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Abstract 

Purpose - Improving the energy efficiency of the existing residential building stock has been identified as a key 

policy aim in many countries. This study reviews the extant literature on investment decisions in domestic 

energy efficiency and presents a model that is both grounded in microeconomic theory and empirically tractable. 

Design/methodology/approach – This study develops a modified and extended version of an existing 

microeconomic model to embed the retrofit investment decision in a residential property market context, taking 

into account tenants’ willingness to pay and cost-reducing synergies. A simple empirical test of the link between 

energy efficiency measures and housing market dynamics is then conducted. 

Findings - The empirical data analysis for England indicates that where house prices are low, energy efficiency 

measures tend to increase the value of a house more in relative terms compared to higher-priced regions. 

Secondly, where housing markets are tight, landlords and sellers will be successful even without investing in 

energy efficiency measures. Thirdly, where wages and incomes are low, the potential gains from energy savings 

make up a larger proportion of those incomes compared to more affluent regions. This, in turn, acts as a further 

incentive for an energy retrofit. Finally, the UK government has been operating a subsidy scheme which allows 

all households below a certain income threshold to have certain energy efficiency measures carried out for free. 

In regions, where a larger proportion of households are eligible for these subsidies, we also expect a larger 

uptake. 

Originality/value - While the financial metrics of retrofit measures are by now well understood, most of the 

existing studies tend to view these investments in isolation, not as part of a larger bundle of considerations by 

landlords and owners of how energy retrofits might influence a property’s rent, price and appreciation rate. In 

this paper, we argue that establishing this link is crucial for a better understanding of the retrofit investment 

decision. 
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1. Introduction 

In most developed countries, buildings account for approximately 40% of total CO2 emission 

from the use of fossil fuels (Ürge-Vorsatz et al 2007). Hence, improved energy efficiency of 

buildings, particularly in the residential sector, plays a key role in lowering domestic energy 

consumption and reducing greenhouse gas emissions. Despite a number of seminal studies, 

the economic drivers of domestic energy efficiency investments remain an under-researched 

area. In particular, there is a shortage of empirical research addressing the relationship 

between investments in energy efficiency in homes and the resulting change in energy bills 

and its implications for the profitability of energy retrofits. While both the technological and 

the financial aspects of energy retrofits are relatively well-understood, there are a very few 

studies that investigate the microeconomic decision rules of households opting for a retrofit 

or possibly choosing to forgo this option instead. These decision rules include, among others, 

the financial characteristics of an energy retrofit, any existing investment inefficiencies, the 

barriers influencing the financial outcomes and the asset pricing of energy efficiency in the 

residential property market. This microeconomic approach is useful for understanding 

observed outcomes in the presence of market inefficiencies such as the split incentive 

problem which has been identified as a major obstacle to energy retrofits in the non-owner-

occupied property market. Split incentives arise when benefits and costs accrue 

asymmetrically to the parties to a transaction. For instance, if a tenant has a net lease contract, 

then the landlord has no priori incentive to invest in energy efficiency that would only benefit 

the tenant in terms of lower energy bills (Bird & Hernandez, 2012). 

 

This paper seeks to demonstrate that energy efficiency investment decisions cannot be fully 

understood if they are viewed in isolation and outside of the real estate market context in 

which they take place. To this aim, we review the current literature and then present a 

 2 



modified and extended model to embed the retrofit investment decision in a residential 

property market context, taking into account the split incentives problem, tenants’ willingness 

to pay (WTP) and cost-reducing synergies. Finally, we present a simple empirical test of the 

link between energy efficiency measures and housing market dynamics. 

