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ABSTRACT 25 

 26 

The VanR/VanS two-component system is responsible for inducing resistance to glycopeptide 27 

antibiotics in various bacteria. We have performed a comparative study of the VanR/VanS systems 28 

from two streptomyces strains, Streptomyces coelicolor and Streptomyces toyocaensis, to characterize 29 

how the two proteins cooperate for signalling the presence of antibiotics and to define the functional 30 

nature of each protein in each strain background. The results indicate that the glycopeptide antibiotic 31 

inducer specificity is determined solely by the differences between the amino acid sequences of the 32 

VanR/VanS two-component systems present in each strain rather than by any inherent differences in 33 

general cell properties, including cell wall structure and biosynthesis. VanRsc functioned with either 34 

sensor kinase partner while VanRst only functioned with its cognate partner, VanSst. In contrast to 35 

VanRsc which is known to be capable of phosphorylation by acetyl phosphate, VanRst could not be 36 

activated in vivo independently of a VanS sensor kinase. A series of amino acid sequence 37 

modifications changing residues in the N-terminal receiver (REC) domain of VanRst to the 38 

corresponding residues present in VanRsc failed to create a protein capable of being activated by 39 

VanSsc and suggests that interaction of the response regulator with its cognate sensor kinase may 40 

require a more extended region than the REC domain. A T69S amino acid substitution in the REC 41 

domain of VanRst produced a strain exhibiting a weak constitutive resistance indicating that this 42 

particular amino acid may play a key role for VanS independent phoshphorylation in the response 43 

regulator protein.  44 

 45 

 46 

 47 

 48 
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 49 

INTRODUCTION 50 

 51 

Ever since the first clinical isolates of pathogenic strains of vancomycin-resistant Enterococci (VRE) 52 

appeared in the late 1980s (1), the spread of vancomycin resistance through bacterial populations has 53 

been an acute public health issue, highlighted by the emergence of vancomycin-resistant MRSA 54 

(VRSA) in hospitals (2). Vancomycin inhibits cell wall biosynthesis by binding to the D-alanyl-D-55 

alanine (D-Ala-D-Ala) terminus of lipid-attached peptidoglycan (PG) precursors on the outside of the 56 

cytoplasmic membrane. This interaction blocks formation of mature PG, principally by denying 57 

transpeptidase enzymes access to their substrate and thereby preventing formation of the peptide cross-58 

links between polysaccharide strands that give the cell wall its rigidity (3). However, reprogramming of 59 

cell wall biosynthesis such that the ‘stem’ pentapeptide of PG precursors terminates in D-alanyl-D-60 

lactate (D-Ala-D-Lac), rather than in D-Ala-D-Ala, can escape the action of vancomycin since the 61 

binding affinity of the drug for the new precursors is significantly lower than for the original precursors 62 

(4-6). Reprogramming can be achieved via expression of dedicated glycopeptide antibiotic resistance 63 

gene clusters minimally consisting of a ‘core’ of five genes – vanR, vanS, vanH, vanA and vanX. The 64 

polycistronic operon, vanHAX, encodes VanH, VanA and VanX enzymes which are required for 65 

remodelling cell wall precursors, and transcriptional induction of vanHAX is normally regulated by the 66 

VanR/VanS two-component system (TCS) which is encoded by the dicistronic operon vanRS (7, 8).  67 

TCSs are the most dominant type of signal transduction pathway found in prokaryotes and play an 68 

important role in the regulation of metabolism in response to different nutritional or environmental 69 

signals. At their simplest, TCS consist of a pair of sensor histidine kinase (SHK) and response regulator 70 

(RR) proteins. The SHK responds to a specific inducer signal by modifying the phosphorylation state 71 

of the cognate RR. The N-terminus of the SHK can be diverse but usually contains a sensory or ‘input’ 72 
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domain which responds to changes in environmental stimuli. The C-terminus cytoplasmic kinase of the 73 

SHK, usually known as a transmitter domain, contains two distinct sub-domains: (i) a well-conserved 74 

catalytic and ATP binding domain; and (ii) a less well-conserved dimerization and histidine 75 

phosphotransfer domain (9-11). The N-terminal part of the RR plays a role in phosphotransfer and 76 

possesses a phosphorylation pocket containing three conserved aspartate residues and one lysine 77 

residue. Phosphorylation of a conserved aspartate within the phosphorylation pocket by the SHK, or 78 

potentially also by intracellular phosphor donors such as acetyl phosphate, induces a conformational 79 

change in the RR thereby activating the C-terminal DNA-binding effector domain (DBED), typically 80 

converting the RR into an active transcription activator (12). On exposure to vancomycin, VanS is 81 

autophosphorylated using ATP at a conserved C-terminal histidine residue and the phosphoryl group is 82 

then transferred to a conserved aspartate in the N-terminus of its cognate RR, VanR (13). Phospho-83 

