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Homozygous deletion in MICU1
presenting with fatigue and lethargy in
childhood

ABSTRACT

Objective: To define the mechanism responsible for fatigue, lethargy, and weakness in 2 cousins
who had a normal muscle biopsy.

Methods: Exome sequencing, long-range PCR, and Sanger sequencing to identify the pathogenic
mutation. Functional analysis in the patient fibroblasts included oxygen consumption measure-
ments, extracellular acidification studies, Western blotting, and calcium imaging, followed by
overexpression of the wild-type protein.

Results: Analysis of the exome sequencing depth revealed a homozygous deletion of exon 1 of
MICU1 within a 2,755-base pair deletion. No MICU1 protein was detected in patient fibroblasts,
which had impaired mitochondrial calcium uptake that was rescued through the overexpression of
the wild-type allele.

Conclusions: MICU1 mutations cause fatigue and lethargy in patients with normal mitochondrial
enzyme activities in muscle. The fluctuating clinical course is likely mediated through the mito-
chondrial calcium uniporter, which is regulated by MICU1. Neurol Genet 2016;2:e59; doi: 10.1212/

NXG.0000000000000059

GLOSSARY
CK 5 creatine kinase; GATK 5 Genome Analysis Toolkit; MAF 5 minor allele frequency; PDH 5 pyruvate dehydrogenase;
SNVs 5 single nucleotide variants.

Mitochondrial disorders can present with a multisystem neuromuscular disorder or can affect
only one organ system, such as skeletal muscle, where fatigue and subjective muscle weakness
may be the only symptoms. Although molecular genetic testing can reveal the diagnosis in some
patients, clinical evaluation often involves a muscle biopsy followed by the biochemical analysis
of mitochondrial respiratory chain enzymes. Here we describe 2 cousins with normal mitochon-
drial electron transport chain enzyme activities who had a homozygous deletion of exon 1 of
MICU1 that was detected by analyzing the depth of exome sequence coverage. Functional
studies revealed a defect of mitochondrial calcium handling, providing an explanation for their
fluctuating clinical course.

METHODS Patients. A 9-year-old girl was referred in 2011 with 4 years of episodic fatigue and lethargy causing frequent

school absences. The third child of healthy parents, her in utero and psychomotor development was normal (figure 1).

Initially the episodes accompanied minor viral infections and evolved over hours. She would become pale and sweaty and then

lethargic and sleepy. At times she was unable to stand unaided and became noncommunicative and unrousable. Now she is 13

years of age and the episodes are precipitated by minimal exercise, such as running down the road. Avoiding physical activity has

reduced the frequency of the “attacks,” but after 100 m of walking she now develops muscle aches that limit her activities and
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resolve after 15 minutes of rest. She is in the 2nd percentile for

weight and the 9th percentile for height; her muscles are thin

but strong between the episodes. There are no neurologic or

ophthalmologic signs. The nonspecific episodes were not

investigated until her serum creatine kinase (CK) was

measured (497 IU/L between attacks and 2,067 IU/L during

attacks). Other blood tests, including lactate, urine organic and

amino acids, and acylcarnitines, were normal.

Her cousin described similar episodes on a more complex

background. After a normal pregnancy and birth, delayed

development was noted at 6 months when nystagmus and an

abnormal red reflex revealed cataracts. In early childhood he

had episodes of clumsiness with falls associated with intercur-

rent illness accompanied by headaches and vomiting. Now 12

years of age, he has frequent classic migraines and develops

muscle aches after 15 minutes of light exercise. This is associ-

ated with intense lethargy, poor concentration, and occasional

confusion, which resolve spontaneously within hours or days.

Decreasing physical activity to a bare minimum has reduced

the frequency of the attacks. He is in the 50th percentile for

height and weight and has low-set big ears, a prominent chin,

and long thin fingers. He has mild learning difficulties, pendu-

lar nystagmus, bilateral optic atrophy, mild hypotonia, and

global muscle weakness leading to a positive Gower maneuver.

Normal blood tests included glucose and lactate levels between

and during the attacks, urine organic and amino acids, and

acylcarnitine profile. CK levels .2,000 IU/L have been noted.

ECG, echocardiography, and brain MRI were normal. Muscle

biopsy revealed rare atrophic fibers, increased internal nuclei,

normal mitochondrial respiratory chain complex activities,

normal mitochondrial DNA levels, and normal electron

microscopy. The karyotype and array comparative genomic

hybridization were normal.