 

2. Previous Empirical Research 

Empirical studies by Berry et al, 2008; Brounen and Kok, 2011; Deng et al, 2012; Zheng et 

al, 2012; Cajias and Piazolo, 2013; Hyland et al, 2013; Kahn and Kok,2014  and Fuerst et al, 

2015 provide the first valuable insights into the pricing of sustainable real estate. These 

studies test for the existence of 'green value', defined as the capitalisation of energy and 

resource saving features into property prices and rents. Assuming that energy efficiency 

investments are fully capitalised into house prices, the decision to undertake a retrofit reduces 

to a discounted cash flow model to evaluate the viability of such a measure.  This approach 

estimates all future cash flow and discounts them to arrive at their present value, which is 

then used to evaluate the potential for investment. If the present value is higher than the 

current cost of the investment, the investment is considered to be good.  Table 1 presents a 

summary of empirical studies of energy efficiency in residential dwellings. The consensus 

among these studies appears to be that energy efficiency investments are attractive for longer-

term investors but there is no consensus on whether buyers and tenants are willing to pay for 

these capitalised energy savings in the short run. A problematic feature of some of these 

studies is that they do not establish a clear link between retrofit investments, subsequent cost 

savings and impact on prices and rents. Some of these studies also fail to take into account 

the opportunity cost of the capital investment defined as the expected rate of return forgone 

by not being able to invest the funds in alternative investment activities. 
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One of the first researchers to examine such an investment specifically from a residential 

landlord’s perspective was Amstalden et al (2007). By applying retrofit measures to a model 

building scheduled for renovation, they report that expected energy prices affect the outcome 

of an investment analysis. Energy efficiency retrofits in residential housing are found to be an 

attractive investment in the presence of high energy prices. Conversely, given free-market 

conditions and particularly low energy prices, economic gains on energy efficiency retrofit 

measures are relatively small. Under rising energy prices, renovating a property without 

simultaneously investing in energy efficiency measures is a sub-optimal choice. Van Soest 

and Bulte (2001) shed some light on the reasons why households make these seemingly sub-

optimal decisions. Their option value approach suggests that households are reluctant to 

invest in a retrofit even if it is profitable from a Net Present Value point of view when upfront 

investments of energy efficient technologies are fully or partially irreversible. Given the 

uncertainty of future technological developments, technologies that appear profitable from a 

net present value perspective, will not be adopted by the majority of households if the value 

of waiting, the opportunity cost and the rate of return of current alternative investments are 

high. 

 

Tommerup and Svendsen (2006), on the other hand, report that if residential properties are 

upgraded in the process of general building refurbishment, a significant saving potential of 

80% for energy used for space heating over a 45 year time horizon can be achieved. In a 

related study, Zavadskas et al (2008) find that in addition to energy savings potential, an 

energy retrofit improves the general condition of the building structure and extends the 

economic and physical lifetime of a building. Ultimately, this will increase the market value 

of the property more significantly than a 'non-green' renovation of a dwelling. Using retrofit 

scenarios for large-panel buildings in Vilnius, Lithuania; the authors suggest that cost-
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effective energy-savings are highest for small and medium retrofit investment packages.  

Similarly, Morrissey and Home (2011) find significant cost savings from energy efficiency 

measures over 25 and 40 years’ time horizons, particularly when energy prices are high. By 

applying a life cycle costing approach to a sample of Australian detached dwellings, the study 

determines the optimal level of energy efficiency for a given energy price level. Deep energy 

efficiency retrofits are found to be more cost-effective when energy prices are high, whereas 

a seven out of ten star thermal performance rating appears to be optimal when energy prices 

are low and the investor has a 25 year time horizon. For both low and high energy price 

scenarios, an eight star thermal performance rating is optimal for a 40 years’ time horizon, 

though energy price levels appear to be less relevant for longer investment horizons. The 

Australian energy rating system ranges from 0 to 10 stars, 10 being the most energy efficient, 

and is based on the space heating and cooling demand of the dwelling. 

 

Furthermore, a study by Jacobsen and Kotchen (2009) uses household data from Florida to 

show that the Florida’s energy-code change in 2002 lead to a 4 % fall in electricity 

consumption and a 6 % fall in natural-gas consumption. They also report that, under the best-

case scenario, the private payback period is 6.4 years for the average residence. The social 

payback period accounting for the avoided costs of air-pollution emissions, is estimated to be 

between 3.5 and 5.3 years. As mentioned above, standard discounted cash flow approaches 

are likely to overestimate the net present value of energy efficiency measures. Energy price 

elasticity and future annual energy price rises are understood to have a mutually offsetting 

effect on the net present value of an energy efficiency investment (Galvin and Sunikka-

