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Summary  

Adult liver cells have been considered restricted regarding their fate and lineage potential.  

That is, hepatocytes have been thought able only to generate hepatocytes and duct cells only 

duct cells. While this may be the case for the majority of scenarios in states of quiescence or 

homeostasis, evidence suggests that liver cells are capable of interconverting between cellular 

states of distinct phenotypic traits. This interconversion or plasticity, had been suggested by 

classical studies using cellular markers but recently, lineage tracing approaches have proven 

that cells are highly plastic and retain an extraordinary ability to respond differently to normal 

tissue homeostasis, tissue repair or when challenged to expand ex vivo or to differentiate upon 

transplantation. Stemness, as “self-renewal and multipotency”, seems not to be limited to a 

particular cell type but rather to a cellular state in which cells exhibit a high degree of 

plasticity and can move back and forth in different phenotypic states. For instance, upon 

damage cells can de-differentiate to acquire stem cell potential that allows them to self-renew, 

repopulate a damaged tissue and then be able to undergo differentiation. In this review, we 

will discuss the evidence on cellular plasticity in the liver focusing our attention on two 

markers, EpCAM and Lgr5, which identify cells with stem cell potential.   

 

Stem Cell Fate and Stem Cell Potential: different sides of cellular plasticity  

The stem cell state is defined by the ability of the cells to fulfill the two following 

criteria: “self-renewal” and “multi-potency” (1). Several approaches have been used to 

identify cells that exhibit stem cell characteristics. In vivo, long-term label-retaining and 

genetic lineage tracing have been commonly used to identify both quiescent and actively 

cycling stem cells in several tissues (1). Alternatively, in vitro clonogenicity and multilineage 

differentiation as well as long-term repopulation following transplantation have also been 

regarded extensively as assays to demonstrate stem cell potential (1).  

Of note, stem cell fate and stem cell potential might have not always been adequately used. 

Stem cell fate indicates a cell that already fulfills the stem cell criteria, while stem cell 

potential represents a cell with the competence to acquire a stem cell state, depending on the 

environment or condition. Confusion might have been caused by the extensive plasticity of 

animal cells. Cellular plasticity is understood as the propensity of a cell to, under certain 

circumstances, acquire biological properties of other cells (2). Because stem cell potential can 
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be defined as the ability of cells (differentiated cells or progenitors) to acquire a stem cell 

state, stem cell potential would therefore be a specific manifestation of plasticity (2). On the 

other hand, though, one could also consider that this return to a more primitive state is a form 

of in vivo reprogramming. However, “reprograming” is associated with a complete reversion 

to a pluripotent state, as seen in to John Gurdon’s tadpole experiments (3). In this review we 

opt to use “plasticity” as the ability of cells to acquire other cellular fates, distinct from 

reprograming, and thus acquisition of a tissue-restricted stem cell fate or potential would be 

one form of plasticity.  

In the liver, several authors had suggested the existence of plasticity in adult liver cells (see 

ref (4-7) for details), but now, the advance on mouse genetic engineering, imaging tools and 

the possibility of culturing cells in vitro have provided further evidence for cellular plasticity 

in the liver and other organs. Here, we aim to review the different evidences of liver cellular 

plasticity. We will use EpCAM and Lgr5 as examples of markers that identify cells with 

cellular plasticity and stem cell potential in the liver.  

 

Cellular plasticity: an old player in the new viewpoint of looking at liver repair 

Increasing evidence in stem cell behaviour in the intestine, hair follicle or bone 

marrow, suggests that cells often exist in two distinct states: an active stem cell state and a 

potential state that appears upon stem cell ablation. Studies on both, intestinal and hair follicle 

show that when the stem cell pool is ablated, those cells which retain stem cell potential 

(usually early descendants of the stem cell) acquire properties of a stem cell 

(potential/plasticity) to be able to repair the tissue and reinstate homeostasis [nicely reviewed 

by Cedric Blanpain (2)]. Similarly to the intestine or skin, organs with slow physiological 

turnover, such as the lung, have also shown to possess a high degree of cellular plasticity. For 

instance, after the ablation of airway stem cells, lineage tracing demonstrated that the luminal 

secretory cells had dedifferentiated into multipotent basal stem cells (8). This capacity of cells 

to acquire a stem cell state may have a more general role in the regeneration of many tissues, 

including the liver. 

