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Abstract 24 

Aim: While studies using GPS (Global Positioning Systems) have the potential to refine 25 

measures of exposure to the neighbourhood environment in health research, one limitation is that 26 

they do not typically identify time spent undertaking journeys in motorised vehicles when 27 

contact with the environment is reduced. This paper presents and test a novel methodology to 28 

explore the impact of this.  29 

Methods: Using a case study of exposure assessment to food environments, an unsupervised 30 

computational algorithm is employed in order to infer two travel modes: motorised and non-31 

motorised, on the basis of which trips were extracted. Additional criteria are imposed in order to 32 

improve robustness of the algorithm.  33 

Results: After removing noise in the GPS data and motorised vehicle journeys, 82.43% of the 34 

initial GPS points remained. After comparing a sub-sample of trips classified visually of 35 

motorised, non-motorised and mixed mode trips with the algorithm classifications, it was found 36 

that there was an agreement of 88%. The measures of exposure to the food environment 37 

calculated before and after algorithm classification were strongly correlated.  38 

Conclusion: Identifying non-motorised exposures to the food environment makes little 39 

difference to exposure estimates in urban children but might be important for adults or rural 40 

populations who spend more time in motorised vehicles. 41 

 42 

Keywords: global positioning systems, food environments, travel mode, unsupervised algorithm 43 
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A novel methodology for identifying environmental exposures using GPS 49 

data  50 

1. Introduction 51 

A recent criticism of many neighbourhood and health studies has been that they have not 52 

adequately taken into account the actual exposures to the environment that individuals 53 

experience in their daily activity patterns (Kestens et al., 2010). Rather, they tend to assume 54 

exposures based on home and sometimes school or work locations. There are also studies that 55 

infer exposures from travel surveys or diaries, but these provide subjective declarative data based 56 

on participants’ recall of where they visited (Chaix et al., 2012), and it has been reported that trip 57 

underreporting occurs (Bricka et al., 2012; Stopher et al., 2007; Wolf et al., 2003b). There is also 58 

a third type of study that uses passive tracking of study participants, which yields objective data. 59 

To this end GPS (Global Positioning Systems) are increasingly being used to measure daily 60 

activity spaces and investigate behaviours that relate more closely to health outcomes of interest 61 

(Kerr et al., 2011).  62 

GPS  is a satellite-based global navigation system that provides an accurate location of any point 63 

on the Earth’s surface (Krenn et al., 2011). It thus provides a means to objectively assess the 64 

spatial location of individuals in the environment or people’s behaviours while moving in the 65 

environment. Outdoor GPS relies on being able to receive a signal from four or more satellites in 66 

order to triangulate a person’s position, and a GPS data point will typically consist of a time 67 

stamp and longitude, latitude and altitude coordinates. This daily mobility is of particular interest 68 

in environment–health research, as both a potential source of transportation-related physical 69 

activity and as a measure of exposure to certain geographic environments (Chaix et al., 2012), 70 

such as food environments. However, such multi-place measures must be carefully constructed 71 

in order to make sure true exposures of interest are assessed.  72 

Whilst logging travel patterns using GPS measurements has become commonplace, managing 73 

the considerable volume of GPS data collected and extracting meaningful outcome values is 74 

difficult. GPS technologies are still developing, with associated different qualities of GPS 75 

software and hardware, and even if the device is working at peak performance there will always 76 
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be some spatial error in the accuracy of location recording (Kerr et al., 2011), which differs 77 

based on conditions and type of GPS receiver used. Location errors can emerge from factors 78 

such as satellite propagation delays or precision of the device, and signal loss due to slow 79 

location detection (initialization and start-up, whereby the GPS receiver needs some time to first 80 

acquire signals from satellites) or ground cover such as trees.  81 

Additional to technical or usability issues, other issues that arise with GPS data are related to 82 

how it is interpreted when extracting environmental exposures of interest. For example, in 83 

studies investigating exposures to the retail food environment and linking them to health-related 84 

outcomes, researchers may be interested only in GPS points that represent on-foot or slow 85 

cycling trips, as people within moving vehicles would have a lesser opportunity to access food 86 

outlets to purchase food without the vehicle stopping and them getting out. This consideration 87 

has typically been ignored in the literature, in part because of some of the problems inherent in 88 

identifying the travel modes of study participants. For example, GPS points that in reality 89 

represent a car slowing down at intersections, traffic calming measures or due to the presence of 90 

other traffic may be wrongly interpreted as walking because they register low speeds. Those 91 

studies that have attempted to make such differentiations typically use either crude criteria (such 92 

as identifying walking as GPS points under a certain speed threshold) (Wheeler et al., 2010), or 93 

they clean GPS data manually (Harrison et al., 2014), which can be very time consuming.  94 