Molecular genetics. Blood genomic DNA was fragmented

from both affected cousins (IV:3 and IV:6), exome-enriched,

and sequenced (Illumina TruSeq 62 Mb exome capture and

HiSeq 2000, 100 bp paired-end reads). In-house

bioinformatic analysis included alignment to UCSC hg19

and using Burrows-Wheeler Aligner and Genome Analysis

Toolkit (GATK) to detect single nucleotide variants (SNVs)

and small insertion/deletions across all samples using

standard filtering parameters according to GATK Best

Practice Recommendations.1 We sought rare, predicted

protein-altering homozygous and compound heterozygous

variants that were shared between the 2 affected cousins

with minor allele frequency (MAF) ,0.005 in the ExAC and

NHLBI-ESP6500 databases, MAF ,0.02 in the CG69

database, and MAF ,0.01 in 337 unrelated in-house controls.2–4

Copy number variant analysis was performed using ExomeDepth.5

Multiple primer pairs were designed to define the deletion

breakpoint using long-range PCR (LA-Taq). Sanger sequencing

was used to define the breakpoint. Breakpoint-specific primers

were used to track the deletion in the family.

Cell biochemistry. Primary skin fibroblasts were derived from

both patients (IV:3 and IV:6) and a heterozygous relative

(III:3). Oxygen consumption, extracellular acidification

studies, Western blotting, and calcium imaging were

performed as described.6–8

Standard protocol approvals, registrations, and patient
consents. This study had national ethical review board approval

and local institutional approval. Informed consent was provided

by the participating families.

RESULTS No plausible pathogenic SNVs were
identified in the exome sequence (table e-1 at
Neurology.org/ng). Analysis of exome coverage
revealed a likely homozygous partial deletion of
MICU1 (figure 2A), which was mapped by long-
range PCR (figure 2, B and C). Sanger sequencing
defined the breakpoint (Chr 10: 74,385,085-
74,387,860, figure 2D) and the size of the
deletion (2,775 nucleotide pairs). Breakpoint
primers were used to track the MICU1 deletion in
family members (figure 2E), which showed
complete segregation with the disorder. Fibroblasts
from patients respired normally, showing oxygen
consumption and extracellular acidification rates
similar to the heterozygous fibroblasts (figure 3, A
and B). MICU1 protein was not detectable
by immunoblot in the patient fibroblasts, but

Figure 1 Pedigree of the family described in the case report

IV:3 is the index case and IV:6 is her cousin. DNA was available for family members indicated with an asterisk, allowing the
segregation analysis shown in figure 2. The 2 gray-shaded individuals have not been assessed in the United Kingdom:
1 failed to walk and died in infancy and the other is reported to have muscle problems.
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mitochondrial Ca(21) uniporter protein levels were
normal (figure 3C). The cells lacking MICU1
showed impaired mitochondrial calcium uptake,

which was rescued by introducing exogenous
MICU1 but not a control mitochondrial-targeted
green fluorescent protein (figure 3, D and E).

Figure 2 Identification of the deletion

(A) Exome read depth across MICU1 for the 2 patients (IV:3 5 patient 1, red; IV:6 5 patient 2, yellow) and a represen-
tative control (blue) showing a likely homozygous deletion involving exon 1 in IV:3 and IV:6. (B) Long-range PCR primer
walking demonstrated the limits of the deletion within the region identified through analysis of exome sequencing
coverage (oligonucleotide primers shown as red and green bars). PCR amplification using the named primer pairs shows
absence of a product with combination 74,387,000.25 no DNA control,15 healthy control. (C) Long-range PCR using
the forward primer from pair 74,384,500 and the reverse primer from pair 74,388,250 amplified a ;1-kb fragment
from the 2 affected cousins, whichwas small enough for Sanger sequencing. Primers: FwdTTCCCTTTCTCCTCAGGCAC, Rev
GTCTACCGGATTCAGGCGAT. When compared with control DNA, this equated to a ;2.7-kb homozygous deletion in the
patients. (D) Sanger sequence from the 2 affected cousins (IV:3 and IV:6) showing the homozygous deletion breakpoint.
Primers: Fwd TTCCCTTTCTCCTCAGGCAC, Rev GTCTACCGGATTCAGGCGAT. (E) Segregation analysis of the MICU1
deletion. PCR spanning the breakpoint showing the homozygous deletion in the 2 affected cousins (IV:3 and IV:6) and a
heterozygous deletion in other family members (III:2, III:3, III:4, III:5, and IV:2). Primers: Fwd CCTGGGCGACAAGTGTAAAA
Position Chr 10:74,381,222; Rev CCCAGGCATTTGATCACCAG Position Chr 10:74,390,095. Amplification of the
mutant allele in heterozygous carriers of the MICU1 deletion produced an additional intermediate band of ;8 kb that
is unexplained but did not affect the segregation analysis. Other symbols refer to the pedigree shown in figure 1. WT 5

wild type.
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Figure 3 Loss of MICU1 leads to a deficit in mitochondrial calcium handling without impairing respiration

