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Abstract. Direct numerical simulations of turbulent flows over rough surfaces are conducted
to investigate the physics of the transitionally rough regime. Different roughness sizes are
analysed within the transitional regime, while keeping the shape of the surface geometry
constant. To study the effect of roughness on the flow field, a novel decomposition is used to
divide the velocity into two components: a turbulent, geometry-independent contribution, and
a geometry-induced contribution, whose intensity is modulated by the overlying turbulence.
In the onset of the transitionally rough regime, the turbulent component remains essentially
unmodified, and it is anticipated that all the roughness effects can be attributed entirely to the
geometry-induced fluctuations. As the roughness size increases further, the turbulent component
is also modified, and the fluid-surface interaction becomes more complex.

1. Introduction
Turbulent flows over rough surfaces have been studied by engineers and physicists for several
decades due to their ubiquity. In industrial applications, roughness usually has an undesirable
impact as it generates additional mixing near the wall, which results in an increase of drag. In
other applications, however, this additional mixing can be beneficial, for instance to enhance
heat transfer. Engineers like Darcy (1857), especially concerned about pressure losses in pipe
flows, began studying turbulent flow over rough walls more than a century and a half ago.
Since then, there has been a growing interest in rough-wall turbulence, with a large number
of experimental, theoretical and numerical works being carried out. Extensive reviews of the
subject can be found in Raupach et al. (1991); Jiménez (2004) and Flack and Schultz (2010).
The three regimes in which wall-bounded flows are traditionally classified are sketched in
figure 1. For low Reynolds number, the flow is laminar but, as the Reynolds number increases
beyond a certain critical value, the flow becomes turbulent. Provided that the characteristic size
of roughness is still too small to affect the flow, rough surfaces behave as smooth walls, in what
is known as the hydraulically smooth regime. However, for a fixed geometry of characteristic
size k, as the Reynolds number increases the value of k* increases, where the superscript ‘+’
denotes scaling in wall-units. For a sufficiently large Reynolds number, the roughness begins to
affect the turbulent flow as k™ is no longer negligible. Eventually, k™ is large and inertial terms
dominate even in the roughness sublayer, which is the region in which turbulent fluctuations
depend predominantly on the roughness geometry (Schultz and Flack, 2007). The pressure drag
is then dominant and the friction becomes independent of viscosity. The friction coefficient
reaches an asymptotic state in which it becomes independent of the Reynolds number, as shown
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Figure 1. Friction coefficient against bulk-velocity Reynolds number.

in figure 1. This is known as the fully rough turbulent regime. For values of k™ between the
hydraulically smooth and the fully rough regimes, the flow is said to be transitionally rough.

Because of the complexity of any real rough geometry, it is useful to find a simple way
to characterise roughness. Nikuradse (1933) conducted a series of experiments in pipe flows
with rough walls where the inner walls were coated with packed sand grains of equal size, and
measurements were taken for several sand grain sizes. The parameter chosen to characterise the
different cases was the sand grain mean diameter, k;. Far from the wall, Hama (1954) found that
roughness only modifies the mean velocity profile by a shift AU, In the logarithmic region,
the shape of the profile and Karmén constant, k, are otherwise unaffected,

Ut(yt)=r"tlogyT +51—-AUT. (1)

Schlichting (1936) found that k} could be use to characterise any flow over roughness. The
strategy is then not to consider the actual roughness size, k*, but instead to find the equivalent
sand grain roughness, k;, which gives the same AU™ as the actual roughness. Any flow with
an equivalent sand roughness of k} produces the same AU as a sand roughness of grain size
kS. In the fully rough regime, k}/k™ becomes constant and is only a function of the geometry.
However, in the transitionally rough regime kf /k™ is variable and depends on the flow also.
An alternative parameter is k;fx), which is equal to kJ in the fully rough regime, but maintains
a constant ratio kf_/kT even in the transitional regime (Jiménez, 2004). As a result, the
ratio kjoo /k™ depends only on the geometry in all the regimes, but different geometries exhibit a
different AU™ for the same k_ in the transitional regime. Still, AU™ curves eventually collapse
in the fully rough regime, as illustrated in figure 3(b).