To date a small number of researchers have attempted to produce more robust algorithms for 95 

cleaning GPS data and extracting useful information such as travel mode from it (Auld et al., 96 

2009; Carlson et al., 2015; Chao et al., 2010; Feng and Timmermans, 2013; Lin et al., 2013; 97 

Schuessler and Axhausen, 2009; Zheng et al., 2008). Whilst there is no uniform standard across 98 

disciplines, most methods have several commonalities among them. They typically each attempt 99 

to split the raw GPS data into smaller relevant segments (i.e. journeys or trips) on which further 100 

analysis is carried out (e.g. determining transport mode for each trip). Usually some form of pre-101 

processing is carried out to remove outliers and de-noise the data, after which a main algorithm 102 

is applied for analysis, and subsequently post-processing is used to further improve classification 103 

accuracy. These main algorithms can be classified into machine learning approaches and criteria-104 

based approaches. In turn, machine learning approaches can be divided into supervised and 105 

unsupervised methods. 106 
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Criteria based methods are based on expert chosen rules (e.g. speeds below a certain threshold 107 

are considered walking) to analyse trips. These are the simplest approaches and have been 108 

successfully used in various papers (Cho et al., 2011; Chung and Shalaby, 2005), but they are 109 

usually biased by the expert’s expectations and experience and do not perform well on datasets 110 

on datasets other than those which they have been developed. 111 

Supervised methods (Chao et al., 2010; Feng and Timmermans, 2013; Zheng et al., 2008) rely on 112 

manually classified data in order to make inferences about unknown data. In such cases, 113 

supervised classifier models such as decision trees are trained using the features (e.g. average 114 

speed, maximum speed, acceleration etc.) extracted from the data and the known class labels.  115 

The new data is then classified using the trained model. A particular drawback of such methods 116 

is the requirement for training data, which is usually obtained by manual classification and can 117 

hence be time consuming and costly to generate. A further limitation is that models trained on 118 

one dataset may perform poorly when applied to a different one.  119 

Unsupervised methods overcome this disadvantage by not relying on training data for 120 

predictions. They rather infer transportation modes based on the structure and the characteristics 121 

of the input data, in some cases aided by expert-defined rules, e.g.(Schuessler and Axhausen, 122 

2009).  For example the work of Lin, et al. (2013) assumes that each transport mode generates 123 

speeds from a certain distribution. They use raw GPS data to estimate the parameters of these 124 

distributions and conduct statistical tests to determine the differences between these distributions 125 

across different segments. Based on these inferred differences, they then use hierarchical 126 

clustering to group trips into major groups which correspond to transport modes. Unreliable trips 127 

are classified based on proximity to relevant locations such as bus stops. Most of these methods 128 

are data intensive and require additional information, such as relevant landmark positions, and 129 

would not work as well for studies that do not have such information available.  130 

The method presented here (which will be called Trans-Mod) falls in the category of 131 

unsupervised methods and is applied on the PEACH (Personal and Environmental Associations 132 

with Children’s Health) dataset containing the GPS locations of a sample of children in Bristol. 133 

The development and testing of the methodology presented in this paper arose from the need to 134 

extract only trips not in a motorised vehicle from the PEACH dataset in order to be able to 135 
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estimate exposure to the food environment and calculated associations with health outcomes 136 

such as diet and weight status (results not presented here). They key requirement was to identify 137 

times when children were inside a vehicle and those when they were not, as it is assumed that the 138 

ability of children to access food outlets will be limited when they are in a vehicle. A model 139 

known as a Hidden Markov Model (HMM) (Murphy, 2012) was used to model the differences in 140 

speeds from raw GPS data generated by two travel modes: non-motorised (walking or slow 141 

cycling) and in a motorised vehicle. HMMs have been previously used (Reddy et al., 2010)  to 142 

determine travel modes using the information provided by mobile phones (accelerometer and 143 

