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ABSTRACT:  

The contribution of sub-nanometer pores in carbon electrodes to the charge storage 

mechanism in supercapacitors has been the subject of intense debate for over a decade. 

Here we provide a model system based on graphene oxide, which employs interlayer 
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constrictions as a model for pore sizes that can be both controllably tuned and studied in-

situ during supercapacitor device use. Correlating electrochemical performance and in-situ 

tuning of interlayer constrictions, we observe a peak in specific capacitance when interlayer 

constriction size reaches the diameters of unsolvated ions, supporting the hypothesized link 

between loss of ion solvation shell and anomalous capacitance increase for sub-nanometer 

pores. 
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Electrical double-layer capacitors (EDLCs), also called supercapacitors or 

ultracapacitors, are electrochemical devices which store energy through reversible 

adsorption of ionic species on electrode surfaces.
1
 As a class of energy storage devices, 

which can also have high power density, supercapacitors comprised of carbonaceous
2,3

 

electrodes have attracted considerable attention and substantial efforts have been directed 

towards their enhancement via rational electrode material and electrolyte design. In 

particular, the control of the size and geometry of the nanopores in such highly porous 

carbon-based electrodes is an area of focus as the nanoporous structure strongly influences 

the power and energy densities which can be achieved. However, the understanding of the 

complex relationships between electrode pore sizes and the specific capacitance still 

remains limited and has been the subject of recent debate, in particular since an anomalous 

increase in specific capacitance was reported for carbon pore sizes less than 1 nanometer.
4–6

 

It has been argued that this anomalous increase in capacitance is linked to pore sizes which 

are smaller than the diameter of the solvated ions, leading to partial removal of the ion 

solvation shells and ion confinement effects upon ion adsorption into such sub-nanometer 

pores.
7–12

 This hypothesized presence of desolvated ions in sub-nanometer pores and 

corresponding anomalous capacitance increase contrasts the hitherto accepted picture of 

solvated ion double-layer adsorption on electrode surfaces.
13

 There remains however 

controversy about adsorption of ions into sub-nanometer pores, partly due to the difficulty 

of experimentally assessing the complex pore structure and surface area of common 

electrode materials
14,15

 and partly due to the limited availability of direct in-situ insight into 

working supercapacitors.
16–22
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Here, we address both issues by introducing intercalation constrictions in a layered 

carbon electrode material as a model system for electrode pores, where the pore size 

analogue can be controlled and studied in-situ in an EDLC. The method employs facile and 

controlled propylene-carbonate (PC) driven
23

 variations in the interlayer spacing of 

graphene oxide (GO) electrodes combined with in-situ X-ray diffractometry (XRD) and 

electrochemical capacitor testing to directly assess how the specific capacitance of the 

model electrodes scales with interlayer constriction size. This novel approach circumvents 

the debated use
14

 of complex pore size distribution evaluations. Correlating electrochemical 

performance and in-situ interlayer constriction size determination, we indeed observe a 

peak in specific capacitance when the interlayer constriction size reaches the diameters of 

unsolvated ions. The result we report experimentally supports the hypothesized link 

between loss of ion solvation shell and the anomalous capacitance increase.
7–12

 

 

Results and Discussion 

Free-standing, flexible and binder-free GO paper
24–26

 was synthesized using 

graphite oxide derived from vein graphite following Hummer’s method.
27

 As produced GO 

paper was characterized using different complementary methods before assembly into an 

EDLC (see also Supplementary Text). The results clearly confirmed complete oxidation of 

the initial graphite to GO and successful fabrication of GO paper (see also Supplementary 

Text) consisting of densely and homogeneously turbostratically re-stacked GO sheets 

(Supporting Fig. S1), decorated with hydroxyl, carbonyl, ether and carboxyl groups, 

keeping an interlayer distance of ~0.82 nm (Supporting Fig. S2). 
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To assess the electrochemical behavior of GO, completely dried GO paper was used 

as the electrode material in a symmetric two-electrode EDLC device with 

tetraethylammonium tetrafluoroborate (TEABF4) dissolved in propylene-carbonate (PC) as 

the electrolyte. The initial cyclic voltammetry (CV) measurements gave a specific 

capacitance of 0.13 F/g at a scan rate of 100 mV/s. From electrochemical impedance 

spectroscopy (EIS), the initial equivalent series resistance (ESR) was measured to be 28.6 

Ω (Supporting Fig. S3). After the initial measurements, the GO paper device was 

electrochemically cycled between 0 V to +1 V at a scan rate of 100 mV/s up to 100,000 

cycles (the comparably high scan rate was chosen to avoid unacceptably long experimental 

acquisition times), where EIS measurements were done after every 4,000 cycles. 