Blank, 2012). While the profitability of energy efficiency retrofits increases in line with 

energy prices, this effect will be dampened by the price elasticity of demand which in turn 

reduces the overall magnitude of the energy savings. 
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Galvin and Sunikka-Blank (2012) apply an alternative discounted cash-flow method 

incorporating energy price elasticity on to a housing estate retrofit project in Ludwigshafen, 

Germany. They conclude that the incorporation of prices elasticity into the analysis reduces 

the net present value of the energy efficiency measures by 14-24 % and extends the payback 

period by 5 years in some cases. Using an alternative calculation method in the form of 

probabilistic methodology based on Bayesian calibration of normative energy models, Heo et 

al (2012) also argue that energy retrofit financing options can be estimated accurately by 

explicitly calculating risks associated with each retrofit option. 

 
Table 1: Overview of studies on residential energy efficiency investment decisions from several countries: 

 

 

While the use of the discounted cash-flow model in most of these studies has contributed to 

the development of this research area, they have also been heavily criticised on theoretical 

grounds.  As early as the 1990s, Metcalf and Hassett (1999) pointed out that discount rates 

used in conventional engineering studies lack crucial economic micro-foundations to yield 

plausible propositions and that such calculations are overestimating the returns to energy-

saving investments. Hence, a microeconomic analysis of the behaviour of individual agents 

such as tenants or landlords that underpins an energy efficiency theory is required. 
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3. A Proposed Model of Residential Energy Retrofits 

Investments in energy efficiency are typically measured in payback periods. A simple 

decision rule is that investments with shorter payback periods are favoured over longer 

periods. This is equivalent to an internal rate of return (IRR). For example, DeCanio (1998) 

describes this basic relationship for the payback period P0 as: 

𝑃𝑃0 = 𝐶𝐶0
𝑆𝑆0

=  (1+𝑟𝑟)
𝑟𝑟

−  1
𝑟𝑟(1+𝑟𝑟)𝑛𝑛

     (1) 

Where 𝐶𝐶0 is the initial cost of the efficiency investment, 𝑆𝑆0 denotes the cost savings over the lifetime 
of the new equipment (n) and 𝑟𝑟 is the IRR of the investment. 
 

Payback periods can also be expressed as a linear function in a Taylor series: 
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2
� f ′′  �1

2!
� (r − 1)2+. . + �1

n
� 𝑓𝑓𝑛𝑛 �1

n!
� (r − 1)n    (2) 

 

What determines payback periods? 

A key problem in any reliable calculation of payback periods is the uncertainty surrounding 

the true future cost savings as well as any investment inefficiencies at the market or at the 

individual level which may in turn lower investors’ willingness to invest or WTP. Allcott and 

Greenstone (2012) propose a model in which Investor i will upgrade from the current 

standard e0 to a more energy-efficient standard e1 if: 

 

𝑝𝑝𝑝𝑝𝑖𝑖 (𝑒𝑒0− 𝑒𝑒1)
(1+𝑟𝑟)

> 𝑐𝑐        (3) 

Where p is the private cost of energy, c represents the upfront cost of the retrofit and the intensity of 
using domestic heating and cooling systems is represented by 𝑚𝑚. 
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As in Equations (1) and (2), we expect that the discounted lifetime energy cost savings 

minus observed and unobserved capital costs determine the WTP of an investor. However, 

this simple formula fails to account for a number of crucial factors in the investment and 

pricing decision. Similar to Allcott and Greenstone’s model (2012), we propose that a more 

complete representation of this decision might take the following form: 

 

𝛾𝛾(𝜉𝜉+ 𝑝𝑝)𝑝𝑝𝑖𝑖 (𝑒𝑒0− 𝑒𝑒1)
(1+𝑟𝑟)− 𝜓𝜓 

> 𝑐𝑐        (4) 

Where γ captures investment inefficiencies, 𝜉𝜉 social cost of energy use and ψ 
investment opporunity costs. 