GPS data).  However, the method presented here has very low input data requirements, namely 144 

just the registered timestamp of each GPS point and the distance between two consecutive 145 

points, on the basis of which speed can be easily calculated. The present paper investigates how 146 

accurately the method presented here differentiates between motorised and non-motorised travel 147 

modes, and if the post-processing exposure estimates of exposure to the food environment differ 148 

to those before processing.  149 

2. Methods 150 

2.1.Dataset 151 

The dataset used in developing the model presented here was obtained from PEACH, a study 152 

undertaken in Bristol, UK, which investigates how the environment can influence physical 153 

activity and dietary behaviours in children. Characteristics of the PEACH study sample have 154 

been described in more detail elsewhere (Lachowycz et al., 2012; Wheeler et al., 2010). In brief, 155 

this dataset provides up to 7 days of GPS data recorded in the morning (8am-9am), evening 156 

(3pm-10pm), and at weekends (8am-10pm). In total, 688 children in their first year of secondary 157 

school wore a Garmin Foretrex 201 GPS receiver recording data at 10-s intervals (epochs). The 158 

GPS has limited battery life, and participants were asked to switch the GPS on at the end of 159 

school, and off at bedtime. Research staff charged the units after the first two days of use.  160 

GPS data from this study was used to measure personal exposure the food environment. 161 

Measures of the food environment exposure were computed in a Geographical Information 162 

System (GIS) (ArcGIS 10.0 (ESRI Inc, Redlands, CA, USA)) using the UK Ordnance Survey 163 

Points of Interest (PoI) dataset (OrdnanceSurvey, 2011), a dataset that includes the precise 164 
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location of 21 categories of food outlets. The location of all food outlets in the Points of Interest 165 

data were mapped and grouped into three categories, based on evidence in the literature 166 

(Cetateanu and Jones, 2014; Gustafson et al., 2012; Liese et al., 2007), as well as fieldwork visits 167 

made by the authors to a sample of outlets falling within each category. The categories chosen 168 

were ‘food outlets where people can purchase healthy food’ which was computed to include 169 

markets, grocers, organic stores, supermarket chains and independent supermarkets; ‘food outlets 170 

where people can purchase unhealthy food’ including bakeries, delicatessens, confectioners, 171 

convenience stores and newsagents; and ‘food outlets where people can purchase fast food’ (fast 172 

food outlets, takeaways, fast food delivery services that also have an eat in option, and fish and 173 

chip shops).  174 

The exposures were calculated as the percentage of the measurement period time spent outdoors 175 

in the vicinity (for the purposes of this study we choose within 50 meters) of different retail food 176 

outlet types, merged into three categories: time spent near healthy food outlets, time spent near 177 

unhealthy food outlets and time spent near fast food outlets. For the purposes of analysis, 178 

patterns of exposure during all the time periods (morning, evening, weekend) measured in 179 

PEACH were combined. This was done because the amount of time spent in the vicinity of food 180 

outlets was generally small, particularly before school. The denominator for these percentages 181 

was the total period (1 hour in the morning, 7 hours in the evening, 14 hours in the weekend) 182 

rather than the period for which a location was recorded in the GPS as the devices used did not 183 

operate within a building. In order to better measure environmental exposures to food, the aim of 184 

this paper was to identify for later removal any points that might represent time spent in a 185 

motorised vehicle, or spurious GPS points due to influences like poor satellite signal. The model 186 

used to do this is graphically represented below in Figure 1.  187 

 188 

Figure 1. Flow diagram of steps      [near here] 189 

2.2.Trip and travel mode detection, data cleaning and smoothing 190 

Stage 1: Pre-processing 191 
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In the first instance several criteria were developed to mark points for later removal that would 192 

not represent true exposures. These included GPS drift (i.e. GPS records which suggest that a 193 

child has moved an implausible amount in a short space of time, meaning there has been some 194 