Starting from kT~ 0, as k™ increases roughness begins to affect the viscous sublayer, friction
deviates from hydraulically smooth values, and the flow enters the transitionally rough regime.
Some experimental works pay special attention to this regime (Flack et al., 2012; Flack and
Schultz, 2014). However the key questions remain unsolved: what mechanism triggers the
departure from the hydraulically smooth regime as k™ increases; and how to define a threshold
for this transition based on the roughness geometry only. One of the main issues is that, while
kjoo characterises appropriately the fully rough regime for most rough surfaces, it seems not to be
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the correct parameter in the transitionally rough regime. This was already noticed by Colebrook
(1939) as his results and Nikuradse’s do not match in the mentioned transitional regime. In
general, different geometries of roughness lead to different transitions. Comparing several sizes
and combinations of sand grains, Colebrook and White (1937) proposed this transition is abrupt
in organised geometries, while the presence of a wider range of roughness sizes makes the
transition smoother. This assumption is also supported by more recent experiments, such as
those using uniformly arranged spherical rough elements by Ligrani and Moffat (1986), in which
the transition takes place for even higher values of k:;'oo, compared to Nikuradse’s and Colebrook’s
experiments, but also in a sharper manner. What is more, the discrepancy is such that Flack
and Schultz (2010) report a relatively wide range of experimental values in which the transition
takes place, spanning between 1.4-15 < kI < 18-70.

Recent research by Chung et al. (2015) is aiming to find a methodology to capture the effect
of roughness, particularly the increase in friction and AU, at a minimum cost. They conduct
fully turbulent simulations, but in minimal-span boxes (Jiménez and Moin, 1991) that reduce
the computational requirements. The present project also aims to provide estimates for AU
at a reduced cost, but removing the need to carry out turbulent simulations altogether, by
capturing the effect of the geometry with a reduced order model, if possible.

In the present work we aim to gain insight into the physics triggering the transition from the
hydraulically smooth regime. We carry out a series of direct numerical simulations (DNSs) of
turbulent channels with rough walls. We study a roughness texture formed by equispaced square
posts of the same size in a rectangular arrangement, as sketched in figure 2. Similar geometries
have been studied by other authors (Leonardi et al., 2007; Leonardi and Castro, 2010) although
their simulations mainly explore the fully rough regime. The purpose of our simulations is
to investigate the evolution of turbulent flow fluctuations through the transitionally rough
regime. The surface shape is kept constant throughout the simulations, but the size of the
elements measured in wall units is varied from kT ~ 6 to k™ ~ 38, aiming to span the whole
transitionally rough regime. These flow fluctuations are split into turbulent and roughness-
induced contributions. We restrict ourselves to the study of streamwise velocity fluctuations and
leave the study of the other variables for future works. We aim to decompose the fluctuation
into turbulent and roughness-induced contributions, with the purpose of isolating the effect of
the roughness geometry.

The paper is organised as follows. In section 2 the numerical method is briefly described.
We present statistics of the flow in section 3 and propose a decomposition of the flow in simpler
components. Section 4 concludes this work.

