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Abstract: 16 

Abnormal fetal testis development has been proposed to underlie common disorders of the male reproductive 17 

system such as cryptorchidism, hypospadias, reduced semen quality and testicular germ cell tumour, which 18 

are regarded as components of a ‘testicular dysgenesis syndrome’. The increasing trends and geographical 19 

variation in their incidence have been suggested to result from in utero exposure to environmental chemicals 20 

acting as endocrine disruptors. In rodents, the anogenital distance (AGD), measured from the anus to the base 21 

of genital tubercle, is a sensitive biomarker of androgen exposure during a critical embryonic window of testis 22 

development. In humans, several epidemiological studies have shown alterations in AGD associated with 23 

prenatal exposure to several chemicals with potential endocrine disrupting activity. However, the link between 24 

AGD and androgen exposure in humans is not well defined. This review focuses on the current evidence for 25 

such a relationship. As in rodents, a clear gender difference is detected during fetal development of the AGD 26 

in humans which is maintained thereafter. Reduced AGD in association with clinically relevant outcomes of 27 

potential environmental exposures, such as cryptorchidism or hypospadias, is in keeping with AGD as a 28 

marker of fetal testicular function. Furthermore, AGD may reflect variations in prenatal androgen exposure in 29 

healthy children as shorter AGD at birth is associated with reduced masculine play behaviour in preschool 30 

boys. Several studies provide evidence linking shorter AGD with lower fertility, semen quality and 31 

testosterone levels in selected groups of adults attending andrology clinics. Overall, the observational data in 32 

humans are consistent with experimental studies in animals and support the use of AGD as a biomarker of 33 

fetal androgen exposure. Future studies evaluating AGD in relation to reproductive hormones in both infants 34 

and adults, and to gene polymorphisms, will help to further delineate the effect of prenatal and postnatal 35 

androgen exposures on AGD.   36 
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Introduction: 37 

Links between disorders of male reproductive system, such as reduced semen quality and testicular germ cell 38 

tumour (TGCC), as well as genital abnormalities at birth, such as cryptorchidism and hypospadias, are well 39 

established (Skakkebaek et al., 2001). These observations led to the hypothesis of ‘testicular dysgenesis 40 

syndrome’ (TDS) which proposes that abnormal testis development during fetal life is an important 41 

mechanism underlying common disorders of the male reproductive tract which manifest during infancy or 42 

adult life (Skakkebaek et al., 2001). Experimental animal studies, which used anti-androgens to alter fetal 43 

testis development, provide a compelling model to support the hypothesis (Dean and Sharpe, 2013). Although 44 

TGCC, one component of TDS, has not been replicated in animal models, this is perhaps due to species 45 

specificity (Juul et al., 2014). Rare disorders of sex development (DSD) due to a primary defect in testis 46 

determination, androgen secretion or androgen action manifest phenotypic features of TDS, supporting the 47 

relevance of the TDS model in humans (Hughes et al., 2007). The early origins of male reproductive disorders 48 

hypothesis is of relevance to public health as environmental exposure to potential endocrine disruptors in 49 

utero have been proposed to explain the increasing trends in the incidence and their marked geographical 50 

variation (Acerini and Hughes, 2006; Hauser et al., 2015). Estimating the burden of prenatal exposure to 51 

potential endocrine disruptors is a challenge, as congenital disorders of the male reproductive tract are 52 

relatively rare and disturbed reproductive function is likely to manifest a long time after the chemical 53 

exposure. In economic terms, an estimated annual cost to the European Union of 15 billion Euro has been 54 

calculated for the consequences of male reproductive disorders (e.g., treatments for infertility, orchidopexies, 55 

testis cancer) using the ‘Intergovernmental Panel on Climate Change’ weight-of-evidence characterization 56 

model for probability of causation (Hauser et al., 2015). 57 

 58 

The anogenital distance (AGD) measured from the anus to the genital tubercle is a sensitive biomarker of 59 

prenatal androgen action in animals (McIntyre et al., 2001; Mylchreest et al., 2000; Wolf et al., 2004). AGD 60 

signifies perineal growth and androgen-dependent caudal migration of the genital tubercle in rodents 61 

