
(
xL
t |µt|1:t−1, Ct|1:t−1

)
(39)

where
µt|1:t−1 = Atµt−1|1:t−1,

Ct|1:t−1 = AtCt−1|1:t−1A
T
t + Cu.

(40)

When st is sampled, we have the measurement update step:

p(xL
t |s1:t,xN

1:t) ∝ N
(
xL
t |µt|1:t, Ct|1:t

)
(41)

where
µt|1:t = µt|1:t−1 +Kt

(
st −Btµt|1:t−1

)
,

Ct|1:t = (I −KtBt)Ct|1:t−1,

Kt = Ct|1:t−1B
T
t

(
BtCt|1:t−1B

T
t + Cv

)−1
.

(42)

And the update of importance weights are thus modified
accordingly:

wi
t ∝

(2π)
1/2

(φt)
1/2

N(yt|ŝt, σ2
G)N(ŝt|µst , Cst)w

i
t−1. (43)

Then the Rao-Blackwellised version of variable rate particle
filter is very similar with the variable rate particle filter
algorithm described in section ‘Implementation of variable
rate particle filter’, except the propagation part and the weight
calculation.

The propagation part of the Rao-Blackwellised variable
rate particle filter pitch tracking algorithm (RBVRPF) can be
summarized as follows. Express x1:t = [xN

1:t,x
L
1:t].

Algorithm 2:

1) Initialize {x(i)1 }
N

i=1. Set up all the fixed hyperparameters

and {w(i)
1 }

N

i=1 = 1
N . To initialize {x(i)1 }

N

i=1, use the
joint estimation technique based on the first period of
speech data y1:T1

, following equation (14). Then sample
{s(i)1 }Ni=1 based on [a1,A1,B1,T1] according to equa-
tion (24). Set Pi = T1.

2) for t = 1:tend do
a) for i = 1:N do

i) Set n(i)t = n
(i)
t−1.

ii) While t > Pi:
A) Add a new pitch period, n(i)t ← n

(i)
t + 1.

B) Sample a new pitch period:

T (i)
nt
∼ U(max[T

(i)
nt−1 − σT , Tlow],

min[T
(i)
nt−1 + σT , Tupp]),

C) Update Pi ← Pi + T
(i)
nt .

iii) Update p(xL
t |y1:t,xN

1:t) from
p(xL

t−1|y1:t−1,xN
1:t−1) using equations (38) -

(42).
iv) Sample new signal value s(i)t according to (36) and

(37) .
v) Compute importance weight w(i)

t of each particle
according to (43):

b) end for
c) If t = k ∗BlockSize, where k is a positive integra,

i) Renormalize w̃(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

, i = 1, 2, ..., N .

ii) Resample {x(i)1:t}Ni=1 when Neff < N/2. Neff

denotes the effective sample size and is calculated
as Neff = 1/

∑N
i=1 w̃

(i)
t .
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iii) T̂nt
=
∑N

i=1 w
(i)
t T

(i)
nt .

3) end for
It is worth noting that using the estimation of mean value

T̂nt
during this algorithm is not necessarily a good point

estimator in many situations, for example, due to possible pitch
doubling, etc. Actually what we have obtained from particle
filters is a distribution of p(Tnt

) ≈
∑N

i=1 w
i
tδ(Tnt

− T
(i)
nt ),

and thus it may be better to use some other estimate from
distribution to obtain a better point estimate of the target
variable. However here we only choose the naive estimator
here and test its performance.

VI. EXPERIMENTAL RESULTS

Speech data in this experiment are taken from the PTDB-
TUG database [21]. Speech signals in PTDB-TUG database
are recorded with laryngograph signals, which can be used to
extract true pitch period. During the performance test stage, we
randomly chosen 10 sentences from the database. To diversify
the speakers, 5 sentences were spoken by five different males
and 5 sentences were spoken by five different females. These
sentences were then added with white Gaussian noise with
five different SNRs. Then we randomly cut one utterance out
of each of the sentence. Each utterance has a length of 187.5
ms. These 10 utterances were then downsampled from 48kHz
to 16kHz. The other details in the simulations are as follows:
(1) Block size for particle filter processing: 8ms. So we have
approximately 235 measurements of all the testing speech
signals in total.
(2) Signal-to-Noise Ratio (SNR) of the noisy speech signals
tested in the experiment are 10dB, 5dB, 0dB, -5dB and -10dB.
(3) During the following experiments, other parameters in
VRPF are set as σ2

a,p = 0.001, σT = 10, σ2
A,k = 0.005,

σ2
B,k = 0.005, τw = 0,σ2

G = 0.1, Tlow = 40(samples),
Tupp = 200(samples), number of particles Np = 1000,
M = 11, K = 20.
Parameters in RBVRPF are set as Np = 1000, M = 8,
K = 10, σ2

A,k = σ2
B,k = 0.0004, σ2

a,p = 0.001, σT = 10,
Tlow = 40(samples), Tupp = 200(samples), τw = 0.003.
σ2
G is set to be equal to the variance of the added noise level.