2. The numerical method

The numerical experiments are conducted in a plane turbulent channel with rough texture on the
top and bottom walls. The domain is periodic in the wall-parallel directions. The streamwise,
wall-normal and spanwise coordinates are x, y and z, with u, v and w the corresponding
components of the velocity w. The flow is assumed incompressible with a density p = 1.
The numerical method, briefly outlined below, is adapted from that of Garcia-Mayoral and
Jiménez (2011b) for riblet channels, is modified to handle fully three-dimensional geometries.
The temporal integrator is a fractional-step method combined with a three-substep Runge-
Kutta, and with pressure correction at the final step only (Le and Moin, 1991). The channel
half-height is § measured from the roughness tips, the length is L, = 27 and the width L, = xd.
The spatial discretisation is pseudo-spectral. The two periodic directions, x and z, are discretised
using Fourier series, while the wall-normal direction, y, is discretised using a second order finite
difference scheme in a collocated grid. The integration of the pressure in these collocated grids
commonly produces an undesired chequerboard effect (Ferziger and Peri¢, 2002). To avoid this
issue, the code uses a quasi-divergence-free formulation based on the work by Nordstrom et al.
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Figure 2. Sketch of the roughness geometry over the bottom wall. (a) Collocated arrangement
of the elements. (b) Sketch of each periodic unit in the lattice shown in (a). In grey the post,
formed by a cube of side k™. The outer line represents the clearance between elements of size
s = 2k.

(2007). This strategy consists of not enforcing exact incompressibility, V- u = 0, and instead
adding an evolution equation for V- u so that any divergence is rapidly damped. The grid in
the y direction is non-uniform so that Ay’ =~ 0.31 at the wall and Ay, ~ 3.12 at the centre
of the channel. The domain is divided into three blocks in y with different x- and z-resolutions.
This multi-block technique allows a high number of grid points to be set in the region near the
walls, with a coarser resolution in the core of the channel. In this latter region the resolution
is set to resolve all turbulent scales. In the blocks containing the walls it is also necessary to
resolve the flow around the roughness elements as obstacles which requires a higher resolution
for small k. The resolution in the central block is A} ~ 6 and Al ~ 3 in the x and z directions
respectively, while in the other two blocks a finer resolution is used, A} = Af ~1-2.

The simulations are run at constant flow rate, and the value of the viscosity is adjusted a
priori for each simulation to keep the friction Reynolds number close to Re, =~ 185. Re, is
computed using ¢ and the friction velocity u, obtained by extrapolating the total shear to an
effective channel height §'. This height is set so that u? = —§'0dp/dr (Garcia-Mayoral and
Jiménez, 2011b; Chung et al., 2015), which is the relationship that would hold for a smooth
channel at §. For the geometry under consideration this implies that ¢’ is measured from a
virtual origin yp = 1/8 k below the roughness tips.

The roughness elements are introduced through a direct-forcing immersed boundary method
(Mohd-Yusof, 1997; Fadlun et al., 2000; Taccarino and Verzicco, 2003). The roughness geometry
is depicted in figure 2. The unit element is a cube of side k, repeated along x and z in both
walls with a texture period s = 2k.

3. Results
We conduct six DNSs with values of kT spanning the transitional regime. The parameters for
the simulations are summarised in table 1.

Roughness is usually classified into k- and d-roughness. In k-roughness, the effective
roughness kg is proportional to k, while in d-roughness it is proportional to the boundary layer
thickness (Jiménez, 2004). In the range of kT studied, our geometry displays conventional k-
roughness behaviour, i.e. friction increases with k™ and the mean velocity profile is shifted
downwards, as shown in figure 3(a), increasing drag. In order to quantify this shift on the
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Table 1. Parameters of the simulations. s* is the post spacing in both the streamwise and
spanwise directions. The number of collocation points in the streamwise and spanwise directions
are N, and N,_  in the middle block, and N,,6 and N, in the top and bottom blocks. The
resulting resolution is A and Al in the middle block, and A} and A} in the top and bottom
walls. N, is the number of points in the y direction between roughness tips.

Case k* st AU* Re, N, N, N,, N, N,

0C - — — 1845 192 192 192 192 153
6C 6.1 121 0.63 1849 192 192 1152 576 153
9C 9.0 180 1.07 1831 192 192 768 384 153
12C 12.0 24.0 190 183.6 192 192 1152 576 153
18C 17.8 355 3.81 181.0 192 192 768 384 153
24C 235 470 529 1794 192 192 576 288 153
36C 379 758 7.37 193.0 192 192 768 384 153
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Figure 3. (a) Mean velocity profiles measured from yg = 1/8 k™. Thick black line, case 0C;
blue to red, cases 6C through 36C of table 1. (b) Roughness function AUT; — | correlation for
Colebrook results (Jiménez, 2004); ----, correlation of sand grain roughness (Nikuradse, 1933);
—-—, correlation of sphere roughness (Ligrani and Moffat, 1986); O present DNSs using the
same colors as in (a).