(Bowman et al., 2003). It is influenced by exposure to anti-androgens during a critical period of testis 62 

development known as the ‘masculinisation programming window’ (MPW) (van den Driesche et al., 2012; 63 

Welsh et al., 2008). Consequently, measurement of AGD has been used to study the effects of prenatal 64 
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exposure to a variety of chemicals with potential endocrine disrupting activity. Several epidemiological 65 

studies have shown reduced AGD in association with exposure to phthalates (Adibi et al., 2015; Bornehag et 66 

al., 2015; Suzuki et al., 2012; Swan et al., 2005), dioxins (Vafeiadi et al., 2013), bisphenol A (Miao et al., 67 

2011) and high fat diet (Papadopoulou et al., 2013), the latter indicative of organic pollutant exposure. It is not 68 

possible to conduct experimental toxicological studies in humans and therefore, the evidence for a causal 69 

effect of prenatal androgen exposure on AGD in humans is indirect (Welsh et al., 2007). This review focuses 70 

on the evidence linking AGD and androgen exposure in humans. 71 

 72 

Physiological aspects of androgen exposure in the male  73 

Leydig cells differentiate at approximately 8 weeks of gestation and secrete testosterone to mediate 74 

differentiation of the internal and external genitalia (Grinspon et al., 2014). Testosterone production is initially 75 

regulated during the first trimester by human chorionic gonadotrophin (hCG), which reaches a peak 76 

concentration at 12-17 weeks and subsequently declines (Cole, 2010). Development of the male genitalia is 77 

completed by 14-16 weeks (Grinspon et al., 2014; Welsh et al., 2008). Fetal luteinising hormone (LH) 78 

regulates testosterone secretion from the second trimester which induces further growth of the phallus and 79 

scrotum, and together with insulin-like factor 3 ( INSL-3), promotes testis descent (Asa et al., 1991; Bay et al., 80 

2007). After a surge of LH and testosterone secretion following delivery, testosterone levels decline in the 81 

first week of life (Corbier et al., 1990). Further activation of the hypothalamic-pituitary-gonadal axis known 82 

as the mini-puberty, starts at the end of the first week, peaking at 1-3 months of age before declining to low or 83 

undetectable levels by 6 months of age (Bergada et al., 2006; Forest et al., 1974; Kuiri-Hanninen et al., 2014). 84 

Subsequently, the axis remains quiescent until the onset of puberty. The observation of a MPW in the rat 85 

(equivalent to 8-14 weeks of gestation in the human) suggests that alterations in androgen action during a 86 

critical window of fetal development results in TDS and permanent changes in AGD (Welsh et al., 2008).  87 

 88 

Definition and measurement methods 89 

In rodents, AGD is measured from the anus to the posterior base of the genital tubercle (Gallavan et al., 1999). 90 

In contrast to rodents, the external genitalia are well developed at birth in humans with the genital tubercle 91 

transformed into the penis in males and clitoris in females. Investigators have used different landmarks to 92 
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measure AGD in humans to replicate the measurement in rodents. In males, AGD has been measured from the 93 

anus to the perineoscrotal junction (anoscrotal distance) (Salazar-Martinez et al., 2004), to the posterior base 94 

or to the anterior base of the penis (Hsieh et al., 2008) (Fig.1). Measurements in females use the distance from 95 

the anus to the anterior fourchette (anofourchettal distance) (Salazar-Martinez et al., 2004) or to the base of 96 

the clitoris (anoclitoral distance) (Liu et al., 2014). The method described by Salazar-Martinez et al. is 97 

commonly used; it is more reliable and has a lower inter-observer variability (Dean and Sharpe, 2013; 98 