 

The weighting parameter γ reflects a number of investment inefficiencies such as imperfect 

information, lack of attention or interest, excessive risk aversion or credit constraint. This 

weighting parameter is also a measure of the implied discount rate that an individual investor 

or a group of investors applies in excess of capital market risk-adjusted discount rates (r). If 

γ<1, an investor might not choose to upgrade even if net present value (NPV) of the 

investment is positive. Parameter ξ reflects the social cost or uninternalised externality of 

energy use that is added to the market price p. High values of this parameter entail low 

profitability and long payback periods. The externalities captured by γ and ξ can be 

influenced by imposing a pigovian tax, carbon trading scheme or a similar measure that aims 

to internalise externalities. At the social optimum, γ=1, i.e. there are no investment 

inefficiencies distorting prices and quantities and investors take the full social cost of energy 

(ξ+p) into account when making their energy efficiency investment decision. Next, 

investment opportunity costs are captured by ψ. The reasoning behind this parameter is that 

investments in energy efficiency are more likely to occur when expected returns for 

competing asset classes such as stocks and bonds are low (and vice versa). 
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Energy Efficiency Investments in the Rental Market 

The retrofit investment decision in rental properties becomes even more intricate in 

properties for which the costs and benefit accrue to different parties as is typically the case in 

the rental market. Lease structures are crucial for alignment or misalignment of incentives. 

Assuming that the rent paid by the tenant is net of utilities and payable according to their 

individual energy usage, there is no a priori incentive for the landlord to bear the upfront 

capital investment of energy efficiency measures regardless of the payback period or IRR of 

the investment. However, a landlord may still be able to recoup her retrofitting expenses 

through higher rent payments, provided that tenants exhibit a higher WTP for inhabiting a 

more energy-efficient property and benefitting from  lower energy bills (for a discussion of 

tenants’ WTP see for example Fuerst & McAllister 2011). On the cost side of the formula, 

cost reductions are to be expected when energy retrofits are carried out as part of a general 

modernisation or refurbishment of a property. To reflect these synergies and the WTP in the 

rental market, we modify the formula as follows: 

 

𝜇𝜇[𝛾𝛾(𝜉𝜉+ 𝑝𝑝)𝑝𝑝𝑖𝑖 (𝑒𝑒0− 𝑒𝑒1)]
(1+𝑟𝑟)− 𝜓𝜓 

> 𝑐𝑐 − 𝛿𝛿        (5) 

where µ measures tenants’ WTP and δ cost− reducing synergies. 
 
 
Parameter δ reflects how the cost effectiveness of energy retrofits is enhanced when the 

property undergoes a general modernisation, for example when contracts are bundled and 

other cost savings arising from a simultaneous upgrade of the general quality of a dwelling as 

well as its HVAC systems, wall and loft insulation, lighting systems etc. A further condition 

for δ to take on a significant value is that the property or rental unit is vacant at the time of 

refurbishment which can be difficult to achieve in practice. On the other hand, Fuerst and 
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Wegener (2015b) assume a negative relationship between vacancy rates and the energy 

efficiency upgrading of the existing stock based on the rationale that vacancy rates are a 

proxy for the rentability of upgrading. In the context of the rental market, μ reflects the 

degree to which energy efficiency and cost savings are capitalised into prices and rents. If 

μ=1, the monthly rent increment tenants are willing to pay is exactly equal to the monthly 

cost savings that are due to higher energy efficiency. If μ<1, landlords will only be able to 

defray some of the capital cost to tenants. It is debatable whether μ>1 may also occur 

empirically, i.e. whether tenants are willing to pay more than the monthly rate required for 

the amortisation of costs. This would be the case if additional benefits accrue to tenants above 

and beyond mere cost savings. Examples of these additional benefits include enhanced indoor 

comfort and wellbeing as well as utility gains from being ‘seen to be green’. In this case, we 

may observe μ>1 in the form of a rental premium that exceeds the ‘total occupancy cost’ 

neutrality of energy efficiency investments. Increasingly, the inefficiencies arising from the 

split incentive problem are addressed by the establishment of green leases that aim to share 

costs and benefits between landlord and tenant and define benchmarks and targets for 

environmental performance at the building level. 