VanR has an enhanced C-terminal DBED DNA-binding activity and thereby triggers transcription of 84 

the vanHAX genes and confers resistance to vancomycin. Null mutation of the vanR gene consequently 85 

always produces a glycopeptide antibiotic sensitive phenotype, and the level of vancomycin resistance 86 

correlates with the expression of the vanHAX genes.  87 

Resistance to vancomycin and other glycopeptide antibiotics has typically been identified in pathogenic 88 

bacteria or in non-pathogenic glycopeptide-producing strains. The resistance gene clusters in 89 

glycopeptide-producing bacteria are associated with the glycopeptide biosynthetic gene cluster (14-22). 90 

The model actinomycete Streptomyces coelicolor is a non-pathogenic, non-glycopeptide producing 91 

strain possessing inducible, high level resistance to vancomycin via expression of a cluster of seven 92 

resistance genes vanSRJKHAX (Fig. 1A). This cluster is organized into four transcription units (vanRS, 93 

vanJ, vanK and vanHAX) which are all under the control of the VanR/VanS two-component system 94 

(defined throughout the following text as VanRsc and VanSsc) (23). The role of all genes in this cluster 95 

in conferring vancomycin resistance has been characterized in detail (24-30). On exposure of S. 96 
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coelicolor to vancomycin, VanSsc switches from a phosphatase activity to functioning as a kinase and 97 

the resulting increase in abundance of phospho-VanRsc activates transcription from the van promoters 98 

thereby inducing vancomycin resistance (25, 26). In the absence of inducer drug the RR VanRsc is 99 

activated by the intracellular small molecule phosphodonor acetyl phosphate, but the phosphatase 100 

activity of VanSsc acts to suppress the level of phospho-VanR and prevent expression of the resistance 101 

genes (Fig. 1A). A S. coelicolor vanSsc deletion mutant consequently constitutively expresses the van 102 

genes (25). In addition to S. coelicolor, glycopeptide resistance has been explored in several other 103 

actinomycetes including Streptomyces toyocaensis. S. toyocaensis produces a “sugarless” glycopeptide 104 

A47934 and the resistance genes in this organism are associated with the A47934 biosynthetic cluster 105 

(14). From a total of 34 open reading frames identified in the A47934 cluster, 8 genes (vanSst, vanRst, 106 

vanHst, vanAst, vanXst, murX, staP and staQ (the "st" label is used throughout the following text to 107 

indicate sequences originating in S. toyocaensis)) are predicted to be involved in A47934 resistance 108 

(Fig 1B) (14), but molecular genetic studies to understand the biological function of each gene has to 109 

date not been attempted.  110 

In this work, we use a combinatorial vanRS gene swapping approach to investigate the distinctive 111 

biological role of the individual VanR and VanS protein components in relation to the differences in 112 

glycopeptide inducer specificity present in S. coelicolor and S. toyocaensis. We discuss the insight the 113 

results provide into the mechanisms directing the immediate response to glycopeptide antibiotics 114 

involving sensing by VanS and transduction of the signal from VanS to VanR.  115 

 116 

MATERIALS AND METHODS 117 

 118 

Antibiotics, bacterial strains and culture conditions.  119 
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Plasmids and bacterial strains used for this study are listed in Table 1. Except where described here, 120 

media and culture conditions were as given previously (31, 32). Vancomycin and teicoplanin solutions 121 

were made from commercially available antibiotic powder (Sigma-Aldrich) and used for all bioassays. 122 

For bioassays performed using A47934, a neutralized NH4OH extract solution of A47934 was prepared 123 

from the producer strain S. toyocaensis as described previously (19). No glycopeptide antibiotics were 124 

included in any precultures used in any of the experiments. 125 

 126 

Construction of vectors  127 

All vectors constructed are listed in Table 1, and primer sequences used in their construction are given 128 

in Table S1. To construct pGN073, a 3.5kb DNA fragment containing the vanRSsc genes and its native 129 

promoter sequence (p-vanRSsc) was obtained by PvuII digestion of S. coelicolor cosmid H66 then 130 

ligated into the EcoRV site of pMS81 (33). A similar 3 kb DNA fragment containing the vanRSst genes 131 

with its own promoter sequence (p-vanRSst) was obtained by SacI digestion of S. toyocaensis cosmid 132 

pCep5 (14) and blunt-ended by DNA Polymerase I reaction. It was then cloned into pMS81 cut with 133 