Papadopoulou et al., 2013; Salazar-Martinez et al., 2004). In this review, the term AGD describes ‘anoscrotal 99 

distance’ in males and ‘anofourchettal distance’ in females unless otherwise stated (Salazar-Martinez et al., 100 

2004). Although AGD has been widely used as a marker of potential endocrine disruption in utero, its 101 

limitations include a lack of standardisation of methodology and information on reproducibility (Table-1) and 102 

insufficient data on normative references, including ethnic differences (Dean and Sharpe, 2013). AGD is 103 

associated with birth weight to a varying degree depending on the population studied (regression coefficient 104 

adjusted for gestation ranges from 1.5 to 3.0 mm/kg) (Papadopoulou et al., 2013; Romano-Riquer et al., 2007; 105 

Salazar-Martinez et al., 2004) and there is no consensus for adjusting AGD for the variations in body size. In 106 

addition, low birth weight is itself a risk factor for TDS as it is associated with hypospadias, cryptorchidism, 107 

male infertility and TGCC (Francois et al., 1997; Juul et al., 2014; Michos et al., 2007; Toppari et al., 2010).  108 

 109 

Fig. 1 110 

Table -1 111 

 112 

Associations between AGD, gender and age in healthy individuals 113 

The AGD in rodents is approximately twice as long in males compared to females, and is routinely used to 114 

determine sex (Dean and Sharpe, 2013). We and others have reported that AGD is also sexually dimorphic in 115 

humans and displays a similar relative magnitude of difference (male: female ratio ranges from 1.4:1 to 2.2:1) 116 

(Table-1) (Huang et al., 2008; Papadopoulou et al., 2013; Salazar-Martinez et al., 2004; Sathyanarayana et al., 117 

2010; Sathyanarayana et al., 2015; Thankamony et al., 2009). The sexual dimorphism is already present by 118 

gestation 11-13 weeks based on fetal imaging and, by weeks 17-20, it is of the same magnitude as that 119 

Page 5 of 22 Andrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

6 

 

observed at birth, with a male: female ratio of 2:1 (Fowler et al., 2011). The latter time point corresponds to 120 

the completion of differentiation of the external genitalia in humans (Welsh et al., 2008).  121 

A large cohort (n=925) from the Cambridge Birth Growth Study (CBGS) had AGD measurements performed 122 

at birth and at ages 3, 12, 18 and 24 months (Thankamony et al., 2009). AGD increased rapidly during the first 123 

3 months and plateaued after 1 year of age (Fig. 2). Using longitudinal and cross-sectional data from two birth 124 

cohorts in Greece and Spain, Papadopoulou et al. confirmed this pattern of growth. The sex dimorphism was 125 

maintained throughout to a similar degree to that observed at birth (male: female ratio; at birth, 2.2:1; age 24 126 

months; 2.3:1) (Thankamony et al., 2009). The similar proportional increase in AGD in boys and girls during 127 

the first two years suggests the growth of perineum in proportion to overall body size. However, the period of 128 

rapid increase in AGD and penile length during the first three months of life corresponds to the mini-puberty 129 

(Kurtoglu and Bastug, 2014). We also found a modest association between increments in AGD and penile 130 

length during this period independent of the changes in body size, suggesting the postnatal surge in 131 

testosterone production may also contribute to changes in AGD (Thankamony et al., 2009). A positive 132 

association has been found between penile growth and serum testosterone levels during the first three months 133 

of life (Boas et al., 2006). This observation, coupled with animal data showing changes in AGD when 134 

postnatal androgen exposure is altered (Mitchell et al., 2015), supports the hypothesis that the mini-puberty 135 

plays a part in postnatal AGD development. Further studies are needed to delineate mini-puberty and its AGD 136 

component using detailed anthropometry, as well as more frequent hormone measurements which may require 137 

novel methods such as dried blood spot analytical technology (McDade et al., 2007).  138 