The primary functional unit of the liver is the hepatic lobule or acinus, structure 

resulting from the interaction between epithelial (hepatocytes and ductal cells), endothelial 

(sinusoidal cells), and mesenchymal cells (portal fibroblasts and stellate cells) (9).  
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In the liver, during embryonic development, hepatoblasts behave as stem cells, as they 

are capable of self-duplicating while giving rise to hepatocytes and ductal cells (elegantly 

reviewed by (9)). During adulthood, the cellular turnover is rather slow, with a period of more 

than several months (10). Extensive lineage tracing approaches in the mouse model indicate 

that, if adult liver stem cells exist, their contribution to the normal homeostasis is negligible, 

at least in the mouse model, with the exception for one report, that utilizing genetic lineage 

tracing based on Sox9CeER, demonstrated that adult hepatocytes can also derive from 

specialized ductal progenitors (11). However, other studies did not find evidence for such 

liver progenitors (12, 13). Also, recently, a subset of centrolobular hepatocytes has been 

shown to contribute to the normal homeostasis of the hepatocyte compartment (14, 15). On 

the other hand, using clonogenic assays, it has been reported that EpCAM-positive (or 

EpCAM+) human liver cells, isolated from healthy fetal, neonatal, pediatric and adult (16, 17) 

donors display characteristics of liver stem/progenitors both in vitro and in vivo, after 

transplantation. The later could be understood as the ability of some resident cells to harbor 

stem cell potential during homeostasis. However, it is worth taking into account that 

clonogenic assay implies isolating the cells from their environment, which could trigger the 

activation of a stem cell state as a result of a damage to the tissue, as it happens during 

regenerative response. Therefore, as we will discuss below, the result from clonogenic assays 

could also be interpreted as a response of the cells to the external cue of being isolated from 

their tissue, which does not necessarily reflect what happens during in vivo homeostasis. 

The liver excels by its extensive damage-repair response (see Figure 1A) (18). The cells 

responsible for the facultative regenerative response of the liver are subject to extensive 

investigations. This has led to 2 schools of thought: the followers and the opponents of the 

existence/activation of a progenitor response that would contribute to the repair of the tissue 

after damage. On the one hand, mouse lineage-tracing approaches in combination with 

specific cell markers have allowed the identification of cells that upon damage will 

differentiate into hepatocytes and/or ductal cells (11, 19-22). However, in all of these studies, 

the lack of in vivo clonal analysis hampers the conclusion whether these cells are truly bi-

potential. Thus, until this is not fully addressed, the existence of true bi-potential cells induced 

after damage remains unanswered. Also, in vitro studies from several groups indicate that 

isolated progenitors from mouse injured livers display bi-potentiality in vitro and in vivo 

following transplantation into FAH mutant mouse (19, 20, 22, 23). Also, recently, Kaneko et 

al. showed that upon damage, biliary cells expand towards the injured area, suggesting that 
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the expanded biliary branches could contribute as a source or as a niche during the 

regeneration response (24). On the other hand, reports using viral-mediated Cre lineage 

tracing approaches have recently ruled out the existence of a progenitor-driven regeneration in 

the mouse (25, 26). One explanation for this paradox could be that liver pathologies in these 

models are not sufficiently severe so remaining “healthy” hepatocytes can still extensively 

proliferate and repair the lost tissue. Notably, in zebrafish, genetic ablation of the hepatocyte 

compartment followed by lineage tracing resulted in ductal cells de-differentiating and 

acquiring a stem cell fate, where biliary tree stem/progenitors repair the damaged liver (27). 