PvuII to create pHJH2000. pGN067 harboring the vanRsc gene with its own promoter sequence (p-134 

vanRsc) was prepared using the In-Fusion PCR cloning system (Clontech). In order to construct 135 

pGN067, a KpnI/NdeI fragment containing the ermE promoter sequence in pHJH2001 was replaced by 136 

a PCR product amplified using primers pRsc IF PvuII F and pRsc IF R. The vanRst gene including its 137 

own promoter (p-vanRst) was amplified by PCR using primers vanRst I and vanRst II then cloned into 138 

the vector pGEM-T easy (Promega) to create pHJH2002. After verification of the sequence, a 1.1 kb 139 

DNA fragment of p-vanRst was obtained from pHJH2002 by SpeI/PvuII digestion and ligated into the 140 

SpeI-PvuII sites of pMS81 to create pHJH2003. The vanSsc gene was obtained by PCR amplification 141 

using primers vanSFOR and vanSREV, cloned into pGEM-T easy and verified by sequencing prior to 142 

restriction digestion. The resulting plasmid pHJH2004 was cut with NdeI to obtain a 1.1 kb DNA 143 
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fragment of vanSsc which was then ligated into the NdeI site of pIJ10257 (24) to create pDU001. The 144 

vanSst gene was amplified by PCR using primers vanSst I and vanSst II and the product was cloned 145 

into pGEM-T easy to create pHJH2005. After the sequence of vanSst in pHJH2005 was confirmed, a 146 

1.1 kb NdeI fragment of vanSst was obtained and ligated into the NdeI site of pIJ10257 (24) to create 147 

pDU006. To construct pHJH2006, a KpnI/AvrII fragment of vanSst obtained from pDU006 was ligated 148 

into pIJ6902 (28) cut with KpnI/XbaI.  149 

 150 

Site-directed mutagenesis of VanRst  151 

In order to substitute targeted amino acids in the REC domain of the VanRst protein for the 152 

corresponding residues present in VanRsc, we introduced site-directed nucleotide changes in the vanRst 153 

gene to construct recombinant plasmids using the Quick Change Site-Directed Mutagenesis kit 154 

(Stratagene) according to the manufacturer’s instructions. pGN078, pGN080, pGN081, pGN082, and 155 

pGN083 were created using pJG001 (pIJ10257 plasmid harboring vanRst under the control of ermEp) 156 

as template DNA and the following primer pairs listed in Table S1: vanRst L10P_M12L and vanRst 157 

L10P_M12L_anti for pGN078; vanRst L10P_M12L and vanRst L10P_M12L_anti for pGN080; 158 

R106Q_I109A_I112L and R106Q_I109A_I112L_anti for pGN081; vanRst_S69T and vanRst 159 

_S69T_anti for pGN082; and vanRst_V62I and vanRst_V62I_anti for pGN083. pGN079 was made 160 

using pGN078 as template and the primers R106Q_I109A_I112L and R106Q_I109A_I112L_anti (see 161 

Table S1). Correct formation of all the mutated vanRst variants was confirmed by sequencing. The 162 

required strains (as listed in Table 1) were then constructed by conjugal transfer of plasmids from E. 163 

coli ET12567 (pUZ8002) (31).  164 

 165 

Construction of strains  166 
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S. toyocaensis ΔvanRSst::apr (H31) and ΔvanSst::apr (H33) mutant strains were constructed by 167 

replacing the entire coding sequences of the target gene (or genes) with a cassette carrying the 168 

apramycin resistance gene (apr) and oriT of RK2, using the published PCR-targeting method (34). 169 

Primer sequences used are listed in Table S1. The cosmid pCep5 was introduced into E. coli BW25113 170 

carrying pIJ790, and the target gene was disrupted by electroporation of the cells with the PCR 171 

amplified apr-oriT cassette, generated using primers carrying the appropriate gene-specific extensions. 172 

Using pIJ773 (34) as template, the apr disruption cassette were created by PCR using primers vanRst 173 