Concurrently, electrochemical results are correlated with in-situ XRD measurements (X-ray 

wavelength: 1.5406 Å) on the working device after defined numbers of electrochemical 

cycles to examine the effect of cycling on the variation in layer spacing in the GO 

electrodes. 
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The change in raw CV curve shapes with continuous electrochemical cycling of the 

capacitor within the narrow voltage range from 0 V to +1 V is shown in Fig. 1a, where the 

change in extracted specific capacitance of the EDLC with cycle number is shown in 

Fig.1b. (See Supporting Fig. S3 for the corresponding EIS results.) 

 

 

 

 

 

 

 

 

 

 

Figure 1: Electrochemical performance of the EDLC with GO paper electrodes in TEABF4 

electrolyte dissolved in PC. (a) CV curves recorded at different cycle numbers, in the 

voltage range 0 V to +1 V at 100 mV/s scan rate. (b) Variation in specific capacitance with 

cycle number. Relative uncertainty in extracted specific capacitance is estimated to 10%. 

 

The electrochemical cycling revealed that the specific capacitance of the device 

initially increased gradually (from 0.13 F/g) with cycle number and then reached a 

maximum of 1.00 F/g at ~30,000 cycles. Subsequently the capacitance started to decrease 

gradually to reach 0.68 F/g after 100,000 cycles (at the end of experiment). 
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The variation in the interlayer distance of the GO electrodes within the working 

device was monitored by in-situ XRD measurements at selected cycle numbers (Fig. 2) and 

thus correlated to changes in the electrochemical performance of the model supercapacitor 

electrodes. After defined numbers of cycles, without disassembling the device, XRD 

measurements were taken on GO electrodes of the EDLC after sweeping the bias to 0 V 

and disconnecting from the voltage supply. XRD patterns of both electrodes were recorded 

(via flipping the coin cell), whereby both electrodes were observed to show similar changes 

in the XRD patterns and interlayer distances with cycling (Supporting Table S1). Therefore, 

the XRD patterns recorded in Fig. 2 are considered to be representative for the state of both 

GO electrodes (positive electrode and the negative electrode) (see also Supplementary 

Text).  

For the as fabricated device (i.e. before any electrochemical cycling) a dominant 

XRD peak at 2θ = ~10.7°is observed (Fig. 2), consistent with the GO average interlayer 

distance of ~0.82 nm in the as prepared GO paper (Supporting Fig. S2a). With increasing 

cycle numbers, a clear shift of this peak to lower 2θ values is seen, indicating an expansion 

of the GO average interlayer distance with cycling. After 100,000 cycles a 2θ = ~5.3° is 

measured. This corresponds to a ~1.65 nm average interlayer distance. Such a shift clearly 

indicates an increase in the average interlayer spacing of the GO electrode with 

electrochemical cycling. The narrow bias range (from 0 to +1 V) allows gradual PC-driven 

exfoliation
23

 of the GO electrode in the working capacitor, thus gradually increasing the 

GO average interlayer distance, but prevents adverse side reactions such as electrochemical 

reduction of GO
28–32

 and redox-driven intercalation of electrolyte ions
33–38

 with cycling, 
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ensuring that the GO nature of the electrodes is indeed maintained throughout the 

electrochemical cycling (see also Supplementary Text). 

 

 

 

 

 

 

 

Figure 2: Electrochemical in-situ x-ray diffraction study of the EDLC device with GO 

electrodes in TEABF4 electrolyte dissolved in PC. XRD scans (X-ray wavelength: 1.5406 

Å) were collected on the GO electrodes of the EDLC after certain numbers of cycles to 

examine the effect of electrochemical cycling on the variation in layer spacing in the GO 

electrodes.  