Also, upon complete senescence of the hepatocyte compartment, Forbes and colleagues have 

recently observed a similar widespread ductular reaction in the mouse (28). Moreover, recent 

studies indicate that following transplantation and injury mouse hepatocytes can acquire a 

ductal phenotype and stem cell state and can differentiate towards hepatocytes and ductal cells 

upon demand (29). Similarly, in human liver failure, ductal cells are detected close to clusters 

of hepatocytes that also express ductal markers (30). Whether in humans, the ductal cells 

derive from hepatocytes or inversely might be difficult to determine without the possibility of 

tracking the cells in vivo.  

 

Overall, these studies suggest that the adult liver cellular state (either hepatocyte or duct) is 

not fixed but can be modulated at request. Differentiated states can be de-differentiated or 

pushed to a more “stem cell state” upon demand. In these reports, adult liver cells fulfill the 

stem cell criteria, whereby they will proliferate and differentiate depending on the type and 

extent of the damage and the model organism studied. The differences that are being observed 

might be due to the type of injury, type of model (human, mouse, rat, zebrafish) or even type 

of technique utilized to validate stem cell fate (lineage labeling) or stem cell potential 

(transplantation, clonogenicity, lineage tracing). Taking into account that cellular plasticity 

will enable cells that, a priori do not exhibit stem cell properties, to acquire stem cell potential 

if needed (self-renew and differentiate), we therefore here propose a more reconciling 

concept, whereby liver cells possess an extreme plasticity that allow the acquisition of 

different states (differentiation-stemness) depending on the environment and tissue demand 

(Figure 1A).  

 

Isolation of liver cells with clonogenic and multilineage potential  

As mentioned, different experimental approaches have been used to identify stem cells 
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or cells with stem cell potential: from lineage tracing to transplantation or colony formation 

(see Figure 1). 

Using antibodies and/or flow cytometry-based cell separation methods, several groups have 

actually managed to isolate cell populations from the adult liver (31). Here we will focus on 

the use of cellular markers that identify liver cells with clonogenic and multilineage potential 

(9, 32). EpCAM (16), Lgr5 (22), CD133 (33), MIC1-1C3 (33), Foxl1 (19), OPN (12), Sox9 

(20), and CD24 (34) antibodies or a combination of them, have been mostly used to enrich for 

cells that, upon culture and/or transplantation, exhibit clonogenic and multilineage 

competency. Also, activities (functionality of the cell) that are enhanced in stem/progenitor 

cells can be used to isolate putative cells with stem cell potential, for instance aldehyde 

dehydrogenase activity (35) (Figure 1B). Unfortunately, the aforementioned markers are 

usually expressed on regular biliary epithelial cells, which complicate their isolation. 

Similarly, expression of markers has been shown in a subpopulation of rat progenitors, but is 

not found in the mouse counterpart. Conversely, OPN and MIC1-1C3 are regarded as 

equivalent progenitor markers at least in mice. Also, some markers are only appearing upon 

liver injury (like Lgr5 or Foxl1), while are not present under homeostasis conditions. Together 

with the fact that stem/progenitor cell populations represent a spectrum of differentiation 

states it makes the development of a unified isolation strategy difficult.  

As a general view, assuming that the liver stem cells are individual entities carrying 

specific markers is rather an outdated fact. Perhaps, our thinking on how liver stem cells had 

to work is hitherto mistaken and probably the parameters used to define them as well. For 

instance, it is becoming clear that the quiescent state is far from being a protected state as 

used to be thought (36-38). Liver repair is also achieved by expansion of many cells, with 

plasticity of the stem cells and mature cells and dedifferentiation emerging as common themes 