 139 

Fig. 2 140 

 141 

Longitudinal data for AGD measurements from infancy to adulthood are not available. However, cross-142 

sectional data in young adults show that large increases occur in later life and sexual dimorphism is 143 

maintained to a lesser degree (ranges; males, 48.3 - 51.3 mm; females, 34.8 - 37.7 mm; male: female ratio 144 

calculated from the means from different studies, 1.4:1) (Lee et al., 2015; Mendiola et al., 2012; Mendiola et 145 

al., 2011; Parra et al., 2015). When these changes occur is not known. We speculate that large increases in 146 

AGD occur during puberty in association with the development of the external genitalia. AGD remain 147 
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unchanged in adult males, however, there are data to suggest that AGD decreases in females following the 148 

menopause (Eisenberg et al., 2013; Lee et al., 2015). 149 

 150 

Cryptorchidism and hypospadias 151 

Cryptorchidism and hypospadias are the most common genital anomalies at birth with incidences of 2-9% and 152 

0.2-1%, respectively, and provide an important outcome for studies of prenatal exposure to endocrine 153 

disrupting chemicals (Toppari et al., 2010). Establishing the relationship between AGD and congenital 154 

anomalies of the male reproductive tract at birth is key to determining whether AGD has a role as a biomarker 155 

of such prenatal exposure (Thankamony et al., 2014). A cross-sectional population study reported that boys 156 

with cryptorchidism have a shorter age-adjusted ‘anogenital index’ (a derivative of AGD adjusted for weight) 157 

(Swan et al., 2005). In boys undergoing surgery for hypospadias (n=26), AGD was measured under 158 

anaesthesia and found to be shorter compared with age-matched controls who had other urological conditions 159 

(Hsieh et al., 2012). In a larger study, we compared boys aged up to two years with cryptorchidism (n=71) or 160 

hypospadias (n=81) referred for surgical treatment with healthy controls from a birth cohort (n=482) by 161 

deriving age-specific standard deviation scores (SDS) of AGD and penile length (Thankamony et al., 2014). 162 

AGD measurements in boys with cryptorchidism (-0.48 SDS) or hypospadias (-0.90 SDS) were significantly 163 

lower compared with healthy controls (+0.03 SDS) (Fig. 3 & 4). They also had a shorter penile length 164 

(cryptorchidism, -0.35 SDS; hypospadias, -1.34 SDS) compared with healthy boys (-0.02 SDS). Boys with 165 

hypospadias also had smaller overall body size than controls, consistent with the well-documented prevalence 166 

of low birth weight in idiopathic hypospadias (Jensen et al., 2012). However, the reduction in AGD and penile 167 

length persisted following adjustment for body size in a multiple regression model. The observations of 168 

reduced AGD have also been reported in a large population-based study (boys with cryptorchidism, n=51; 169 

controls, n=534) from India involving consecutively born term male neonates evaluated at birth (Jain and 170 

Singal, 2013).  171 

 172 

Fig. 3 173 

Fig. 4 174 

 175 
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Hypospadias and cryptorchidism are relevant clinical disorders to evaluate the possible role of endocrine 176 

disruption, for which there is ample evidence from animal studies (van den Driesche et al., 2012; Welsh et al., 177 

2008). The evidence to support a link between these disorders and altered testis function in utero in humans 178 

relies on epidemiological studies (Toppari et al., 2010). These common disorders are sometimes the 179 

manifestations of rare, but, well-defined disorders of androgen production or action such as androgen receptor 180 

mutations. However, in the majority of cases the cause is unknown (Toppari et al., 2010). The link between 181 

reduced semen quality and TGCC (Skakkebaek et al., 2001), and the association between cryptorchidism and 182 

lower INSL3 or higher gonadotrophin levels (Bay et al., 2007; Suomi et al., 2006), attest to underlying testis 183 

dysfunction. Cryptorchidism is considered to be the result of a milder defect in androgen function as most of 184 

the cases are due to impaired inguinoscrotal descent which normally occurs between 26 and 40 weeks of 185 

gestation, compared with hypospadias which occurs earlier during the MPW (between 8 and 20 weeks) 186 