KO I and vanSst KO II for ΔvanRSst::apr, and vanSst KO I and vanSst KO II for ΔvanSst::apr. Each 174 

resulting cosmid was then introduced into E. coli ET12567 carrying pUZ8002 and transferred into S. 175 

toyocaensis NRRL 15009 by conjugation. Double crossover integrants were isolated as apramycin-176 

resistant, kanamycin-sensitive colonies. Strain H320 was constructed by introducing the vanSst gene 177 

under the control of a constitutive promoter (ermEp-vanSst in pHJH2006 in Table 1) into the 178 

ΔvanRSst::apr (H31) mutant background. An unmarked S. coelicolor ΔvanRsc (H21) deletion mutant 179 

was constructed by introducing cosmid H66ΔvanRsc::apr into E. coli BT340 and excising the apr-oriT 180 

cassette (which is flanked by FRT sites) via induction of the FLP recominase system (34). The resultant 181 

mutant cosmid, H66ΔvanRsc, was then introduced into S. coelicolor M600 by protoplast transformation 182 

and kanamycin-resistant transformants were selected. After growth in the absence of antibiotic 183 

selection, colonies that had lost kanamycin resistance and were sensitive to vancomycin were selected 184 

and purified then analyzed by PCR to confirm in-frame replacement of the wild type sequence by a 185 

non-polar scar sequence. All other S. coelicolor and S. toyocaensis strains created in this study were 186 

constructed by conjugal transfer from E. coli strain ET12567 (pUZ8002) carrying the appropriate 187 

pMS81 or pIJ10257 plasmid derivative. Exconjugants were selected by hygromycin resistance.  188 

 189 

Antibiotic susceptibility tests  190 
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All the bioassays, including both paper disc diffusion assays and the determination of minimum 191 

inhibitory concentrations (MICs), using Streptomyces strains were performed on MMCGT (Minimal 192 

Medium plus Casaminoacids Glucose Tiger milk) agar medium (32). For the paper disc diffusion 193 

assays, approximately 105 spores of each strain were spread on 9 cm diameter round plates and 6 mm 194 

paper discs containing 30 μg of glycopeptide antibiotics were then applied to the freshly spread spore 195 

lawns (19, 29). Plates were scored after incubation at 30°C for 2-4 days by measuring the diameter of 196 

any zone of growth inhibition (ZID) formed such that a ZID of 0 corresponds to complete resistance 197 

and scores < 7 indicate very strong resistance (the diameter of the paper discs used is 6 mm). ZID 198 

scores defined as “(0)” correspond to strains displaying growth up to the edge of the antibiotic disc but 199 

with a zone of detectabtly weaker growth around the disc. MIC values were evaluated using a method 200 

previously described (29) involving visual inspection of growth over a range of antibiotic 201 

concentrations on minimal agar medium in 96 well plates after 2-4 days of incubation at 30°C. The 202 

following concentrations of antibiotics were used in the MIC tests: 0, 0.125, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 203 

8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120  and 140 μg/ml vancomycin;  0, 0.125, 0.25, 0.5, 1, 2, 204 

3, 4, 5, 6, 7, 8, 9 and 10 μg/ml teicoplanin; and 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 50, 60, 70 and 80 205 

μg/ml A47934. Each strain was assigned a single resistance index category for each antibiotic tested 206 

based on a combined consideration of the ZID and MIC values.  207 

 208 

RNA preparation and quantitative real time PCR (qRT-PCR) 209 

For the analysis of vanH transcription in response to glycopeptide antibiotics, 0.5 ml of germinated 210 

spores of S. coelicolor M600 or S. toyocaensis NRRL 15009 were inoculated in 50 ml NMMP liquid 211 

medium and grown to mid-log phase. Immediately after 10 ml of the first sample was taken as a non-212 

induced control (0 min), the glycopeptide antibiotics were added to a final concentration of 10 μg/ml 213 

and samples taken 30, 60 and 90 min after treatment. Culture samples were immediately centrifuged for 214 
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10 s at 4,000 g and the cell pellet resuspended in 10 ml of RNA protect bacteria solution (Qiagen). 215 

After 5 min incubation at room temperature, the sample was centrifuged again for 10 s at 4,000 g and 216 

the supernatant was discarded. RNA preparation and qRT-PCR were performed according to methods 217 

described previously (35). For the qRT-PCR of S. coelicolor vanH, we used a pair of previously 218 

published primers, qvanH-F and qvanH-R (30) and gene SCO4702 as the internal normalization control 219 