(Figure 1A). For instance, by switching on cellular and metabolic plasticity upon response to 

injury, the rates and types of cell production have to be rapidly adjusted to meet the tissue’s 

cellular and metabolic requirements (38, 39). Could it be that the markers cited earlier are 

involved in these matters? In the future, it would be rewarding to examine whether such 

critical events may be correlated to particular presence of aforementioned markers. In this 

concise review, we focus on Lgr5 and EpCAM, as markers that could potentially offer 

identification of such plasticity.  
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EpCAM as a marker of liver cells during homeostasis 

Epithelial cell adhesion molecule (or EpCAM) is a transmembrane glycoprotein that is 

frequently expressed in cancer (40). EpCAM is composed of a large N-terminal extracellular 

domain (called EpEX) linked to a short C-terminus fragment (named EpICD) by a single-

transmembrane domain (see Figure 2A). Recently, EpCAM was recognized as a marker for 

pluripotent stem cells in human and mice and for tissue stem cells (reviewed in ref (40)). 

EpCAM can interact with proteins like E-cadherin or claudins to modulate cell-cell contact, 

regulate the activity of signaling pathways or sequester molecules or receptors to prevent their 

biological effects (40) (see Figure 2A). EpCAM is a potent player in the maintenance of the 

polarized tissue and has been described to modulate the organization of the actin cytoskeleton 

(41), and actomyosin contractility (42). While, only its proliferative effect has formally been 

demonstrated (43), it is tempting to propose that EpCAM regulates the actomyosin network 

for functional purposes.  

 

Remarkably, EpCAM expression is not restricted to epithelial precursors but is also 

present in undifferentiated stem cells that are not yet assigned to a specific cell fate. During 

morphogenesis of pancreatic islets, EpCAM has been described as a morphoregulatory 

molecule (44) whereby EpCAM is highly expressed in fetal endocrine pancreas while the 

adult endocrine tissue exhibits low levels of expression. This developmentally regulated 

EpCAM expression has also been illustrated in other organs, such as kidney, lung, skin and 

thymus (reviewed in (40)). During liver development and homeostasis, EpCAM also 

demonstrates a dynamic expression, since it can be detected in immature cells, which 

gradually lose EpCAM along with their maturation into hepatocytes (16, 45, 46). So far, 

EpCAM is one of the most representative and successful markers used in isolating liver stem 

cells (Figure 1B). Notably, long-term culture of genome-stable EpCAM+ bipotent stem cells 

from adult human liver has been developed (47) (Figure 2B). 

 

 

Still many questions regarding the role of EpCAM in liver regeneration remain 

unanswered.  While, in vitro these cells show bi-potential competency, in vivo the reason of 

re-expression of EpCAM remains speculative (see Figure 2C). Data by Yoon et al. clearly 

indicate the existence of a hierarchically structured regeneration of the liver based on 

differentiation processes that require the re-expression of EpCAM (48). Recently, a possible 
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perspective on the role of EpCAM in the maturation of human hepatocyte buds has been 

elegantly shown. Briefly, the authors demonstrated that hepatocyte buds derived from 

progenitor cells (i.e. GS+/EpCAM+ cells), repopulate regions of extinct parenchyma in human 

cirrhosis by following a maturation process that involves a dynamic expression of EpCAM 

and GS (glutamine synthetase) (49) allowing us to think that EpCAM might be required for 

stem cell maturation. Furthermore, the associated microvasculature develops in concert with 

the maturation of buds, resulting in a loss of CD34 expression in the bud center with the 

appearance of developed well-defined sinusoids, while the periphery sustains a CD34-

positivity matching the dynamic of EpCAM expression (49). This potentially exhibits 

EpCAM as a molecular platform permitting endothelial cells (CD34+) recruitment to ensure 

correct liver cell differentiation. A similar scenario has been speculated for explaining the 

hematopoietic cells migration from the fetal liver to the adult bone marrow [see Figure 2C and 

ref (40)]. In response to injury, the plasticity of the hepatobiliary system has been recently 

unveiled (24). Interestingly, in this study EpCAM-positive cells density was matching to the 

distance traveled by the emerging biliary branches. Consequently, one could consider that 

EpCAM has a role in this structural flexibility or might play a role in the directionality of the 

biliary branches.  