velocity profile and also be able to establish a comparison with other surfaces, we portray in
figure 3(b) the roughness function, AU, against k] _, which for the geometry considered satisfies
ks../k =~ 0.5. This representation collapses the fully rough regime to a single asymptote, so the
variations in the transitional regime for different surfaces can be compared. The roughness
function of our cases is also compared to the results of Colebrook and White (1937), Nikuradse
(1933), and Ligrani and Moffat (1986). In Colebrook and White (1937), Colebrook (1939), and
Nikuradse (1933) the transition is smooth and begins at low values of kJ_. In our case, the
transitional regime resembles more closely that of the packed spheres of Ligrani and Moffat
(1986), evolving rapidly from low to high values of AUY. This is in agreement with the
observation by Colebrook (1939) that regular roughness departs from the hydraulically smooth
regime more gradually than regular roughness.
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Figure 4. Instantaneous streamwise velocity at y™ ~ 1.3 above roughness crest, for cases (a)
6C, (b) 9C, (c) 12C, (d) 18C, (e) 24C, and (f) 36C. The same scale of colour is used in all
subfigures, with dark red and light yellow indicating high and low velocity, respectively.

3.1. Effect of roughness on the velocity fluctuations

To understand how the flow is modified by the presence of roughness, producing the changes
in the mean flow described above, we focus our analysis on the velocity fluctuations. For the
present paper, we restrict ourselves to the fluctuations of streamwise velocity. The analysis of
the other velocity components and of the Reynolds stresses are left for future work.

The effect of roughness is limited to the vicinity of the wall, and decays rapidly away from it.
As illustrating examples, figure 4 portrays instantaneous realizations of the streamwise velocity
for cases 6C through 36C at y™ ~ 1.3 above the roughness peaks, close enough to the wall to
observe the effect of the roughness elements. The figure shows that the fluctuating velocity signal
has two distinct contributions. The first is the typical background signal characteristic of wall
turbulence, which consists of streamwise elongated streaks of high and low u-velocity, of length
500 — 1000 wall units and width 50 — 100 wall units (Kim et al., 1971; Smith and Metzler, 1983).
This contribution remains essentially unmodified, at least for £+ < 15 (or AUT < 3). The
second contribution is directly caused by the presence of the roughness elements, and consists of
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Figure 5. Instantaneous components of the streamwise velocity for case 12C at y™ ~ 0.7 above
roughness crest and a given z- section half-way between two rows of roughness elements. (a) In
black, u; in red, up. (b) In black, ug; in red, ug. (¢) In black, g as obtained by averaging
using equation 3; in red, ug as obtained from equation 4.

alternating regions of relatively low velocity, right over the protruding elements, and relatively
high velocities, over the valleys between elements. This signal is attached to the roughness
geometry, and is therefore not advected over time as the turbulent contribution. It would
instead be essentially repeated periodically in a lattice of streamwise and spanwise periodicity
s, so that its value depends only on the relative position within each periodic unit, that is,
the coordinates ¥ and z, with values between 0 and s, and the wall normal coordinate y. The
lengthscales of this roughness contribution would scale with £, and its intensity would also
increase with the roughness size.
To characterize these two contributions, we could try to decompose the flow as

u(x,y,z,t) = UT(mvyyz)t) +ﬂR(i'7y’2) = U(y) + U’S($7y’zvt) +ER(j’y72)7 (2)

where g would be the spatially fluctuating, time-independent component due to the roughness,
and up the background turbulent signal, which would include the mean velocity U(y) and the
fluctuating component ug, analogous to that over a smooth surface. The geometry-coherent
signal wp can be obtained by averaging over time and over the roughness lattice,

ER(i'ayvé) = |u(a:,y,z,t) - U(y)|t,NR ) (3)

where Npg is the number of roughness elements in the simulation domain.