(28). Primer pair qvanHst-F and qvanHst-R for pRT-PCR analysis of S. toyocaensis vanH transcription 220 

were designed using Primer3 (http://frodo.wi.mit.edu/) (see Table S1). Gene WP_037929599 with 94% 221 

identity to SCO4702 was used as the internal normalization control. qRT-PCR determinations were 222 

performed in triplicate on each RNA sample and average abundances determined.  223 

 224 

RESULTS 225 

 226 

Viability in an antibiotic bioassay is a good indicator of the ability of the glycopeptide to induce 227 

the VanR/VanS system. 228 

The expression of the genes in the vancomycin resistance cluster in a wild type S. coelicolor strain 229 

M600 is induced by vancomycin and A47934 but not by teicoplanin (23, 25, 29). In a paper disc 230 

diffusion bioassay S. coelicolor therefore grows to the edge of discs containing vancomycin or A4794, 231 

but is markedly inhibited by teicoplanin which in contrast produces a large circular halo of non-growth 232 

(Fig. 2A). Consistent with these phenotypes, qRT-PCR analysis indicates that transcription of the vanH 233 

gene (a reporter for expression of the vanHAX operon) is highly induced by both vancomycin and 234 

A47934 in S. coelicolor, but not by teicoplanin which totally failed to induce transcription even after 235 

exposure for 90 min (Fig. 2A). Maximal induction of vanH by A47934 is approximately half that 236 

observed for the response to vancomycin and the MIC observed is also markedly lower. In contrast to 237 

S. coelicolor, S. toyocaensis (NRRL 15009), the producer of the glycopeptide antibiotic A47934, is 238 
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resistant to A47934 but susceptible to both vancomycin and teicoplanin (Fig. 2B). Quantification of 239 

vanH transcription in S. toyocaensis shows strong inducible expression in response to A47934 but not 240 

to vancomycin or teicoplanin (Fig. 2B). A low level of vanH transcription was detectable in response to 241 

teicoplanin and this corresponds with a slight reduction in the diameter of the teicoplanin inhibitory 242 

halo compared to vancomycin in the plate bioassay and an increase in the MIC value (Fig. 2B). Thus 243 

the viability of the cells in the presence of glycopeptides, as determined by disc diffusion bioassay and 244 

measurement of the MIC, is a good indication of whether the particular antibiotic is a strong, weak, 245 

poor or non-inducer of the resistance controlled by VanR/VanS. Assignment of a resistance index 246 

based on a combined consideration of the zone of inhibition diameter (ZID) and MIC bioassay values is 247 

used in the subsequent sections as a measure of the activation of a resistance system by a particular 248 

antibiotic in a particular strain. 249 

 250 

Investigating glycopeptide-induced signal transduction through the S. coelicolor and S. 251 

toyocaensis VanR/VanS two-component systems. 252 

The amino acid sequences of the VanS and VanR proteins present in S. coelicolor and S. toyocaensis 253 

are highly conserved (90% identity for VanR and 67% identity for VanS) but the mechanism of 254 

VanR/VanS signal transduction in each strain is different (see Fig. 2). To investigate glycopeptide-255 

induced signal transduction through the VanR/VanS systems we constructed S. coelicolor and S. 256 

toyocaensis strains carrying all possible pair-wise combinations of VanR and VanS from each strain, 257 

and determined their antibiotic resistance indexes using the panel of three glycopeptide antibiotics 258 

A47934, teicoplanin and vancomycin (Fig. 3; see also Fig. S1 and S2). Since this approach focusses on 259 

the resistance phenotypes that are the functional end product of VanR/VanS activation, the readout 260 

reports on the combined efficiency of the following processes: detection of the glycopeptide by the 261 

VanS sensor; transduction of the activation signal from VanS to VanR by phosphorylation; induction of 262 
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expression from the van gene promoters; and translation of the van gene transcripts to produce 263 

functional enzymes. The level of phospho-VanR can be influenced by both phosphorylation and 264 

dephosphorylation. Strains using S. coelicolor as the host were constructed based on unmarked in-265 

frame deletion mutants in which the coding sequence for the vanR (this study), vanS (25) or vanRS (25) 266 

genes had been removed. Genes were added back into these mutants in single copy to produce the 267 

required combinations by using vectors that integrate stably into the chromosome at the φBT1 268 

attachment site (33). A similar strategy was used for the S. toyocayensis strains except that these were 269 

based on deletion mutants in which the coding sequence of vanS or vanRS had been replaced by an 270 

apramycin resistance cassette, and genes were added in single copy at the φBT1 and φC31 integration 271 

sites to produce all the combinations. All strains constructed grew as vigorously in the absence of 272 

antibiotics as their parental strains with the exception of the S. coelicolor ΔvanSsc and S. toyocaensis 273 