Several reports have demonstrated that immediately after the injury, drastic changes in 

metabolism occur in the liver before the repair machineries are launched (see reviews (50-52) 

and references herein). Disturbance of the metabolic zonation upon injury lead to the 

hypothesis of whether sensing of this metabolic insufficiency may in fact be the initiator 

trigger for the regenerative response. It is then tempting to speculate that de novo EpCAM 

expression on adult hepatocytes in the lobular parenchyma in response to injury could be an 

adaptive response to compensate for the hepatic insufficiency by creating a different 

metabolic zonation (see Figure 2C). In this viewpoint, cellular plasticity of EpCAM, at 

cellular or tissue scales, is important because in one site (aka stem/progenitors) EpCAM 

might be dedicated for proliferation and in another site (aka hepatocytes) it can be required for 

response to hepatic insufficiency.  

 

Overall, recent studies highlight the importance of the epithelial diversity that surrounds the 

bile ducts, which probably could partially explain the extraordinary plasticity of the biliary 

tree. Intriguingly enough, by (re)-expressing EpCAM at cellular or tissue scales, or by 

exposing a different integrity of the full-length of EpCAM molecule, the liver cells are 

champions of cellular plasticity. Whether EpCAM has a role in liver tissue plasticity remains 



HEP-‐15-‐1484	  
	  

	   9	  

an open question. 

 

Lgr5 as marker of liver cells following damage 

LGR5 is a G-protein-coupled receptor with a 7-transmembrane domain. Together with 

its paralogue LGR4, is crucial for maintaining proliferating progenitors and stem cells in the 

intestine (53). Biochemical analyses have identified the LGRs as receptors for R-spondins 

(RSPOs) (54). Following association with RSPO, LGR4/5/6 strongly promote the activity of 

Wnt-Frizzled mediated signaling (Figure 3A). In fact, RSPO-LGR binding results in removal 

of the E3 ubiquitin ligase RNF43, thus preventing the degradation of Frizzled which results in 

a more robust and prolonged Wnt signal emanating from a “stabilized” Wnt/ frizzled complex 

[reviewed in (54)]. Lineage tracing studies have confirmed that Lgr5+ cells are fast-dividing, 

long-lived adult stem cells in the hair follicles, the antro-pyloric stomach, and the gut 

[reviewed in (54)]. Also, the mammary epithelium, the developing kidney, the ovarian 

epithelium or supporting cells in the inner ear possess LGR5 positive cells [reviewed in (54)].  

In the liver, Wnt signaling is active in perivenous hepatocytes (55) and has been shown to 

induce the metabolic zonation of the liver lobule (56). Upon damage, either by hepatectomy 

(57), oval cell response (58) or central vein damage (22), Wnt signaling is highly activated 

[the role of Wnt and its effector beta-catenin is elegantly reviewed in (55) and is not the focus 

of this review]. While classical canonical Wnt target genes, such as Axin 2, are detected in 

homeostasis in centrilobular hepatocytes, reporter mice have failed to show expression of 

Lgr5 under normal physiological conditions (22), although RNA analysis indicates a basal 

expression of Lgr5 in this area (59). However, following liver damage, Lgr5, similarly to 

Foxl1 (19), marks a population of cells that proliferates and, as shown by lineage tracing, 

upon CCl4, DDC or MCDE damage, differentiate into hepatocytes and/or ductal cells (22). In 

vitro (Figure 3B), these damage-induced Lgr5+ cells exhibit stem cell potential; they can be 

expanded from single cells (clonogenic) into self-sustaining liver organoids, while at the same 

time are able to differentiate towards cholangiocytes and hepatocytes (bi-potentiality) in vitro 

and in vivo, after transplantation in FAH-/- mouse model (22). Unfortunately, Lgr5+ cells have 

not been transplanted in other liver disease models, such as following partial hepatectomy or 

injury from liver toxins. These models have proven very useful for the analysis of bi-

potentiality and stem cell behavior of neonatal and adult EpCAM+ cells derived from human 

donors	  (16, 17). Future studies are expected to answer this question. 
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Still many questions regarding the role of Lgr5 in liver regeneration remain unresolved. While 

in vitro, these cells show bi-potential competency, their behavior in vivo, is still unknown 