inaccuracy in the GPS locations, often as the signal was obstructed by buildings or trees), as well 195 

as short participant reads (i.e. participants registering a very low number of GPS points overall, 196 

which typically represented poor device wear compliance or problems with the GPS signal). The 197 

criteria developed are as follows:  198 

1. Marking outliers: for each participant, select the list of points that are further than 500m from 199 

any other GPS points belonging to them. 200 

2. Marking aberrant speed: all points having more than 100 kph. 201 

3. Marking short participant reads: all participants with less than 1 minute total GPS wear time. 202 

Stage 2: Processing  203 

For each participant, the points were ordered according to their timestamp and the obtained 204 

series of GPS points were subsequently divided into trips. A trip was considered to be a number 205 

of consecutive points for which the time difference between every two consecutive points was 206 

less than 5 minutes. If the time difference between two consecutive points in time was greater 207 

than 5 minutes, this was set to mark the beginning of a new trip. The rationale behind this is 208 

considered in the Discussion section. 209 

We represent a trip as a sequence of speeds and we want to infer the travel modes that generated 210 

those speeds. We expect the non-motorised travel mode to give rise to speeds that are on average 211 

lower than the motorised  mode. It is of course possible that several transportation modes have 212 

been used during one trip. Such a trip will be referred to a as a mixed trip (i.e., it includes both 213 

motorised and non-motorised modes).  214 

To model this behaviour we created a HMM model with two hidden states corresponding to non-215 

motorised and motorised  states respectively. Each state has its own Gaussian distribution of 216 
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speeds that represent the emission probabilities of the model. The transition probabilities 217 

between the states reflect the likelihood of changing the travel mode. 218 

The model was tuned on 50 randomly chosen trips using a version of the Expectation-219 

Maximisation  algorithm (Moon, 1996), known as the Baum-Welch algorithm (Welch, 2003). 220 

This algorithm starts with some random values for the model parameters (transition, emission 221 

and initial probabilities) and gradually updates them until they converge, without using any other 222 

piece of information than the input sequence of speeds. Full details of this algorithm are given 223 

elsewhere (Murphy, 2012). 224 

For each trip, using the tuned model, a Viterbi algorithm (Viterbi, 1967) is able to identify the 225 

most likely combination of travel modes that generated the observed sequence of  speeds. Unlike 226 

fixed threshold-based approaches, the classification of points into motorised/non-motorised 227 

travel modes is dynamic. The algorithm makes the decision by computing the likelihood of the 228 

speed being generated from either of the two modes, taking into account also the most likely 229 

modes of the points around it.  230 

Stage 3: Post-processing 231 

Some post-processing steps were employed in order to correct some issues which can appear on 232 

a small subset of the data. Such methods are readily integrated in the program and do not require 233 

additional user interaction. In the first step, short segments (for which the overall duration is less 234 

than 1 minute in total GPS time) were marked separately with the purpose of later being 235 

eliminated from the raw GPS data. This was based on the assumption that it is very unlikely that 236 

such short segments would represent actual non-motorised trips. A limitation could be that some 237 

very short trips which may actually be access and egress trips are eliminated, although for this 238 

analysis we visually checked all these short segments and identified them as spurious. 239 

Furthermore, instances can be observed whereby there is an outlier (isolated point) adjacent to 240 

two points that have been classified of a different state in a trip. It was considered that a change 241 

of transportation mode that spans only one point is very unlikely. This was thus corrected by 242 

changing the state of the outlier to the state of its neighbours.  243 
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To address situations where the wearer was in a vehicle that was slowing down, an additional 244 

criteria was developed whereby if non-motorised trips spanned less than 2 minutes and were 245 

surrounded by vehicle points, these were marked as motorised vehicle points. Furthermore, there 246 

were instances where within a trip some points were classified as motorised and some as non-247 

motorised, but the motorised  points represented a very small proportion of the whole trip, which 248 

was mostly dominated by non-motorised  points. An additional criterion was therefore imposed 249 

whereby if less than 5% or less than 5 of the points in a trip were classified as motorised  and the 250 

rest were non-motorised, all the points in that trip were considered as non-motorised mode.  251 