 

Aggregation of individual investment decisions 

How can these microeconomic decision rules be incorporated into a model that takes into 

account thousands or even millions of individual investment decisions? The specifics of 

building characteristics such as current insulation, heating systems and household 

consumption and preference parameters are not directly observable in most studies due to the 

aggregate nature of most datasets. A possible heuristic is to apply average values to each 

spatial zone and/or property type, such as detached, semi-detached and terraced properties 

and make assumptions about the distribution of investor preferences for each zone and/or 
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property type but this method is not accurate and potentially subject to ecological fallacy. A 

further challenge is the spatial variability of some of the parameters and variables. The WTP 

parameter μ is likely to vary across households and neighborhoods together with average 

income and lifestyles. Similarly, the intensity of energy usage mi is a function of household 

income. By contrast, we use the simplifying assumption that the parameters γ (investment 

inefficiencies), ξ (uninternalised externalities), ψ (opportunity cost of retrofit investing) and δ 

(cost synergies) vary over time but not across space, at least not within a metropolitan area. 

 

4. Discussion 

The consensus on the energy efficiency gap in the empirical literature is that investors 

apply excessively high discount rates to energy efficiency retrofit decisions and that this leads 

to investment inefficiency (Giraudet and Houde 2013, Train 1985). Previous studies such as 

Alcott and Greenstone (2012) capture this energy investment inefficiency with a single 

parameter ranging from full efficiency to zero efficiency. However, an important issue arises 

regarding the use of a single parameter to account for all inefficiencies associated with energy 

efficiency retrofits. In accordance with Gillingham et al (2009), we argue that the energy 

investment inefficiency depends on both the economic efficiency of the market conditions 

individual face as well as the behavior of the individual decision makers. Various forms of 

market inefficiencies have been recognised in the literature, including imperfect information, 

environmental externalities or credit constraints. Giraudet and Houde (2013) calibrate a 

model of imperfect information to measure the magnitude of the energy investment 

inefficiency largely caused by moral hazard on the part of the suppliers or homeowners. 

Suppliers may take hidden actions, specifically when the purchase of an energy efficiency 

retrofit involves significant installation work such as insulation, double glazing, solar panels 

or HVAC system.  Equally, homeowner may increase their energy consumption upon 

 11 



installing energy efficiency retrofits. Giraudet and Houde (2013) estimate the marginal 

investment inefficiency due to moral hazard to be £281per thousand cubic metre consumption 

of natural gas for heating. This amount is interpreted as the extra unit of energy that is 

consumed but could have been saved by an optimal investment, a possible proxy for 

parameter γ in our model.  Equally, market conditions individual face may well be inefficient 

in the presence of environmental externalities. Giraudet and Houde (2013) estimate the 

marginal investment inefficiency due to environmental externality to be £40 per thousand 

cubic metre consumption of natural gas for heating, significantly lower than the estimate for 

the energy investment inefficiency caused by imperfect information. This estimation could be 

used  to estimate the social cost or uninternalised externality of energy use (parameter ξ in 

our rental model) since this implies even without the investment inefficiency caused by the 

split incentive or moral hazard problem, environmental externality of energy use exists. 

 

It is also important to capture decision making behaviour of individuals in order to identify 

possible “behavioural inefficiencies” causing departure from investment optimality in energy 

efficiency retrofits. Notably, our proposed rental model dismantles the energy investment 

inefficiency further by introducing a new parameter into the analysis in the form of tenants’ 

WTP for energy efficiency measure (μ). This additional investment inefficiency parameter 

(μ) is crucial for understanding the investment decision of investors. Several studies find 

evidence of a strong WTP for eco-labelled properties (see for example Yau Y, 2012 and 

Fuerst and McAllister, 2011).  However, a recent study by Jonsson (2014) quantifying the 

magnitude of the WTP sheds initial light on the characteristics of the real estate rental 

markets and estimates WTP to be 5% of total rent for tenants in green buildings. This finding 

supports the inclusion of the WTP parameter as an additional source of energy investment 

inefficiency in the rental market analysis presented in this study. 
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Furthermore, in this study, cost-reducing synergies capturing enhanced cost effectiveness of 

energy retrofits when the property undergoes a general periodic modernization is accounted 

for. Kats (2003) suggests  that energy efficient buildings save investors money by reducing 

operation and maintenance costs and estimates these cost-reducing synergies ( parameter δ in 