 

To further analyze the XRD data, the increment in GO average layer spacing (d) 

with cycle number is given in Fig. 3a. The increment in average interlayer distance (d) is 

equivalent to the average interlayer constriction size in the layered electrode material. It 

should be noted that the increment in GO average layer spacing/average interlayer 

constriction size (d) was calculated by considering the initial average spacing of the GO 
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layers (before any electrochemical cycling) as the zero point. Therefore, the increment in 

average layer spacing (d) after an n number of cycles can be given as: 

d = dn – d0 

with, dn = (002) average interlayer distance between two GO layers after a n number of 

cycles 

d0 = (002) average interlayer distance between two GO layers of as synthesized GO (0.82 

nm) 

As seen in Fig. 3a, d follows a sharp increase at the beginning, up to about 1,500 

cycles and then continues to further increase until the end of the experiment, but at a lower 

rate. Variation of the capacitance with cycle number (Fig. 1b) is also given again on the 

same plot for comparison. By re-plotting this data in Fig. 3b in the form of specific 

capacitance against the increment in average GO layer spacing (d) it can be seen how 

specific capacitance and average layer spacing increase are correlated and the key finding is 

revealed: Initially the specific capacitance increases gradually from 0.13 F/g to 0.32 F/g as 

the d increases from 0 to ~ 0.60 nm, then there is a sharp peak in specific capacitance 

rising up to 1.00 F/g as the d reaches to 0.70 nm.  Then as the d further increases beyond 

0.70 nm, the specific capacitance again sharply decreases and reaches a value of 0.68 F/g at 

d = 0.83 nm at the end of the experiment. This demonstrates a very direct correlation of a 

specific capacitance increase and average interlayer constriction size in the GO electrodes.    
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Figure 3: Correlation of increments in the average interlayer distance/interlayer 

constriction sizes (d) of the GO electrodes within the working EDLC to the variation of its 

electrochemical performance. (a) Specific capacitance and d, as a function of cycle 

number. (b) Variation of specific capacitance versus the increment in interlayer 

distance/interlayer constriction size d. Four stages, where d = 0 nm (I), 0.33nm (II) and 

0.7 nm (III) and d >0.7 nm (IV), are indicated. Estimated uncertainty of the increments in 

the average interlayer distance/interlayer constriction sizes (d) are plotted in red for better 

legibility. 

 

The key finding from Fig. 3b, that the average interlayer constriction size can be 

correlated with specific capacitance, can now be put into context of the prior literature on 

capacitance variation with pore size.  

See Fig. 4 for a schematic illustration of GO layer spacing and how ions can 

intercalate as the spacing increases. Four main stages of interlayer distance variation 

indicated in Fig. 3b are schematically illustrated for both electrodes.  

 

0 20000 40000 60000 80000 100000

0.0

0.2

0.4

0.6

0.8

1.0

0 20000 40000 60000 80000 100000

0.0

0.2

0.4

0.6

0.8

1.0

 

 

S
p

e
c

if
ic

 c
a
p

a
c

it
a

n
c

e
 (

F
/g

)

Cycle number, n In
c

re
m

e
n

t 
in

 l
a

y
e

r 
s

p
a

c
in

g
, 


d
 (

n
m

)a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1.0

1.2

  
S

p
e
c
if

ic
 c

a
p

a
c

it
a

n
c
e
 (

F
/g

)

Increment in layer spacing, d (nm)

I II III IVb



11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Schematic illustration of ion intercalation in GO layer spacing as interlayer 

constriction size increases in GO electrodes. Four stages of interlayer constriction size, 
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where d is  0 nm (I), 0.33 nm (II), 0.7 nm (III) and d >0.7 nm (IV) are illustrated for the 

negative electrode (a-d) and for the positive electrode (e-h). 

 

The sizes of the various molecules and ions involved in the processes are as follows. 

Electrolyte solvent propylene carbonate (PC) has a molecule size of 0.61 nm.
39

 The smaller 

BF4
-
 ions has an unsolvated ion size of 0.33 nm,

5
 which increases to 1.71 nm when BF4

-
 is 

immersed in a PC solvation shell.
39

 The larger TEA
+
 ion has a size of 0.68 nm in its 

unsolvated state,
5
 which increased to 1.96 nm when fully solvated.

39
  

First, at the first stage of average interlayer spacing variation, the average interlayer 

constriction size, d, corresponds to 0.0 nm. In the as fabricated EDLC devices (i.e. before 

any cycling) the re-stacked GO electrodes show the typical GO equilibrium layer spacing
23

 

of 0.82 nm (d=0). This layer spacing is caused by the space requirements of the various 

oxide groups on the GO basal planes.
40

 Therefore electrolyte ion intercalation is fully 

constricted by the closely packed re-stacked GO layers. Consequently the specific 

capacitance of the supercapacitor shows its lowest value. 