After processing, there were still some points over 15 kph classified by the model as non-252 

motorised mode. This was because the speeds were not high enough for the model to suggest 253 

them as motorised vehicle points given their surrounding points were mostly non-vehicle. An 254 

additional criterion was therefore imposed by marking all of these points as motorised mode. 255 

This was based on previous practice in studies that have used the same dataset (Lachowycz et al., 256 

2012; Wheeler et al., 2010), where travel speeds above 15kph were judged to be journeys in 257 

vehicles. Nevertheless, a limitation of this is that some instances of fast cycling may be classified 258 

as motorised mode.  259 

The PEACH dataset does not contain any annotation data regarding the travel modes of the 260 

participants. Thus, in order to estimate the accuracy of our method, a sub-sample of 99 randomly 261 

selected trips (33 motorised mode, 33 non-motorised mode and 33 trips containing both 262 

motorised  and non-motorised mode, termed here as mixed) were labelled by researchers (the 263 

first and the last authors) by overlaying the trips on a base map in ArcGIS and taking into 264 

account the several criteria such as the size of the roads the participant used, and the speed of 265 

GPS points. Cohen’s kappa test for 2-way inter-rater agreement (k) was run to determine the 266 

level of agreement between the first and last author on the classification of trips as ‘motorised 267 

mode’, ‘non-motorised mode’ or ‘mixed mode’, as well as between the algorithm and the first, 268 

and last author respectively.. 269 

In order to determine the potential impact of trip classification on measures of environmental 270 

exposure, the similarity of the exposure measures to the food environment calculated on the raw 271 

GPS data versus the cleaned GPS data was investigated using Pearson’s correlation coefficients.  272 
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The algorithm was implemented in Python 2.7. For the Hidden Markov Model the 273 

implementation from the Sklearn 0.31.1 package was used. All other statistical analysis was 274 

undertaken in SPSS (version 21, IBM Corp, Armonk, NY, USA).  275 

3. Results 276 

Before any processing there were 366432 GPS points in the PEACH dataset that was used to 277 

train the HMM model, which represented a total of 4018 trips (or segments). Out of these, 2488 278 

were classified as non-motorised only trips, 443 were motorised and the rest were mixed trips 279 

(including both motorised vehicle and non-motorised points). 280 

The Baum-Welch algorithm converged to the parameters illustrated in Figure 2. It can be 281 

observed that the emission distribution corresponding to a non-vehicle state is centred around 282 

2.14 kph, while for the vehicle state it is centred around 26.86 kph. These values are consistent 283 

with the initial assumption that the speeds should be able to differentiate well between the two 284 

travel modes.  285 

In terms of transition probabilities, the probability of moving from non-vehicle to vehicle was 286 

0.0232 and the probability of moving from a vehicle to non-vehicle state was 0.1223. These low 287 

values reflect the fact that the likelihood of two consecutive points corresponding to different 288 

travel modes is much lower than that of them being the same. The probability of remaining in the 289 

non-vehicle state is about 10% percent higher than the probability of remaining in the vehicle 290 

state. This is explained by the fact that the data is highly right skewed (skewness= 3.401), thus 291 

increasing the probability that if in a non-vehicle state, one remains in that state.  292 

Out of the 366432 GPS points in the PEACH dataset used to train the HMM model, 64385 were 293 

marked for removal during the pre-processing, processing and post-processing stages. This 294 

meant that 17.57 % of the original GPS points were marked for removal, which represented: 295 

0.37% (n= 1347) outliers, 0.08% (n= 282) aberrant speed, 0.006% (n= 21) participants with less 296 

than 1 minute worth of GPS data, 15.94% (n= 58409) motorised vehicle points, 0.30% (n= 1087) 297 

points representing trips below one minute total duration, and 0.88% (n= 3239) points registering 298 

speeds over 15 kph. As a result, 302047 GPS points (82.43%) remained representing non-vehicle 299 

points. 300 
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 301 

Figure 2. The HMM model after training. The purple vertices represent the states of the model, 302 

the numbers on arrow from state u to state v represent the transition probability from the state 303 

u to the state v and the distributions in the yellow rectangles represent the emission 304 