(Figure 3C). In fact, a drawback of the lineage tracing experiments using Lgr5Cre driver is 

that these experiments were not performed at the clonal level (as discussed above). Therefore, 

whether in vivo these Lgr5+ cells that appear after damage are bi-potential or indeed there are 

2 types of Lgr5 progenitors for the hepatocyte and ductal lineages (Figure 3C), remains 

unresolved. Also, because this marker only appears after damage, the cell-of origin from 

which these Lgr5+ cells arise in vivo is still unknown. Of note, in vitro, mouse ductal MIC1-

1C3+ cells (60) or human EpCAM+ liver cells generate liver organoids that express LGR5 

(47). Whether in vivo, EpCAM+ cells are the cells of origin of Lgr5–damage induced cells is 

unknown. 

 

Because of the essential role of Lgr5 in enhancing Wnt signaling, it is tempting to hypothesize 

that LGR5 could be sensing higher levels of Wnt upon damage, which in turn could be 

inducing an active proliferative response on those specific cells to repair the tissue and 

reinstate homeostasis. It is worth mentioning that the dynamics of Lgr5 expression following 

injury indicate that LGR5 should be expressed early after the onset of damage and should be 

switched off again once the tissue is regenerated (22). Thus, it is plausible to speculate that 

Lgr5 could be acting as a switch between on and off states that instructs the cells whether to 

proliferate or not depending on the levels of Wnt in the environment.  If that is the case, then, 

Lgr5 would be marking cells that exhibit high plasticity and can move back-and forth between 

different stem and differentiation states. If so, it is feasible to hypothesize that perturbations in 

the system could break the fine line between proliferation and differentiation and result in 

disastrous consequences such as tissue hyper-proliferation (cancer) or degeneration 

(cirrhosis). With respect to that option, it has been recently shown that murine liver cancer 

cells have a similar expression pattern to Lgr5 liver progenitors induced after damage (61), 

suggesting that deregulation of a Wnt-driven regenerative response could be a factor 

contributing to liver cancer. Of note, hepatocellular carcinomas harbor mutations in beta-

catenin or other Wnt pathway components, which could be reflecting a mechanism of the 

tissue to activate proliferation by enhancing Wnt signaling.  

 

Overall, we are just beginning to understand the role of Lgr5 in stem cell maintenance and 

repair. In the liver, future studies will be required to identify the cells from which Lgr5+ 
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damaged cells arise or the role of Lgr5 during regeneration. Whether in the liver Lgr5 is 

implicated in the tissue plasticity remains still an open question. 

 

Conclusions  

It is well established now that high proliferative tissues such as the gut or the skin have 

evolved mechanisms to prevent tissue degeneration in the event of damage to their bona-fide 

stem cell compartments. Thus, ablation of the stem cell pool results in the activation of 

“reserve” populations or, also on the de-differentiation of mature cell types towards a more 

stem cell state (potential/plasticity), that allows the repair of the tissue and reinstates 

homeostasis [(2)]. Similarly, increasing evidence suggests that the activation of a “stem cell 

state” in a priori non-stem cell pools is not unique to the gut or the skin but it occurs across 

many tissues. Thus, stomach (62) and lung (8) differentiated cells have also demonstrated the 

acquisition of stem cell properties (stem cell potential) upon damage to the tissue, in what are 

examples of cellular plasticity. Here, we have discussed the evidences on stem cell plasticity 

on the liver. The remarkable regeneration capacity of the liver under many different types of 

liver injury makes it a champion of cellular plasticity. Liver differentiated cells, potential 

resident stem cells and even bone marrow stem cells can be de-differentiated, activated or 

recruited, respectively, to recover the damaged liver. This capacity of cells to acquire a stem 

cell state may highlight a more universal phenomenon. Whether this plasticity is relevant to 

disease states is still yet to be determined, but recent evidence suggests that, at least in the 

intestine, dedifferentiation of non-stem cells results in acquisition of a tumor-initiating stem 

cell competency (63). Thus, highlighting the concept of bidirectional conversion and cellular 

plasticity as potentially relevant not only to tissue repair but also to tumorigenesis. 
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Legend captures. 