Secondly, as the electrochemical cycling continues, the interlayer spacing 

progresses into the second stage where average interlayer constriction size d increases 

from 0.0 to 0.6 nm. With cycling, the electrolyte solvent propylene carbonate (PC, 

molecule size 0.61 nm)
39

 aids the gradual increase of average interlayer distance in GO and 

the electrodes’ interlayer constriction size starts to increase. This is consistent with 

previously reported facile GO exfoliation in PC.
23

 The intrinsic propensity of PC molecules 
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to promote GO exfoliation combined with the applied voltage sweep from 0V to +1V leads 

to PC molecules “wedging” between the GO layers in increasing amounts. Here the 

increment in average layer spacing is driven by the solvent PC
23

 and consequently the 

average layer spacing increases equally in both electrodes, as observed in our XRD data 

(Supporting Table S1). 

In Fig. 3a, it can be observed that the increase in average layer spacing/interlayer 

constriction size (d) follows a sharp increase at the beginning (up to about 1,500 cycles) 

from 0 to ~ 0.60 nm. However, the specific capacitance in this constriction size range 

shows only a gradual increase from 0.11 F/g to 0.32 F/g. The sharp increase in d, which 

does not result in a sharp increase in capacitance, can be attributed to the comparatively 

rapid intercalation of solvent PC molecules between GO planes at the beginning of the 

cycling experiment. Initially, neither BF4
-
 nor TEA

+
 can intercalate through the GO 

interlayer constrictions in this region even after shedding their solvation shell. After a 

number of cycles, the d becomes large enough for completely or partially desolvated 

smaller BF4
-
 ions to absorb into the GO interlayer space of the positive electrode (un-

solvated BF4
-
 ion size = 0.33 nm).

5
 With repeated cycling, the positive electrode starts to 

become increasingly accessible to completely or partially desolvated BF4
-
 ions.  With d 

between 0.33 nm and 0.6 nm, the capacitance of the whole symmetric supercapacitor 

device (i.e. two capacitors in series) is however still limited by the capacitance at the 

negative electrode because TEA
+
 ions are still too large to pass through the GO 

intercalation constrictions. Thus the capacitance of the device is dependent on the 

accessibility of TEA
+
 ions into the GO electrode interlayer spaces. At this stage, upon 
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removal of the applied bias, to maintain the charge neutrality, TEA
+
 ions cannot move in to 

the interlayer spacings of the positive electrode due to the size restrictions. Therefore, we 

speculate that BF4
-
 ions move out from the apertures. Since the increment in layer spacing 

is driven by the neutral solvent PC molecules, but not the ions intercalated between the 

layers, the interlayer spacing will not be changed as the BF4
-
 ions move out from the 

positive electrode. 

In the third stage, when a GO interlayer constriction size of d = ~0.70 nm is 

approached, a drastic increase in specific capacitance occurs. With opening of the 

intercalation constrictions to be large enough for the un-solvated larger TEA
+
 ions (0.68 

nm) to be adsorbed on the GO surface plane, the negative electrode can take up a 

significantly increased amount of TEA
+
 ions. At this point, both the positive electrode and 

the negative electrode become completely accessible to their respective ions; positive 

electrode to the completely or partially desolvated BF4
-
 ions and negative electrode to the 

comparably larger desolvated TEA
+
 ions. Consequently, a strong increase in the total 

capacitance of the whole EDLC occurs for d from 0.6 nm to 0.7 nm, as observed in Fig. 

3b. 

We note that the increase in GO interlayer distance is irreversible as it is not driven 

by electrolyte ion intercalation but by gradual “wedging in” of solvent PC molecules. Thus 

when the supercapacitor is discharged, the space between GO layers remains occupied by 

electrolyte species, with an equal proportion of cations and anions, as evidenced by a recent 

NMR study.
16

 This allows the accurate measurement of the layer spacing of the GO 

electrodes after ion intercalation although the device is measured in the discharged state. 
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Since the increment in layer spacing is driven by the solvent PC (but not the ions), it 

continues to increase even after both ions can pass the intercalation constrictions and fully 

access the GO interlayer space and reaches the fourth stage where d > 0.7 nm. When the 

average interlayer constriction size further increases, but still stays below the size of fully 

solvated BF4
-
 and TEA

+
 ions, interestingly the capacitance again starts to decrease sharply. 