If σ2
G < 0.04, then set σ2

G = 0.04 to increase the stability of
the particle filters.
(4) The first pitch period T0 is assumed to be known for VRPF
and RBVRPF. However, to show RBVRPF’s robustness of
this prior knowledge, the first pitch periods of all particles in
RBVRPF method are chosen to be uniformly distributed from
T0−10(samples) to T0+10(samples) during its initialization
process.

Regarding the choices of values for these hyperparameters,
we set them according to their physical interpretations as well
as taking prior knowledge into considerations. For example,
Tlow and Tupp are set as those values because it is generally
known that the fundamental frequency of human voices are
mostly between 80Hz and 400Hz, and with the sampling
frequency to be 16kHz, we can obtain the lower and upper
bound of the possible fundamental period T range from 40 to
200 samples. The order of AR model, M is chosen to be an
integer between 8 to 16 as most AR speech models follow this

rule, and the number of harmonic components, K is chosen
to be between 10 to 20 so that the signal model can include
most energy of the voiced speech. Practice shows that the
proposed algorithms here are not sensitive to the values of
M and K as long as they fall into the approximate ranges
stated above. Other parameters, were informally tuned using
a training set of another set of 10 utterances with the same
length/format as the test data, spoken by another different 10
speakers chosen randomly and gender balanced. The tuning
process was performed as finding out suitable values for those
hyper-parameters such as τw, σT , σ2

a,p, σ2
A,k, σ2

B,k and σ2
G

so that the algorithm can produce satisfactory results for most
of the utterances. They are not necessarily optimal but the
overall performance of the proposed algorithms are not very
sensitive to these hyper-parameters as long as these values are
set within a value range which is appropriate to capture the
characteristic of the slow time-varying process by which the
voice signal is produced. A more formal inference procedure
for these parameters is left for further study.

A. Preliminary tests

We have tested the proposed VRPF and RBVRPF methods
in noisy environments from 0 dB to -10 dB input SNR levels
for a vowel sound. In all the figures afterwards, ‘SD’ denote
for ‘standard deviation’ of a single run of particle filters. Fig.1
shows the waveform for this vowel sound. Fig.2 shows the
tracking result of the clean speech example of the VRPF
method, along with the results of YIN algorithm and RAPT
algorithm. The true pitch period, T0 value is extracted by
the RAPT algorithm using the corresponding laryngograph
recording data. From this figure we can see the proposed
particle filter approach can estimate the pitch period quite well
from clean speech.
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Fig. 1. Waveform of speech sample1.

Fig.3, Fig.4 and Fig.5 show the tracking results of these
three methods in 0dB, -5dB and -10dB SNR input scenarios.
The RAPT algorithm can not give meaningful result in 0dB
and -5dB SNR input speech, under which conditions results
are not displayed. The YIN algorithm is still robust in -5 and
-10 dB SNR condition, but the performance is not that good
compared with that in 0dB SNR condition. In contrast, the
proposed method tracks the pitch period relatively accurate
under both strong background noise conditions.
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Fig. 2. Comparison of T0 estimated from three methods with the true T0
value, clean speech.
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Fig. 3. Comparison of T0 estimated from three methods with the true T0
value. Input SNR = 0dB.

Fig.6∼9 show the results of pitch tracker obtained from the
RBVRPF method and the YIN algorithm in clean speech, 0dB,
-5dB and -10dB SNR input scenarios, respectively. We can
notice that the RBVRPF method is capable of extracting the
pitch period in all these different noisy conditions, especially
for the -10 dB SNR input scenario where the YIN algorithm
provides a poor estimate of the correct pitch period.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
6

6.5

7

7.5

8

8.5

 t/ s

 T
0
 /
m

s

 

 

True T0 value

YIN

Particle Filter

SD of Particle Filter

Fig. 4. Comparison of T0 estimated from three methods with the true T0
value. Input SNR = -5dB.
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Fig. 5. Comparison of T0 estimated from three methods with the true T0
value. Input SNR = -10dB.
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Fig. 6. Comparison of T0 estimated from three methods with the true T0
value. Input SNR = 30dB.