probabilities.    [near here] 305 

 306 

In order to visually represent results from the model, plots were generated to represent all 4018 307 

pairs of trips before and after post-processing. Figures 3, 4 and 5 represent three such examples, 308 

whereby the left-hand side graph represents the classification of GPS points during the 309 

processing stage, and the right hand side graph represents the classification of points at the post-310 

processing stage. In Figure 3, which represents one trip, the algorithm classifies some points as 311 

non-motorised, and others as motorised  at the processing stage. Some points are considered as 312 

non-motorised because when a car slows down, the speeds are considered by the model as too 313 

low to be motorised vehicle points. However, the number of consecutive points marked as non-314 

motorised spanned less than 2 minutes and were surrounded by motorised vehicle points. 315 

Therefore, these were changed to motorised vehicle points in the post-processing stage of the 316 

model. Therefore, we built our model such that it’s inherent statistical framework determines that 317 

it is more likely for a motorised vehicle (for example a car) to have slowed down for a few 318 

seconds than for a person to get out while being in the car for such a short time.  319 

 320 

In the example of Figure 4 the motorised vehicle points represented only 5 points of the whole 321 

trip, which was mostly dominated by non-motorised points. These points are therefore marked as 322 

non-motorised vehicle at the post-processing stage. In Figure 5, less than 5% of GPS points in 323 

the trip are motorised vehicle, and therefore at post-processing these are marked as non-324 

motorised vehicle; however, some of these points register speeds of over 15 kph, because the 325 

speeds were not high enough for the model to suggest them as motorised  points given their 326 

surrounding points were mostly non-motorised . Therefore, these are marked for later removal 327 

(i.e.: non-motorised mode> 15 kph). Figure 6 illustrates an example of the total GPS trips 328 

(synthesised to preserve anonymity) of one hypothetical participant in one day, after processing.  329 
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Figure 3. Example of a trip during and after processing           [near here] 330 

Figure 4. Example of a trip during and after processing           [near here] 331 

Figure 5. Example of a trip during and after processing          [near here] 332 

Figure 6. Map showing a participant’s trip in a day after classification (© Crown 333 

Copyright/database right 2015. An Ordnance Survey/EDINA supplied service)                             334 

[near here] 335 

The level of agreement between the algorithm and the annotation by the first and last author was 336 

tested with Cohen’s kappa (k) on the sub-sample of 99 trips, and it was found that there was 337 

strong agreement between the first and last author, as well as between both authors and the 338 

algorithm (k>0.8, p<0.001). The first author and the algorithm agreed on the classification of 339 

88% of the trips, the last author and the algorithm on 87%, and the first and last author on 89%. 340 

Agreement was poorer when trips were classified as mixed by the algorithm, although this was 341 

based on only 10 trips, while the first and last author classified differently to the algorithm on 342 

just 5 motorised  trips and 2 non-motorised trips. 343 

When comparing the absolute differences in measures of exposure to the food environment 344 

before and after processing (Table 1), it can be observed that the exposure measures calculated 345 

on the raw GPS data were unsurprisingly statistically significantly higher than the post-346 

processing values. However, the correlation coefficient of the pre and post processing exposure 347 

measures was of 0.98 or above for each of the three food outlet types examined (p<0.001). This 348 

shows that children who had high levels of exposure before processing also had high levels of 349 

exposure after processing. Therefore the processing led to lower levels of estimated absolute 350 

exposure but did not substantially modify the ordering of children. 351 

Table 1. Comparison of before with after processing exposures  [near here] 352 

 353 

4. Discussion 354 
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Complex methods for analysing GPS data exist (Byon et al., 2007; Gonzalez et al., 2008; 355 

Moiseeva and Timmermans, 2010; Patterson et al., 2003; Reddy et al., 2010; Tsui and Shalaby, 356 

2006; Zhang et al., 2011; Zheng et al., 2008). They have the potential to yield accurate results, 357 

but have the disadvantage of relying on additional data (e.g. accelerometer readings, GIS maps 358 

etc.) for their functioning. Also, besides the inherent biases and subjectivity, criteria based 359 

methods also require additional data which sometimes is not available. For example Stopher et 360 

al. (2008a) and Stopher et al. (2008b) need GPS quality and GIS information, whilst Bohte and 361 