This is attributed to the increase in average distance between electrode layer and the center 

of the intercalated ions as well as to the relaxation in confinement of the desolvated ions.
6,8–

12
 

Contextualizing our results, we note that previous literature demonstrated a similar 

sharp peak behavior in specific capacitance for carbide derived carbon (CDC) electrodes as 

their pore size approached the size of the desolvated ions. In particular, Largeot et al. 

showed a strongly peaked capacitance between 0.65 and 0.8 nm CDC pore size in 

supercapacitors using ethyl-methylimmidazolium-bis(trifluoromethane-sulfonyl)imide 

ionic liquids (EMI-TFSI)
6
 and Chmiola et al. showed a peaking behavior around 0.75 nm 

CDC pore size for TEA
+
/BF4

- 
supercapacitors using acetonitrile solvent.

4,5
 Similar trends 

were observed in prior studies using activated carbons
41

 and activated AR-resin-based 

carbons
39

 and also using aqueous electrolytes.
42,43

 All these results point to a different 

charge-storage mechanism than the hitherto commonly accepted double-layer formation of 

fully solvated ions. Instead, the partial removal of the solvation shell and the increased 

confinement of the ions when the pore sizes become smaller than the solvated ion radius 

have been proposed as the cause for increased capacitance. A number of further 
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experimental
16,44–48

 as well as theoretical and modelling studies
7–12

 have attempted to 

provide insights into this hypothesis. 

On the other hand, Centeno et al.
14

 have reported in a recent study of 28 porous 

carbons, that they found the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile 

to be relatively constant between 0.7 and 15 nm. There, contrary to the studies cited above, 

the specific capacitance increase in pores below 1 nm was not observed at all but the 

previous results were rather attributed to misleading interpretation of surface area 

measurements.
14,15

 This makes the issue of capacitance enhancement in sub-1-nm pores still 

controversial. 

A fundamental reason for this controversy is that the control and accurate 

experimental determination of the pore size distribution is difficult for common complex 

carbon-based electrode materials. Our approach of controllably investigating the pore size 

dependence of specific capacitance by using in-situ tunable interlayer constrictions in 

layered electrode materials (here shown for GO) as a model for pore sizes is aimed to fill 

this gap. As discussed above our results strongly point towards support of the hypothesis of 

an anomalous capacitance increase linked to pore sizes around the size of the unsolvated 

ions. 

Conclusions 

In conclusion, we present a new approach to address the long-held controversy on 

contribution of sub-nanometer pores of carbon electrodes to the charge storage in EDLCs 

by introducing a model system based on GO. This employs interlayer constrictions of GO 

as a model for pore sizes that can be both controllably tuned and studied in-situ during 
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supercapacitor device use. Polar surface oxide groups make GO electrically insulating
40

 and 

could impact on electrolyte ion uptake dynamics. Therefore GO is normally not a preferred 

electrode material for supercapacitors in application scenarios.
49,50

 While this naturally 

leads to low absolute specific capacitance values for the GO electrodes in our study, as a 

model system, binder-free GO paper electrodes uniquely allow controllable and facile (here 

PC-driven) exfoliation of its layered structure and thus a gradual increase in interlayer 

constriction size. The interlayer spacings are measurable through XRD obtained in-situ. It 

is thereby possible to assess the correlation of interlayer spacing and relative change in 

specific capacitance, as shown here. Taking increase in average interlayer spacing as a 

proxy for constriction size in porous materials, the GO electrodes combined with our in-situ 

approach are therefore an effective first-order-approximation model system to study the 

variation of capacitance in ultra-small pores. Our methodology of in-situ XRD and 

electrochemical cycling combined with controllable tuning of interlayer spacing is 

extendable to other layered materials (such as reduced GO (r-GO), graphite, transition 

metal dichalcogenides etc.), albeit, as controlled solvent driven exfoliation of these 

(compared to GO) more strongly bound layered materials is more challenging. Future work 

needs to deal with changes in solvent chemistry or larger electrochemical cycling windows 

in order to allow similarly facile and controlled solvent driven exfoliation and thus 

associated controlled changes in interlayer constriction size. In doing so, the approach has 

potential application, not only in the energy storage area (supercapacitors) but more 

generally in any field dealing with ion transport through nano-pores such as water 

desalination or the function of ion channels in cells. 
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Methods 