our model) to be about £61 per square metre . Lastly, parameter ψ is introduced into the 

analysis in order to control for the opportunity costs of investment.  Investments in energy 

efficiency are likely to be more appealing when expected returns for alternative asset classes 

such as stocks and bonds are low. For instance, a study by the Rhodium Group (2013) 

estimates that investing in energy efficiency retrofitting of buildings would yield an internal 

rate of return (IRR) four times higher than average corporate bond yields and more than 

double the returns of high-performing venture capitals` yield. The investment opportunity 

costs (ψ in our model) is estimated to be 6.8 % IRR on equity and 12.4 % IRR for high 

performing venture capital investments relative to investments in energy efficiency retrofit 

yielding an estimated internal rate of return of 28.6%. 

 

5. Empirical analysis 

In the absence of detailed information on most of the micro-economic decision parameters 

necessary to estimate the full model specified, we use aggregate information at the local 

authority level in England to investigate the basic drivers of energy efficiency measures. To 

understand the dynamics of upgrades better, the analysis is limited to the two most 

widespread measures, cavity wall and loft insulation. As Crawford (2012) points out, adding 

loft insulation is generally considered an inexpensive and cost-effective way to upgrade while 

adding cavity wall insulation is more expensive but still exhibits a favourable payback profile 

compared to a range of other possible energy efficiency upgrades.  
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Table 2 presents average regional house prices in our sample. House price levels exhibit 

marked persistent differences, with dwellings in the North East of England being priced at 

almost one-third of the average prices of dwellings in London. 

Table 2: Regional house prices 
 

Turning to the adoption rate of energy efficiency investment in the form of cavity wall and 

loft insulations per 10,000 dwellings, the north-south divide in property prices appears to be 

reversed. Figure 1 illustrates that the rate of energy efficiency measures is highest in northern 

local authorities and relatively low in the South East and London. A similar pattern is also 

found when breaking down the energy efficiency measures into loft insulation and cavity 

wall insulation (see the Appendix for details). 

.FIGURE 1: UPTAKE OF ENERGY EFFICIENCY MEASURES (BUILDING INSULATION) AT LOCAL AUTHORITY 

LEVEL IN ENGLAND. 

We have argued in the theoretical model section above that energy efficiency upgrades tend 

to occur when a property is temporarily vacant as this presents an opportunity to carry out 

these measures without undue disruption to the occupiers of a building. Following this 

argument, we would expect that higher vacancy rates, both at the building and the market 

level, are tied to higher levels of energy retrofitting. A high vacancy rate may also indicate a 

weak property market which may necessitate additional measures for properties to be 

successfully rented or sold in the marketplace. The map in Figure 2 shows indeed that local 

authorities in the South of England have lower vacancy rates relative to local authorities in 

the North. This seems to confirm the prediction that local housing markets with higher 

vacancy rates also experience higher take-up of energy efficiency measures. 

 

.Figure 2: residential vacancy rates in England. 
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To further analyse the link between the energy retrofit decision and property market 

dynamics, we conduct a simple regression analysis of the English housing market. The rate of 

investment in energy efficiency in the form of the level of cavity wall and loft insulations per 

10,000 dwellings is regressed on the local average vacancy rate as well as local average 

earnings and median local house prices. 

 

Table 3 shows the results of four separate estimations. Models 1 and 4 present the impact 

of vacancy rate defined as the percentage of rental homes that are vacant on the rate of 

investment in energy efficiency. Next, model 2 captures the effect of local earnings, a proxy 

for local and regional wealth levels, on the rate of investment in energy efficiency. Model 3, 

on the other hand, estimates the impact of local house prices on the rate of investment in 

energy efficiency. In Table 3, the rate of investment in energy efficiency appears to be 

positively linked to vacancy rates with a 1% increase in vacancies entailing a 0.5% higher 

investment rate into energy efficiency. Yet, Model 4 shows that vacancy rates are rendered 

insignificant by the inclusion of local earning levels in the regression model, possibly 

reflecting the fact that regions with the highest per capita earnings such as London and the 