B. Performance Comparison

To investigate the performance of the proposed particle filter
approaches, the VRPF and RBVRPF using time-varying AR
model, we compared them with one established state-of-the-
art algorithm, the YIN algorithm [3]. The criterion used here
include gross pitch error (GPE) rate and the mean and standard
deviation of fine pitch error (FPE), which were defined in
[22]. According to [22], GPE counts for an estimation error
larger than 1 ms in fundamental period (T0). Gross pitch
error (GPE) rate used here is calculated through gross pitch
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Fig. 7. Comparison of T0 estimated from three methods with the true T0
value. Input SNR = 0dB.
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Fig. 8. Comparison of T0 estimated from three methods with the true T0
value. Input SNR = -5dB.
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Fig. 9. Comparison of T0 estimated from three methods with the true T0
value. Input SNR = -10dB.

error count divided by the total number of pitch estimation
values. The calculation of FPE excludes those errors which
are included within the GPE rate. To estimate the GPE rate
with consistency for these three algorithms, for each SNR
input we simulate them with Gaussian noise for 10 times.
For each simulation, we use the same 10 utterances with
different randomly generated Gaussian noise. Thus for the 10
times of simulations, the noises added to the speech signals
are different from time to time while all the noise levels are
adjusted in accordance with the input SNR.

Table I shows that the proposed VRPF and RBVRPF based
on time-varying AR model driven by almost periodic signals
have less gross pitch error rate than the YIN algorithm when
SNR = -5 and -10 dB. RBVRPF approach shows a significant
better tracking result than the VRPF approach when SNR
is -10 dB, indicating that Rao-Blackwellisation improves the
performance of particle filter on that SNR scenario. In other
higher SNR input conditions, GPE rate of all methods are
quite low, which indicate that all these algorithms can estimate
the pitch period with a proper accuracy. We also notice that
the proposed RBVRPF is not better than the VRPF when
the input SNR is higher than 0 dB. Possible reasons are
that when the system noise is small, the particle filter suffers
from the degenerate problem [10]. The Rao-Blackwellisation
marginalises the parameter space and the calculation of linear
part is also vulnerable to the degeneracy problem when the

system noise is small [23]. Table II shows the standard devia-
tions of mean GPE rate for these three algorithms, calculated
from 10 times of simulations, which again suggests that the
VRPF and RBVRPF produce at least as stable average GPE
rates as the YIN algorithm when SNR = -5 and -10 dB.

Table III and Table IV shows the mean and standard
deviation of the FPE of the proposed algorithms and the YIN
algorithm. We can find out that the mean fine pitch error of
the three algorithms are of no significant difference. When
comparing the standard deviation of the fine pitch error, the
VRPF algorithm is slightly larger than RBVRPF, and the
RBVRPF is slightly larger than the YIN algorithm.

As a discussion of the performances of the three algorithms,
we may conclude that the RBVRPF give the best GPE result
when SNR is -10 dB. In SNR = -5 dB, the performances of the
VRPF and the RBVRPF are of no significant difference, while
both are better than the YIN algorithm. In other scenarios, the
YIN algorithm is preferred because it is accurate and fast.
The FPE results of the three algorithms are similar and can be
ignored in most applications if there is no particular interest
in it.