Maat (2009) and  Chen et al. (2010) need GIS information. The method presented in this paper 362 

aims to refine current understanding of measuring environmental exposures in studies using GPS 363 

by employing a method that, unlike the above, does not require other information than the speed 364 

and location of each GPS point. The model used is applied to a study that aims to investigate 365 

associations between individual on foot (or slow cycling) exposure to the food environment and 366 

dietary outcomes in children. It was found that for this particular application, there was a strong 367 

agreement between the algorithm and two independent human experts, which suggests that, 368 

although there is a degree of subjectivity in the human classification due to lack of objective 369 

annotated data for the study, the model works as well as a time and resource consuming visual 370 

classification method. Few papers report agreement between model and human classification 371 

(Auld et al., 2009; Chao et al., 2010; Cho et al., 2011). As a result of application of the 372 

algorithm, approximately 18% of the raw GPS data points were marked for removal, which 373 

represented motorised vehicle journeys or GPS device inaccuracies. The exposures to the food 374 

environment measured before and after processing were however strongly correlated.  375 

One of the strengths of Trans-Mod is the fact that it is an unsupervised model, and hence it does 376 

not require manually classified data for training, as supervised models do. Therefore, using 377 

individual speed instances to judge the transportation mode is not limited by the fact that any 378 

spurious changes in speeds could affect the inferred modes, a problem with supervised methods 379 

(Lin et al., 2013).  Furthermore, HMM is a mature statistical model that has been extensively and 380 

successfully used in many fields. While there are various methods for identifying travel mode in 381 

the literature, it was concluded that using a Gaussian-based model such as HMM and some 382 

additional pre and post-processing criteria has rendered promising results for the experimental 383 

data used. While other methods (Feng and Timmermans, 2013) have differentiated between 384 
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different modes (walk, car, bus, bike etc.), those researchers had access to more information than 385 

available with the dataset used here and for the research purpose of this paper (i.e. identifying 386 

exposure to the food environment), such as bus station location for finding bus trips.  More 387 

detailed information on the exact input variables that were required for the different methods in 388 

the literature, can be found in the Gong et al. (2014) review. The method presented here works 389 

only with just time-stamped GPS points (no additional data is needed) and it requires minimal 390 

user interaction. For this method, the user interaction consisted of visually inspecting a sub-391 

sample of the data at the post-processing stage in order to test the robustness of the algorithm 392 

classification.  393 

The decision to choose a threshold of 5 minutes for differentiating between different trips was 394 

based on evidence from the literature, as well as a sensitivity analysis that we performed with 395 

different thresholds (ranging from 1 to 10 minutes), to see if changing the thresholds result in 396 

significant differences between number of trips (Figure 7). We acknowledge that there is some 397 

variation in number of trips when using different thresholds to separate trips. However it can be 398 

seen in Figure 7 that the difference is more substantial between 1 and 2 minutes, after which it 399 

levels out. For our study we have discounted 1 or 2 minutes as being a sensible threshold, 400 

because this is the amount of time that could represent waiting in front of a traffic light (Stopher 401 

et al., 2008b). We have also based this decision on evidence from the literature; when comparing 402 

trip and identification thresholds, a review of methods available (Gong et al., 2014) identifies 403 

300 seconds (which corresponds to 5 minutes) as being the maximum amount of time used in the 404 

literature.  405 

Figure 7. Number of trips according to different thresholds (in minutes) to separate trips                                                    406 