South East of England also exhibit some of the lowest vacancy rates and vice versa .More 

importantly, the rate of investment in energy efficiency is found to be negatively linked to the 

level of local earnings and negatively related to house price levels. A 1% increase in local 

earnings is predicted to reduce energy efficiency measures by 1.3%. Similarly, a percentage 

increase in local house prices is found to reduce the rate of energy efficiency measures by 

0.7% 

 

Table 3: Energy efficiency measures and housing market dynamics 
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These regression estimates indicate the following relationships with regard to energy 

efficiency measures. Firstly, where house prices are low, measures such as adding loft and 

cavity wall insulation may increase the value of a house more in relative terms compared to 

higher-priced regions. Secondly, where housing markets, both owner-occupied and privately 

rented, are tight, vacancy rates will be extremely low and landlords and sellers will be 

successful even without investing in energy efficiency measures due to the general shortage 

in the marketplace. In the context of the theoretical model set out in Equation 5, tenants’ 

WTP for energy efficiency measure (μ) may be varying considerably across the UK. In 

regions where market conditions are worse, landlords and sellers have a larger incentive to 

invest at least a modest amount into energy efficiency improvements to increase the 

attractiveness of the asset compared to competing offers.  Thirdly, where wages and incomes 

are low, the potential gains from energy savings make up a larger proportion of those 

incomes compared to more affluent regions. This, in turn, acts as a further incentive for an 

energy retrofit. Finally, the UK government has been operating a subsidy scheme which 

allows all households below a certain income threshold to have certain energy efficiency 

measures such as loft and cavity wall insulation carried out for free. In regions, where a larger 

proportion of households are eligible for these subsidies, we also expect a larger uptake. For 

instance, recent case studies in Australia report that feed-in tariffs and rebates are effective 

incentive schemes for increasing the uptake of solar photovoltaic panels and water heater 

technologies (Higgins & Foliente, 2013). The uptake rate is also found to vary with socio-

demographics of consumers in different location and consumer behaviour in the presence of 

incentives (Higgins et al, 2014a and Higgins et al, 2014b). 
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6. Conclusion 

The aim of this paper is to review the extant literature on investment decisions in domestic 

energy efficiency and present a model that is both grounded in microeconomic theory and 

empirically tractable. In particular, we develop an extension to an existing microeconomic 

model that takes into account a number of crucial behavioural and property market features 

such as the split incentives problem and the ability for landlords to recoup investments in 

energy efficiency via higher rental rates. At the dwelling unit level, the proposed model treats 

each energy efficiency measure as a separate decision, for example, the decision to upgrade 

loft insulation is treated independently of the decision to install a more energy-efficient 

boiler. In practice, however, these individual measures are more likely to be undertaken 

(simultaneously or spread out over a longer period) as part of a larger bundle of energy 

efficiency upgrades. For instance, better thermal insulation may lead to lower energy 

consumption, i.e. a lower value for the energy intensity of a dwelling (mi in the theoretical 

model) and in turn a longer payback period if a new heating system is also installed. Future 

work may address the interaction and ‘packaging’ of these individual retrofit measures to 

capture the reality of energy retrofits better. 

 

Using the proposed model, it should be possible to estimate the specified model empirically 

to understand better how the observed unequal patterns in energy retrofit investment 

decisions arise. While all the mechanisms and parameters in the model presented here were 

identified in the existing literature, we are not aware of any attempt to link them together in a 

comprehensive empirical model. A major challenge towards implementing this model 

empirically is the lack of specific individual household and property level data. Yet, a number 

of private and government initiatives in various countries seek to fill this data gap. One 

promising recent dataset is the UK National Energy Efficiency Data (NEED) framework by 
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the Department of Energy and Climate Change which combines household energy 

consumption data with records of energy efficiency measures as well as dwellings and 

households obtained from a variety of sources. Further efforts are underway in Australia 

where researchers are developing a comprehensive bottom-up model that incorporates 

detailed data on the building stock in New South Wales (Foliente and Sao, 2012). To estimate 

the proposed model empirically, it will also be necessary to recover the financial and 

behavioural parameters, many of which are not readily available. This problem could 

possibly be resolved by conducting choice experimental studies utilising survey data, for 

example in order to evaluate tenants` WTP for energy saving measures. Likewise, quasi-

experimental techniques on billing data can be used to estimate the impact of cost-reducing 

synergies. Given heterogeneity of tenants and thus their WTP, both stated and revealed 

preference approaches can be used in future work to incorporate risk preferences as well as 

variations in the level of retrofits. 
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.FIGURE 1: UPTAKE OF ENERGY EFFICIENCY MEASURES (BUILDING INSULATION) AT LOCAL AUTHORITY LEVEL IN 

ENGLAND. 