Figure 1: Plasticity concept. A) Diverse routes lead to liver regeneration. While in a 

quiescent, homeostatic state (1.), tissue is maintained primarily by proliferation of the 

subpopulations of mature hepatic cells capable of cell division; upon damage (2.) various cell 

sources have been described to be involved in the process of hepatic repair. Each of them is 

illustrated in one quarter of the grey hexagon; at the outer limits, the various cell sources are 

represented at their initial state, while the center of the hexagon represents their ultimate goal: 

produce new hepatocytes (but also new duct cells or ducts), While each cell source has its 

color, their differentiated state is illustrated in green. Stromal cells are shaped as stars; bone 

marrow derived cells as round cells; particular hepatocytes from the central vein are 

highlighted in blue. Biliary cells (and HSPCs) and transit-amplifying cells are represented as 

small greener blue cells respectively. B) Diverse isolated cells are defined as LPCs (liver 

progenitor cells). Using flow cytometry-based cell separation methods in combination with 

cell surface markers or functions or genetic tracers, liver cells with stem cell potential have 

been isolated as viable cells. Black illustrates cell-surface and genetic markers used in healthy 

livers, while red indicates markers used upon damage. Asterisk indicates function. Arrows 

indicate that whatever the nature of the isolated cells is, they all converge to the definition of 

“LPCs” C) Validation strategies of stem cell potential. Isolated cells are subjected to in vitro 

culture to evaluate their bidirectional differentiation and clonogenic potentials and organoid 

formation, and in vivo to repopulate the liver upon transplantation. Lately, genetic stability 

studies have been introduced. Until today, only EpCAM and Lgr5 have completed 

successfully this list. 

 

Figure 2: EpCAM as a marker of liver cells during homeostasis. A) Dynamics of EpCAM 

expression at the cellular level. The pleiotropic functions of EpCAM can be allocated to the 

full-length protein, as well as to EpCAM-derived fragments generated upon intramembrane 

proteolysis (40). Some functions are illustrated. B) Ex vivo, sorted and cultured EpCAM+ cells 

are able to form organoids, with high degree of plasticity	  (22, 47). C) Functional plasticity of 

EpCAM at tissue scale is illustrated: EpCAM could be a player in metabolic model of liver 

regeneration or as molecular platform for cell recruitment. EpCAM expression on peribiliary 

hepatocytes (namely, canal of Hering-associated hepatocytes found at the hepatocyte-biliary 

interface) could allow an efficient hepatobiliary linkage to drain bile. 
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Figure 3: Lgr5 as marker of liver cells following damage. A) Dynamics of Lgr5 expression 

at cellular level. B) Ex vivo, sorted and cultured Lgr5+ cells are able to form organoids, with 

high degree of plasticity	  (22, 47). C) In vitro, Lgr5 cells derive from BEC (47, 60). Because 

medium to grow hepatocytes in culture has not been established yet, the origin of Lgr5+ cells 

from hepatocytes cannot be addressed. In vitro, Lgr5 cells are bi-potential, generating the 2 

epithelial liver lineages, hepatocytes and BECs (22, 47). The cell of origin of Lgr5+ cells in 

vivo is still unknown. In vivo, Lgr5 cells trace into hepatocytes and BECs (22). Whether in 

vivo these Lgr5+ cells can generate both lineages or there are Lgr5 committed progenitors to 

each lineage is still unknown.  
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