[near here] 407 

In terms of limitations, one consideration is that the PEACH dataset used to train the model is 408 

applied to children living in a dense urban area and might not be generalizable to adults or 409 

people living in rural areas. Furthermore, spatial accuracy of GPS might be lower in urban areas, 410 

because of the density and height of buildings. For example, Schipperijn et al. (2014) ask for 411 

caution when studying walking or cycling in dense urban environments, as walking and cycling 412 

lanes are typically located closer to buildings and are narrower than vehicle lanes, which may 413 
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compromise spatial accuracy. Calculating on-foot exposures to the food environment might 414 

make a bigger difference in adults after excluding motorised vehicle journeys, as they spend 415 

more time in cars. Furthermore, the children in the PEACH study live in Bristol, which means 416 

they are more likely to walk or cycle. This can indeed be observed by the fact that many of the 417 

trips (62% excluding motorised and mixed mode and spurious points) represent non-motorised 418 

journeys. 419 

The GPS model used in this instance was a Garmin Foretex 201, which records location every 10 420 

seconds, a lower frequency than some studies, and this particular device does not use Doppler 421 

measures or Horizontal Dilution of Precision which can be used to identify spurious locations 422 

due to a poor satellite signal. It could be that applying the algorithm on newer higher performing 423 

devices with longer battery life might render higher accuracy of the algorithm. It has indeed been 424 

noted in the literature (Beekhuizen et al., 2013; Duncan et al., 2013) that there can be substantial 425 

variation in positional error of different GPS models. An additional limitation is that we did not 426 

have travel diary data against which to compare classification outcomes, although studies that 427 

have done that have shown that classification of algorithm and diary reported trips are similar 428 

(Chao et al., 2010; Cho et al., 2011). Nevertheless it is common that trips are reported in travel 429 

survey data but are not identified in the GPS data, and reasons for this may include delayed GPS 430 

wear at the start of the day, unplanned trips at the end of the day after GPS has been removed, or 431 

loss of signal (Wolf et al., 2003a; Wolf et al., 2003b).  432 

Historically studies in the field of public health have typically not attempted to decompose GPS 433 

tracks by systematically assessing the nature of activities practiced at the different places and the 434 

transportation modes for each trip (Chaix et al., 2013), yet there is now increasing interest in 435 

doing so. In the transportation field some studies have combined GPS tracking with precise 436 

mobility surveys that collect information on activities and transportation modes. While the 437 

method presented here differentiates between motorised and non-motorised exposures based on 438 

GPS data collected over 7 days, a survey was not conducted on the nature of activities at specific 439 

locations. Therefore, there was no way of knowing if non-motorised exposures to the retail food 440 

environment meant that participants actually made use of those particular food outlets.   441 
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In this sample, it was observed that likely exposure to the food environment was somewhat over-442 

estimated when not considering time spent in a vehicle, although the correlation between the pre- 443 

and post-processing exposure estimates was high. If the requirement of a study is to estimate 444 

some form of dose-response relationship between exposure and outcomes, we recommend 445 

identification of in-motorised vehicle datapoints in order to refine exposure assessment. 446 

Understanding how exposures differ between times spent in vehicles and times spent on foot 447 

might be important, for example, in studies attempting to inform planning regulations for fast 448 

food outlet density. However, based on our findings at least, applying the algorithm on the 449 

sample presented here would not make a significant difference to the statistical strength of 450 

association between exposure and outcomes because the pre and post exposure measures to the 451 

food environment were strongly correlated. 452 

5. Conclusion: 453 

This paper presents an algorithm, Trans-Mod, to clean GPS data that can be specifically applied 454 

to health studies making use of GPS in order to better assess exposure to facilities in the 455 

environment by identifying times spent inside and outside vehicles. When applied to an example 456 

dataset of food environment exposures amongst children in southwest England, the algorithm 457 

suggested that actual opportunities for a sample of children to purchase food might be somewhat 458 

over-estimated if time spent in vehicles was not identified, although estimate of exposure prior to 459 

processing were strongly correlated with those after processing. The utility of the application of 460 

such methods is therefore dependent on the motivation of the research. 461 

Disclaimer:  462 

Please note that the Python scripts that make up Trans-Mod have been made available for 463 

download together with implementation instructions at: 464 

https://www.dropbox.com/sh/0x4wdl6mnt5kvdv/AABJ_pIHbrxHo_klTSSjUIvQa?dl=0.   465 

This software is supplied as-is, with no warranty of any kind expressed or implied. We have 466 

made every effort to avoid errors in design and execution of this software, but we will not be 467 

liable for its use or misuse. The user is solely responsible for the validity and consequences of 468 
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any results generated. Unfortunately the authors will not be able to provide individual support 469 

with implementing the code on your own dataset.  470 
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