TABLE I
MEAN OF GROSS PITCH ERROR (GPE) RATE OF THE YIN ALGORITHM

AND THE PROPOSED VRPF METHOD

Input SNR /dB 10 5 0 -5 -10

YIN 5.06% 4.97% 4.24% 11.72% 42.90%
VRPF 4.24% 4.45% 4.61% 6.76% 19.36%

RBVRPF 5.61% 6.33% 5.70% 6.27% 14.48%

TABLE II
STANDARD DEVIATION OF GROSS PITCH ERROR (GPE) RATE OF THE YIN

ALGORITHM AND THE PROPOSED VRPF METHOD FROM TEN RUNS

Input SNR /dB 10 5 0 -5 -10

YIN 0.24% 0.33% 0.62% 4.13% 7.02%
VRPF 0.25% 0.29% 0.28% 2.04% 7.11%

RBVRPF 1.56% 1.73% 1.90% 2.03% 7.11%

TABLE III
MEAN FINE PITCH ERROR (FPE) RATE OF THE YIN ALGORITHM AND

THE PROPOSED VRPF METHOD

Input SNR /dB 10 5 0 -5 -10

YIN -0.067 -0.066 -0.064 -0.070 -0.024
VRPF -0.047 -0.036 -0.012 -0.008 0.030

RBVRPF -0.014 -0.036 -0.039 -0.045 -0.039

TABLE IV
STANDARD DEVIATION OF FINE PITCH ERROR (FPE) RATE OF THE YIN

ALGORITHM AND THE PROPOSED VRPF METHOD

Input SNR /dB 10 5 0 -5 -10

YIN 0.047 0.047 0.046 0.039 0.043
VRPF 0.087 0.097 0.110 0.153 0.182

RBVRPF 0.055 0.058 0.075 0.094 0.092
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VII. CONCLUSION

In this paper, we proposed a speech model based on time-
varying AR model driven by almost periodic signals. Using
this model, we used variable rate particle filters (VRPF) to
track pitch period of voiced speech signals. The detailed
implementation of Rao-Blackwellised variable rate particle
filter (RBVRPF) is also shown in this paper. To test the
proposed methods, we compare them with the well-established
pitch estimation algorithm, the YIN algorithm. Experiments
results show that the RBVRPF approach tracks pitch period
with least Gross Pitch Error (GPE) among the three methods
when SNR is less than or equal to -5 dB. In practice, it might
be better to use the YIN algorithm when SNR is higher than
-5 dB.

To the best of the authors’ knowledge, very few pitch
tracking methods today can give good pitch tracking results
under strong noise condition. Here the proposed RBVRPF
approach can give satisfactory pitch tracking results even if
input SNR < -5 dB, thus it may be used on other speech
signal processing techniques to improve their performance
when strong noise presents. It is worth noting that the proposed
methods work on voiced speech. Thus in practical applications,
it will be helpful to combine them with voice activity detection
(VAD), a topic left for future investigation.

Also the proposed speech model, i.e. the time-varying AR
model driven by almost periodic signals, can serve as a basis
to build other speech processing techniques, such as speech
denoising or source estimation. For multi-speaker scenarios,
it may even serve as a speech model for source separation
methods.

APPENDIX A
DERIVATION OF JOINT SOURCE-FILTER OPTIMIZATION FOR

ALMOST-PERIODIC SOURCE

As a reminder that the observed samples st with a length
of N produced by the time-varying AR model are given by,

st =

M∑
p=1

ant
p s(t−p) + Vt, (44)

Where Vt would be given by

Vt =gt +Wt

=

K∑
k=0

Ak
nt

cos(kw0t) +Bk
nt

sin(kw0t) +Wt

where gt =

K∑
k=0

[Ak
nt

cos(kw0t) +Bk
nt

sin(kw0t)]

(45)

Ak
t and Bk

t are amplitude of the sine and cosine harmonic
waveforms in the input sources in the t-th time sample. Wt ∼
N (0, τ2w) is assumed in [8]. Then given the observed speech
signal samples, the goal of the joint source-filter optimization
is to find a set of parameters Ak

nt
, Bk

nt
, apnt

(k=1 K, p=1 M )
such that the cost function J defined as follows,

J = E[(Wt)
2]

≈ 1

N −M + 1

N−1∑
t=M

(wt)
2

∝
N−1∑
t=M

(st +

M∑
p=1

apnt
s(t−p) − vt)2 [using Eq.45]

=

N−1∑
t=M

(st +

M∑
p=1

apnt
s(t−p)

−
K∑

k=0

[Ak
nt

cos(kw0t) +Bk
nt

sin(kw0t)])
2

(46)

Since it is only expected the parameters of the first period
of the speech are needed to be initialized, the cost function J
in Eq.(46) can be calculated from time sample 1 to NT , where
NT denotes the first pitch period time of input speech data.
Besides, w0 is a constant within each period, and therefore its
upper index nt is omitted during the whole paper.