(A) Oxygen consumption rates (OCR) and (B) extracellular acidification rates (ECAR) of MICU11/2 and MICU12/2 fibroblasts were measured by
Seahorse XF analysis. Mean values 6 SE (error bars) from 3 independent experiments are shown (differences are not statistically significant). (C)
Immunoblot of whole cell lysates from MICU11/2 and MICU12/2 fibroblasts. (D) Digitonin-permeabilized fibroblasts were given a pulse of 35 mM
CaCl2 while monitoring extramitochondrial Ca21 with calcium green-5N.8 (E) Quantification of the rate of calcium uptake from calcium uptake
traces including those in D (using linear fit from 30 to 40 seconds). Mean values 6 SD (error bars) from 3 independent experiments are shown. (F)
MICU11/2 (1) and MICU12/2 (2) fibroblasts were exposed to different conditions (untreated, 500 nM CCCP, 1 mM oligomycin, or serum starvation)
and pyruvate dehydrogenase (PDH) and phosphorylated PDH (at S293) were measured by immunoblot after lysing the cells in 1% Triton-X-100,
150 mM NaCl, 25 mM Hepes pH 7.4, and protease and phosphatase inhibitors. (G) Quantification of 3 independent experiments including the
representative experiment in F are shown. Mean values 6 SE (error bars). MCU 5 mitochondrial Ca21 uniporter; SDHB 5 succinate dehydrogenase
subunit B.
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DISCUSSION The homozygous MICU1 deletion is
highly likely to be responsible for the disorder affect-
ing the 2 cousins because (1) the mutation has not
been described before in large control exome data-
bases; (2) it showed complete segregation with the
phenotype in the family; (3) as predicted, there was
no detectable level of MICU1 protein in the patient
fibroblasts; and (4) this caused an anticipated defect
of mitochondrial calcium handling, which was res-
cued by expressing the wild-type protein.

The calcium uptake rate difference, which is remi-
niscent ofMicu1 knockdown inmouse liver mitochon-
dria,9 has 2 possible explanations. MICU1 has been
proposed to be an activator of the uniporter, in which
case removing it could result in reduced calcium
uptake rate.7,10 Alternatively, MICU1 has also been
proposed to be a gatekeeper of the uniporter that
prevents baseline levels of cytosolic calcium from
entering into mitochondria.6–8 In this case, the
observed lower calcium uptake rate may actually
represent a secondary consequence of increased basal
matrix calcium in the absence of MICU1, which
would reduce the driving force for calcium uptake.
This is consistent with what has previously been
reported in skin fibroblasts from patients lacking
MICU1.11 Consistent with the latter model in which
cells have higher basal matrix calcium, the levels of
phosphorylation of pyruvate dehydrogenase (PDH)
at S293 are higher in the homozygous fibroblasts
(figure 3, F and G). The PDH phosphatase is acti-
vated by matrix calcium, leading to dephosphory-
lated (activated) PDH. Thus, decreased PDH
phosphorylation would be consistent with increased
matrix calcium levels. As expected, both CCCP and
oligomycin reduced PDH phosphorylation, whereas
serum starvation resulted in increased PDH
phosphorylation, showing that the assay could
detect both increases and decreases in PDH
phosphorylation.12

Numerous hurdles obscured the diagnosis in this
family. For several years the nonspecific clinical
course precluded specialist referral. Further investiga-
tion followed a detailed family history and the CK
measurement. This combination of fluctuating
fatigue, migraine with obtundation, and a high CK
level raised the possibility of a mitochondrial disorder,
but conventional respiratory chain studies were nor-
mal. The diagnosis became apparent only by analyz-
ing the exome sequence read depth. Based on the
limited clinical descriptions published to date, our pa-
tients have a similar phenotype to patients with
MICU1 substitutions, although cataracts have not
been noted before (table e-1, reference 11).

The extreme clinical fluctuation described here is
reminiscent of an ion channelopathy. The likely role
of MICU1 as a calcium-sensing regulator of the

mitochondrial calcium uniporter7,13 provides an
explanation for the fluctuating clinical course seen
in patients with MICU1 and raises the hypothesis
that calcium channel blockers may alter the disease
course.
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