The above decomposition is analogous to that of Reynolds and Hussain (1972) for coherent
waves in turbulence, and is widely used in flows over complex surfaces (Choi et al., 1993; Jiménez
et al., 2001; Garcia-Mayoral and Jiménez, 2011b; Jelly et al., 2014; Seo et al., 2015). However,
the actual roughness-induced contribution, ug, turns out to be different from the time-averaged
uR, so we drop the decomposition of equation (2). The problem is illustrated in figure 5, which
portrays the different contributions at a given instant and a given pair of coordinates z and
y, that is, along an a-line, for case 12C. For this case kT is still small enough for the rough
and turbulent components to have clearly separate wavelengths, so that ur can be obtained
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Figure 6. Instantaneous components of the streamwise velocity at y™ ~ 1.3 above roughness
crest for case 9C. (a) Full velocity signal u. (b) Background turbulent contribution ur. (c)
Coherent, time average signal induced by the presence of roughness, ug. (d) Instantaneous,
up-modulated signal induced by the roughness, up.

simply by filtering out small wavelengths spectrally. Panel 5(a) shows the full velocity signal
u superimposed with the filtered up, and illustrates the starting hypothesis that the velocity
signal is made up of a turbulent signal, analogous to that over smooth walls, plus a small-
intensity, small-wavelength, roughness-coherent signal. However, when ur is subtracted from u,
as portrayed in panel 5(b), the result is not exactly wg. The resulting up, is not exactly ug,
but the modulation in amplitude of Wy by the turbulent ur,

w
UR = FTER- (4)

Note that, on average, ur/U is 1. Panel 5(c) shows how, once the modulation is removed from
uR, the coherent ug is recovered.

Taking the above discussion into account, the correct decomposition that replaces equation
(2) is

U
U=UT+UR=UT+7THR, (5)

which is essentially equation (2) with @g replaced by ug.

When both z and z are considered, the decomposition is a bit more complicated, but the
discussion above serves to illustrate it. Furthermore, the spectral filtering only works when the
wavelengths of up and ug are clearly separated, which does not hold for the cases with larger
k™. However, it is always possible to obtain ug by using equation (3) over the whole sampling
history, and up can then be obtained algebraically from equation (5). The up-modulated, full
roughness contribution, ug, can be obtained once ur and Tg are known using equation (4).

The result from decomposing the streamwise velocity using this procedure is shown for case 9C
in figure 6. The comparison of panels (c¢) and (d), which portray respectively ug and ug, shows
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Figure 7. Root mean square of the coherent part of the velocity components. Blue to red,
cases 6C through 36C.

how neglecting the amplitude modulation of ur can lead to underpredicting its contribution to
the total intensity of the fluctuations. Nevertheless, the perturbation caused by the surface on
the flow decays rapidly away from the wall. Figure 7 shows the r.m.s. values, denoted by a
‘prime’ superscript, of the coherent part of the three velocity components, ugr, g and wgr. The
three of them exhibit an exponential behaviour with a logarithmic slope roughly proportional
to —y/k, which is to be expected from perturbations induced at the wall (Seo et al., 2015).

The present modulation of the near-wall, roughness-induced flow by the overlying turbulent
flow is similar to the modulation of buffer-layer turbulence by outer-layer large structures, as
presented by Marusic et al. (2010), except for the difference in the scales involved. In the
present study, the modulating signal is actually the buffer-layer turbulence. The low Reynolds
number of our DNSs prevents the development of large-scale turbulence, but if this was present
it could be expected to modulate the buffer-layer flow. In turn, the total turbulent velocity
above each roughness element would modulate the local ugr. This modulation of ur by the
overlying turbulence is also connected to the concept of protrusion height in riblets (Luchini
et al., 1991; Garcia-Mayoral and Jiménez, 2011a). For vanishing riblet spacing, the flow near
each texture element is produced by the quasi-uniform shear induced by the turbulent eddy just
above. In the scale of the texture, this eddy can be represented as quasi-infinite and quasi-steady.
The overlying turbulent velocity therefore sets the scale for the local velocity within the riblet
grooves, just like in our case the overlying up sets the scale for the local up.