(Thorup et al., 2010). Reported trends towards a shorter AGD and penile length with increasing severity of 187 

hypospadias (Thankamony et al., 2014), and higher testis position in cryptorchidism (Jain and Singal, 2013), 188 

further suggest that AGD is a marker of the severity of impairments in androgen production. It is now 189 

recognised that approximately half of all cases of cryptorchidism are “acquired” (i.e. following normal 190 

positioning of the testes at birth), hitherto referred to as ‘the ascending testis’ (Hack et al., 2012). It is possible 191 

that this form of cryptorchidism may be associated with suboptimal testosterone production during mini-192 

puberty (Acerini et al., 2009; Wohlfahrt-Veje et al., 2009). Larger studies of boys with cryptorchidism may 193 

indicate whether AGD measurements sub-divided according to congenital versus acquired forms reflect 194 

altered androgen action occurring in utero or during the early postnatal period.  195 

 196 

Gender-typical behaviour 197 

A relationship between prenatal androgen exposure and gender-related behaviour is well established in 198 

animals and humans (Hines et al., 2015). The evidence to support this in humans is mainly derived from 199 

studies of girls with congenital adrenal hyperplasia (CAH) who have been exposed to higher androgen levels 200 

during intrauterine life. Females with CAH show greater preference for boys’ toys and activities during 201 

childhood, have lower heterosexual orientation and are less feminine in their gender identity (Berenbaum and 202 

Hines, 1992; Hines et al., 2004; Pasterski et al., 2011; Pasterski et al., 2007; Pasterski et al., 2005). In 203 
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addition, androgen production during early infancy, as measured by urinary testosterone levels, is related to 204 

increased masculine play behaviour in healthy boys at 14 months of age (Lamminmaki et al., 2012). It is not 205 

clear, however, whether the observation is solely related to postnatal androgen exposure. We studied gender-206 

typed play behavior in healthy boys at age 3-4 years (n=81) in relation to longitudinal measurements of AGD 207 

and penile length during their first two years of life (Pasterski et al., 2015). Gender- related play behaviour 208 

was evaluated using the ‘Preschool Activities Inventory’ which consists of a validated 24-item parent 209 

questionnaire that assesses gender-typed toy and activity preferences (Golombok and Rust, 1993). Both AGD 210 

at birth, and penile growth during the first 3 months of life, independently predicted masculine behavior in a 211 

regression model controlling for overall changes in body size. As expected, AGD was not related to gender 212 

type play behaviour in girls. These findings provide evidence that AGD in healthy boys at birth reflects 213 

prenatal androgen exposure, whereas the rate of penile growth in early infancy reflects more the effect of early 214 

postnatal androgen exposure during mini-puberty. Taken together, both parameters have potential use as 215 

biomarkers of endocrine disruption during pre- and early post-natal development.  216 

 217 

Disorders of sex development (DSD) 218 

Disorders of sex development are defined as congenital conditions in which development of chromosomal, 219 

gonadal, or anatomical sex is atypical and include several disorders with well-defined alterations in production 220 

or action of sex steroids (Hughes et al., 2006). Although such presentations provide opportunities to study 221 

AGD as part of a phenotype, there are difficulties in identifying the landmarks for measurement of AGD, 222 

particularly in the in severe forms where there are genital ambiguities. An increased AGD has been reported 223 

in a small study of girls with CAH (Callegari et al., 1987). The complete form of androgen insensitivity 224 

syndrome (CAIS) is an example of XY sex reversal due to mutations in the androgen receptor gene resulting 225 

in resistance to androgen action (Hughes et al., 2012). As expected, an androgen receptor knock-out mouse 226 

model (the ARKO mouse) showed a female phenotype in ARKO males, including AGD similar to female 227 

mice (Yeh et al., 2002). No data are available for AGD in women with CAIS using the commonly used 228 

method of measurement discussed in this review. However, in a heterogenous group of 19 women with a 229 

clinical diagnosis of CAIS examined during a routine clinic visit, clitoral length was reduced but the clitoral to 230 

urethral distance (measured from the base of the clitoris to the anterior aspect of the external urethral meatus) 231 
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was similar to a control group of women undergoing a gynaecological examination under anaesthesia (Crouch 232 

et al., 2011). It is not clear whether the segment of perineum represented by this measurement truly reflects 233 

the AGD parameter which is accepted as being androgen dependent in both animal models and humans. 234 