J =

NT∑
t=1

(st +

M∑
p=1

apnt
s(t−p)

−
K∑

k=0

[Ak
nt

cos(kw0t) +Bk
nt

sin(kw0t)])
2

(47)

It is worth noting that given a fixed input speech st, prior
estimation of fundamental frequency w0, and fixed hyper-
parameters K, M , the cost function J is a quadratic function
of the parameter set apnt

,Ak
nt

, Bk
nt

. And we need only to
estimate these parameters for the first period of voiced speech,
then this function J depends on ap,Ak, Bk (the upper time
index nt are omitted since nt = 1). Thus, in order to minimize
J , it can be obtained by setting ∂J

∂ap = 0, p = 1, 2, ...,M , and
∂J
∂Ak = 0, ∂J

∂Bk = 0, k = 0, 1, 2, ...,K and solving this set of
2 ∗ (K + 1) +M linear equations.

Expanding ∂J
∂ap

= 0, p = 1, 2, ...,M will lead to the
following equations:

for r = 1,2,...,M :

∂J

∂ar
=

NT∑
t=1

xt−r[xt +

M∑
p=1

apxt−p −
K∑

k=0

(Ak cos(kw0t) +Bk sin(kw0t))]

= 0
(48)

And this equation can be written as:

for r = 1,2,...,M :
NT∑
t=1

xt−r

M∑
p=1

apxt−p −
NT∑
t=1

xt−r

K∑
k=0

(Ak cos(kw0t) +Bk sin(kw0t))

= −
NT∑
t=1

xt−rxt

(49)
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Expanding ∂J
∂Ak = 0, k = 1, 2, ...,K will lead to a equation

similar with Eq. (49):

for k = 0,1,2,...,K :

−
NT∑
t=1

cos(kw0t)

K∑
k=0

(Akcos(kw0t) +Bksin(kw0t))

−
NT∑
t=1

M∑
p=1

apxt−p cos(kw0t) = −
NT∑
t=1

cos(kw0t)x
t

(50)

And similarly, from ∂J
∂Bk = 0, k = 1, 2, ...,K we can get:

for k = 0,1,2,...,K :

−
NT∑
t=1

sin(kw0t)

K∑
k=0

(Ak cos(kw0t) +Bk sin(kw0t))

−
NT∑
t=1

M∑
p=1

apxt−p sin(kw0t) = −
NT∑
t=1

sin(kw0t)xt

(51)

If we combine the set of equations from Eq.(49) to Eq.(51),
we can write them in matrix form as follow following the
same pattern used in [8]:

Ra = p (52)

where

R =

(
R1 −R2

−RT
2 R3

)
(53)

where

R1 =

 Cxx(1, 1) . . . Cxx(M, 1)
... . . .

...
Cxx(1,M) . . . Cxx(M,M)

 (54)

R2 =
(

R2A R2B

)
(55)

where

R2A =

 C0
Ax(0, 1) . . . CK

Ax(0, 1)
... . . .

...
C0

Ax(0,M) . . . CK
Ax(0,M)

 (56)

and

R2B =

 C0
Bx(0, 1) . . . CK

Bx(0, 1)
... . . .

...
C0

Bx(0,M) . . . CK
Bx(0,M)

 (57)

R3 =


C0,0

CC(0, 0) . . . C0,2K+2
CC (0, 0)

C1,0
CC(0, 0) . . . C1,2K+2

CC (0, 0)
...

... . . .
...

...
C2K,0

CC (0, 0) . . . C2K,2K+1
CC (0, 0)

C2K+1,0
CC (0, 0) . . . C2K+1,2K+1

CC (0, 0)


(58)

a =



a1
...
aM
A0

...
AK

B0

...
BK


(59)

and

p =



−Cxx(0, 1)
...

−Cxx(0,M)
C0

Ax(0, 0)
...

CK
Ax(0, 0)

C0
Bx(0, 0)

...
CK

Bx(0, 0)


(60)

And those parameters used in the paper have been defined
as, 

Cxx(i, j) =
∑NT

t=1 xt−ixt−j

Ck
Ax(i, j) =

∑NT

t=1 xt−iA
k cos(kw0(t− j))

Ck
Bx(i, j) =

∑NT

t=1 xt−iB
k sin(kw0(t− j))

Cm,n
CC =

∑NT

t=1 cm(t)cnt

(61)

And ck(t) denotes the k−th element of the vector c(t) which
is defined as follows:

c(t) =



A0 cos(0w0t)
A1 cos(1w0t)

...
AK cos(Kw0t)
B0 sin(0w0t)
B1 sin(1w0t)

...
BK sin(Kw0t)


(62)
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