 

 

 

 

 

 

 

 

 

 



 

.Figure 2: residential vacancy rates in England. 



Table 1: Overview of studies on residential energy efficiency investment decisions from several 
countries: 

Citation  Country Approach Findings  
Amstalden R.W et el 
(2007) 

Switzerland  Discounted cash flow 
method. 

Given future energy prices, efficiency 
investments are reported to be close to 
profitability even without government 
intervention. 

Galvin R &  Sunikka-Blank 
M (2012) 

Germany  Ex-ante engineering analysis 
of energy costs. 

The incorporation of energy prices 
elasticity into the analysis are found to 
reduce the net present value of the 
energy efficiency measures by 14-24 % 
and to extend the payback time by 5 
years in some cases. 

Jacobsen and Kotchen 
(2009) 

USA Payback calculation. Average private payback periods of 6.4 
years are found. 

Morrissey J (2011) Australia  Discounted cash-flow 
method. 

Significant cost savings from energy 
efficiency measures, particularly given 
higher energy prices are reported. 

Soest V & Bulte (2001) Netherlands Stochastic investment model. It is suggests that it may 
“pay” to postpone investments in 
energy saving and wait for future 
technologies. 

Tommerup H & Svendsen 
S (2006) 

Denmark  Discounted cash flow 
method. 

80% savings potential of energy used 
for space heating are found when 
buildings are retrofitted. 

Y. Heo et al (2012) UK Probabilistic methodology.  The study suggests probabilistic outputs 
can be used to estimate risks of under-
performance associated with retrofit 
interventions. 

Yau, Y. (2012) Hong Kong A survey approach to assess 
willingness to pay for eco-
labels. 

The study finds that less than half of 
231 respondents are willing to pay 
more for a new eco-labelled apartment 
than for its non-labelled counterpart. 
The number of “willing” Respondents’ 
household income and environmental 
attitude is positively associated with 
willingness to pay but very few 
respondents are willing to pay for the 
highest level of eco-certification. 

Zavadskas et al (2008) Lithuania Multiple criteria assessment.  Green retrofit is found to improve the 
general condition of the building 
structure and to extend the economic 
and physical lifetime of a building. 

 

 

 

 

 

 

Table 2: Regional house prices  



Region House prices (£)  

North East 117,313 
North West 126,716 
Yorkshire & the Humber 140,069 
East Midlands 140,776 
West Midlands 151,610 
South West 194,739 
East of England 196,361 
South East 232,294 
London 321,924 
England  average 180,200 

Source: DECC 

 

 

 

Table 3: Energy efficiency measures and housing market dynamics 

 Model 1 Model 2 Model 3 Model 4 
 ln_building insulation ln_building insulation ln_building insulation ln_building insulation 
Log of Vacancy rate 0.47***   0.09 
 (6.08)   (0.82) 
     
Log of local earnings  -1.346***  -1.254*** 
  (-9.41)  (-4.66) 
     
Log of local house price   -0.720***  
   (-11.92)  
     
Constant 8.70*** 15.12*** 15.73*** 14.89*** 
 (31.94) (17.60) (21.55) (11.08) 
N 325 325 325 325 
R2 0.088 0.215 0.305 0.216 
adj. R2 0.087 0.213 0.303 0.211 

     
t-statistics are indicated in brackets. Significance at the 0.10, 0.05, and 0.01 levels are marked *, **, and *** 

respectively.    
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.APPENDIX 1: LOFT INSULATION AT A LOCAL AUTHORITY LEVEL IN ENGLAND. 

 

 

 

 

 

 

 

 

 

 

 

 



 

.APPENDIX 2: CAVITY WALL INSULATION AT A LOCAL AUTHORITY LEVEL IN ENGLAND. 
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