Synthesis of GO paper 

Graphite oxide was synthesized from natural vein graphite (purity >99%, Bogala Graphite, Sri Lanka) 

by Hummers method as originally presented by Hummers and Offeman.
27

 As-synthesized graphite oxide was 

washed with a diluted HCl solution to completely remove residual salts. It was further washed with water 

until the pH of the rinse water becomes neutral (pH = 7). Ultrapure Milli-Q water was used in all 

experiments. As purified graphite oxide suspensions were then dispersed in water. Exfoliation of graphite 

oxide to GO was achieved by ultra-sonication of the dispersion. Graphene oxide dispersions prepared 

according to the above procedure were dried slowly in an oven maintained at a temperature of 50 °C, to 

obtain a film of graphene oxide attached to the substrate.
24,25

 This GO paper consists of GO layers which 

settled and turbostratically re-stacked from their dispersed state in solution upon drying of the paper. 

Completely dried, GO paper was then carefully peeled from its substrate and used for further characterization 

and electrical double-layer capacitor (EDLC) fabrication. See Supporting Information for additional 

characterization of the GO electrodes. 

Electrochemical testing and in-situ materials characterization 

The electrochemical behavior of the GO paper was characterized by cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS) with two symmetric electrodes in coin cell geometry using an 

Autolab electrochemical interface instrument (PGSTAT 302N). Flat GO paper (~30 µm thickness) was used 

for electrodes as-is by cutting electrodes with an area of ~1.8 cm
2
. A solution of 1M TEABF4 (Sigma Aldrich) 

in PC (Sigma Aldrich) was used as the electrolyte and a filter paper (Waterman, grade no. 1, thickness ~180 

µm) was used as the separator. Coin cell preparation was carried out in a nitrogen-filled glove box (M Braun) 

with oxygen and moisture levels of <1 ppm. Electrochemical measurements were taken using a two-electrode 

system at ambient temperature. 

CV curves were recorded in the potential range from 0.0 to +1.0 V at 100 mV/s scan rate and the 

cycling behavior of the electrodes were characterized up to 100,000 cycles. Specific capacitance values as a 

function of cycle number were estimated through the current at 0.5 V or through raw data integration,
51

  

where both methods show good agreement and we estimate a relative uncertainty in stated specific 
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capacitance values of 10%. EIS measurements were performed over a frequency range from 0.1-100 kHz at 

amplitude of 10 mV at intervals of every 4,000 CV cycles. Extrapolating the curve on the Nyquist plot to 

intersect the X-axis yields equivalent series resistance (ESR) values. 

To concurrently monitor the variation in the interlayer distance of GO electrodes within the EDLC, in-

situ XRD measurements (Bruker D8, x-ray wavelength: 1.5406 Å) were carried out on the GO electrodes 

(information depth estimated to 50-200 µm, see Supplementary Text). After defined numbers of cycles, 

without disassembling the device, XRD measurements were taken on both electrodes of the EDLC after 

sweeping the bias to 0 V and disconnecting from the voltage supply. For this purpose, CR-2016 coin cell 

cases (EQ-CR2016-MTI), modified for in-situ XRD analysis of the electrode material, were used for EDLC 

fabrication. Both coin cell cases were modified to include 10 mm diameter Kapton windows of 25 µm 

thickness, to ensure maximum X-ray beam penetration. Both positive and negative electrode side were 

measured by XRD, showing good agreement and thus confirming homogeneous PC-driven layer expansion of 

both electrodes (see Supporting Information). XRD reflections were fitted by Gaussian profiles, where we 

state in the main text the extracted peak center values as the average interlayer spacing value d. Estimated 

uncertainty of the average interlayer spacing values is estimated to 3 computed fit uncertainty. 

Cycling experiments have been conducted for several supercapacitor devices which were independently 

fabricated in different fabrication batches. We find a good reproducibility in the general trend of the key result 

of peaking behavior of specific capacitance when interlayer constriction size approaches the size of the 

unsolvated TEA
+
 ion, confirming the generic nature of our findings to the studied electrode material. 

 

Supporting Information Available:  

Supplementary Text 

Supplementary Figures S1 to S3 

Supplementary Tables S1 

Supplementary References  

This material is available free of charge via the Internet at http://pubs.acs.org.  

http://pubs.acs.org/
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