The above discussion is only valid for vanishingly small roughness, when ur modulates ug
but is itself unaffected by the presence of roughness. However, as the roughness size increases
and becomes comparable to the turbulent eddies, this assumption ceases to hold. For the
geometry considered in this paper, we would expect this to happen for s ~ 15 — 20, when
the spacing between roughness elements becomes comparable to the typical diameter of the
quasi-streamwise vortices that are characteristic of near-wall turbulence (Kim et al., 1987). The
validity of the assumption that u7 remains essentially unaffected by the presence of roughness
can be checked in figure 8, which compiles the r.m.s. values of u™, u; and UE, denoted by
a ‘prime’ superscript, as a function of y*. Panel (c¢) shows how u’;{ increases gradually with
k™ from the smallest roughness, while significant changes in ufF only appear for k™ > 15, or
its equivalent roughness function AUT > 3. This implies that the onset of roughness effects,
that is, the beginning of the transitionally rough regime, can occur for roughness sizes at which
the buffer-layer turbulence is essentially unaffected, so that it may be possible to estimate the
changes in the flow independently of the turbulence.

This argument is further supported by the effect of the roughness under consideration on

the r.m.s. of the streamwise vorticity w/", shown in figure 9. For the cases 6C, 9C and 12C,
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Figure 8. Root mean square of the different contributions to the streamwise velocity. From
left to right, full u-signal, background-turbulence velocity ur and roughness-induced velocity
ur. Thick black line, smooth channel (Hoyas and Jiménez, 2008); blue to red, cases 6C through
36C. The arrows indicate increasing k™.

0.2
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yt+
Figure 9. Root mean square of the streamwise vorticity with the origin of y placed at roughness
crest. Lines coloured as in figure 8.

with AU < 3, the curves display no significant differences with that over a smooth wall, with
similar values and the same distinctive maximum at y™ ~ 15, which marks the average height
of quasi-streamwise vortices. For slightly larger values of the roughness function, AUT =~ 4-6,
the local maximum is shifted towards the wall and increases in magnitude. This may indicate
an intensification and partial entrainment into the roughness troughs of the near-wall vortices,
or a more complex interaction. Verifying this would require further studies, but in any event
the change in the maximum marks a modification of the smooth-wall-like turbulence dynamics.
For even larger roughness function, AU" > 7, which is already in the fully rough range, the
trend changes and the magnitude of the maximum decreases further, which could indicate a
weakening of the quasi-streamwise vortices, and a more complete obliteration of the near-wall
cycle by the roughness, as is typical of fully rough surfaces.

4. Conclusions and future work
We have focussed the present work in the transitionally rough regime of turbulent flows over
rough walls. As a starting benchmark case, we have selected a surface made up of evenly spaced,

10
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uniform cubes, and we have conducted a series of DNSs in which we have varied the size of the
cubes, kT, while maintaining the surface shape, so that the whole transitionally rough regime
could be studied. We have hypothesised that the fluctuating flow could be decomposed into
a smooth-wall-like turbulent contribution and a roughness-induced one. We have checked this
assumption for the fluctuating streamwise velocity. For the small values of k™ in the regime
studied the decomposition is valid, except that the roughness-induced component is modulated
in amplitude by the turbulent one. For somewhat larger k*, the turbulent component differs
from that over smooth walls, but in the onset of the transitionally rough regime the turbulent
component remains essentially canonical, and all the changes in the flow can then be attributed
to the geometry-induced component. This result suggests that it may be possible to predict the
onset of roughness effects without considering the interaction of the roughness geometry with
the turbulence, but further studies are required to verify this.
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