Studies are required in the partial form of androgen insensitivity syndrome (PAIS) or hypogonadotrophic 235 

hypogonadism (where impaired androgen production occurs in late gestation) to determine if these, and other 236 

examples of DSD, provide information on assessing AGD as a quantitative measure of prenatal androgen 237 

exposure. Female rhesus monkeys exposed to androgens early in gestation exhibited hyperandrogenism, 238 

oligomenorrhea, large polyfollicular ovaries and other features consistent with the polycystic ovarian disease 239 

(PCOS) phenotype seen in humans (Abbott et al., 2005). The effects of such exposure in utero to higher 240 

androgens on AGD in female offspring of mothers with conditions such as CAH or PCOS merit study. A 241 

cross-sectional study of healthy young women showed greater follicular numbers were associated with longer 242 

AGD which, in turn, was also positively associated with higher serum testosterone levels (Mendiola et al., 243 

2012; Mira-Escolano et al., 2014). 244 

 245 

Testis function in adults and AGD 246 

Evidence has been accumulating in several countries since it was first reported that sperm quality in men is in 247 

decline (Carlsen et al., 1992). Impaired semen quality, an important marker of testis function and component 248 

of TDS, is now reported in up to 20% of otherwise healthy young men (Andersson et al., 2008; Jorgensen et 249 

al., 2006). Shorter AGD is associated with lower sperm concentration, total sperm count, sperm motility and 250 

also testosterone levels in men attending andrology clinics (Eisenberg et al., 2011; Eisenberg and Lipshultz, 251 

2015; Eisenberg et al., 2012; Mendiola et al., 2015). While a longer AGD is associated with a higher sperm 252 

count and better semen quality, the strength of association is insufficient to predict male fertility in an 253 

individual (Eisenberg and Lipshultz, 2015). A short AGD does distinguish men with non-obstructive causes of 254 

azoospermia (which is associated with TDS) from those with obstructive azoospermia (Eisenberg et al., 2012). 255 

These findings lend support for AGD as a biomarker for TDS and testis function in selected populations, but, 256 

few studies have explored the link between AGD and the larger range in testis size and semen quality in 257 

healthy males. A shorter AGD in association with lower semen quality has been reported in a US study of 258 

healthy young men (Mendiola et al., 2011); however, the results were not replicated in a similar study 259 
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conducted in Spanish population (Parra et al., 2015). Report of a lower AGD measured from the anus to the 260 

anterior penile base in patients with prostate cancer compared to men with other causes of lower urinary tract 261 

symptoms (Castaño-Vinyals et al., 2012) suggest a possible link between alterations in the androgen-262 

dependent fetal development of prostate (Wilson, 2011) and the cancer risk. However, anoscrotal distances 263 

were not different, and the findings of this small study need to be confirmed in future studies.  264 

 265 

Although testis function is a key component of TDS, it relationship with AGD in adults is somewhat 266 

conflicting. Whereas studies in selected groups of men attending andrology clinics showed consistent 267 

associations between shorter AGD and lower semen quality or testosterone levels (Eisenberg et al., 2011; 268 

Eisenberg and Lipshultz, 2015; Eisenberg et al., 2012; Mendiola et al., 2015), these relations were inconsistent 269 

in healthy men with only one of the two studies showing an association with semen quality and none showed a 270 

relationship with testosterone levels (Mendiola et al., 2011; Parra et al., 2015). We speculate that the link 271 

between AGD and testis function is more robust in adults at the lower end of the distribution of reproductive 272 

health (possibly reflecting a high prevalence of testicular dysgenesis) compared to healthy men.  273 

 274 

Genetic variations and AGD 275 

As previously discussed, establishing a direct link between prenatal androgen exposure and AGD is difficult 276 

in humans, and the current evidence has relied mainly on data from observational epidemiological studies. 277 

Novel study designs using genes as instruments for causal inferences (i.e., Mendelian Randomisation) as has 278 

been applied to the study of cardiovascular disease (Thanassoulis, 2013) could provide additional strength to 279 

the evidence linking AGD and androgen exposure. Gene polymorphisms associated with TGCC, testosterone 280 

levels and male fertility and based on large genome-wide association studies (GWAS) are now available and 281 

may provide suitable instruments to test this hypothesis (Kosova et al., 2012; Litchfield et al., 2015; Ruth et 282 

al., 2015). A similar approach on the basis of candidate gene analysis has found a variant in the estrogen 283 

receptor alpha gene (ESR1) associated with shorter AGD (Sathyanarayana et al., 2012). Polymorphisms in 284 

ESR1 are associated with hypospadias, male infertility and alterations in semen parameters (Ban et al., 2008; 285 

Safarinejad et al., 2010). Measurement of the number of CAG repeats in the androgen receptor gene (AR) in a 286 

cohort of adult males attending a urology clinic showed that increased CAG lengths were associated with 287 
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shorter AGD when the data were analysed in a stratified model (Eisenberg et al., 2013), but this finding was 288 

not replicated in another study (Sathyanarayana et al., 2012). There is an inverse association between the 289 

length of the CAG repeats and transcriptional activity of the androgen receptor as measured in vitro 290 

(Chamberlain et al., 1994), and when studied in relation to sperm quality, longer CAG repeats were associated 291 

with reduced sperm quality in some studies (Milatiner et al., 2004; Wallerand et al., 2001) but not in others 292 

(Dadze et al., 2000; Singh et al., 2006).  293 

 294 

Conclusion 295 

 There is considerable observational evidence in humans that supports a link between AGD and exposure to 296 

androgens during fetal life. The findings are consistent with animal data that show a critical MPW during fetal 297 

male sex development and the programming of AGD. A plethora of studies are now reporting population data 298 

for AGD and applying the methods to assess testicular function and androgen action across a wide range of 299 

clinical disorders. AGD also appears to be a valid biomarker to assess the effects of an adverse environment 300 

on human reproductive development from fetal to adult life. Gathering such information will rely on 301 

epidemiological studies of birth cohorts followed longitudinally with detailed anthropometric measurements 302 

and analysis of targeted chemicals in appropriate biological samples.  303 
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Table-1 Normative data for anogenital Distance (mm) at birth showing gender differences 

 

 

Means±SD or medians (range); The measurements correspond to the anoscrotal distance in boys and 

anofourchettal distance in girls. * studies reporting measurements in both genders at birth are included in the 

table 

Reference* Country n Male Female 
Male: Female 

Ratio 

Salazar-Martinez et al., 2004 Mexico 87 21±3 11±2 1.9 

Thankamony et al., 2009 UK 564 19.8±6.1 9.1±2.8 2.2 

Huang et al., 2009 Taiwan 65 23 (10-36) 16 (7-23) 1.4 

Sathyanarayana et al., 2010 USA 169 23±4 15±3 1.5 

Papadopoulou et al., 2013 Greece 165 27.1±4.4 14.4±3.0 1.9 

Papadopoulou et al., 2013 Spain 187 23.6±5.1 13.8±2.5 1.7 

Sathyanarayana et al., 2015 USA 758 24.7±4.5 16.0±3.2 1.5 
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Fig. 2 Longitudinal measurements of AGD in males (n=463) and females (n=426) from birth to 2 years of 
age. Data presented as means and error bars represent 95% Confidence Intervals. Reproduced with 

permission from EHP (Thankamony et al., 2009).  
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