ΔvanSst strains expressing vanRsc (H2473, H2297 and H2311) which exhibited reduced growth. These 274 

three strains however show a higher than expected resistance in the glycopeptide antibiotic tests (see 275 

below) and the growth defects are therefore not significant in this context.   276 

i) Glycopeptide antibiotic inducer specificity depends on the identity of the VanR/VanS two-277 

component system rather than the host background. 278 

Introduction of the S. toyocaensis vanRS genes (vanRSst) into the S. coelicolor ΔvanRSsc null mutant 279 

(producing strain H2060) switched the natural inducer specificity of S. coelicolor to that of S. 280 

toyocaensis i.e. it was resistant to A47934, but sensitive to vancomycin or teicoplanin (Fig 3A; see also 281 

Fig. S1e). Similarly, introduction of the S. coelicolor vanRS genes (vanRSsc) into the S. toyocaensis 282 

ΔvanRSst null mutant (producing strain H2360) also switched the inducer specificity so that the 283 

resulting S. toyocaensis strain was, like wild type S. coelicolor,  resistant to vancomycin and A47934 284 

but sensitive to teicoplanin (Fig 3B; see also Fig. S1l). Both results indicate that all the heterologously 285 

expressed proteins are functional in their respective strains.  286 
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ii) The non-cognate pairing of VanRst/VanSsc cannot induce glycopeptide resistance in either S. 287 

coelicolor or S. toyocaensis but the reciprocal non-cognate pairing VanRsc/VanSst is functional. 288 

The non-cognate combination of VanRst/VanSsc failed to induce resistance to any of the glycopeptide 289 

antbiotics regardless of the host background (Fig. 3; see also Fig. S1f and S1n). In contrast, the 290 

reciprocal non-cognate combination of VanRsc/VanSst was productive. Strains H36 (S. coelicolor 291 

background) and H2309 (S. toyocaensis background) are both resistant to A47934 but susceptible to 292 

vancomycin and teicoplanin (Fig. 3; see also Fig. S1g and S1m). The inducer specificity towards the 293 

glycopeptide antibiotics is therefore again determined according to the origin of the VanS sensor 294 

(VanSst) and not the host background. Interestingly however, both H36 and H2309 also exhibit 295 

significantly increased resistance toward teicoplanin (see Fig. S1g and S1m). These results are 296 

consistent with cross-talk between VanRsc and VanSst in responding to the presence of glycopeptide 297 

antibiotics, and interestingly also suggest that VanRsc may in some conditions act as a better RR 298 

partner for VanSst than its natural cognate partner, VanRst.  299 

iii) VanRst is apparently not activatable by the intracellular phosphate donor acetyl phosphate. 300 

S. coelicolor ΔvanSsc (H2473) exhibits significantly increased resistance to all three glycopeptide 301 

antibiotics relative to the ΔvanRSsc (Fig 3A; see also Fig. S1d). This was shown to be associated with a 302 

constitutive but moderate expression of the van resistance reporter gene vanH even in the absence of 303 

any glycopeptide (Fig. S3). In contrast, S. toyocaensis ΔvanSst (H2118) is susceptible to A47934 and 304 

does not exhibit constitutive resistance to any of the antibiotics tested (Fig. 3B; see also Fig. S1k). The 305 

wild type resistance phenotype was fully restored in this strain by addition of a single integrated copy 306 

of vanSst excluding the possibility of any polar effect of vanSst deletion (data not shown). S. coelicolor 307 

VanS (VanSsc) is known to negatively regulate VanRsc function in the absence of inducer drug such 308 

that a S. coelicolor vanS null mutant (ΔvanSsc) exhibits constitutive resistance via a phosphorylation of 309 

VanRsc that is dependent upon acetyl phosphate production (25). The absence of a similar constitutive 310 
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glycopeptide resistance phenotype in S. toyocaensis ΔvanSst implies that VanRst cannot be 311 

phosphorylated in a VanSst independent manner. Introduction of vanRsc into S. toyocaensis ΔvanRSst 312 

(producing strain H2311) produces a constitutive resistance phenotype (Fig. 3B; see also Fig. S2f) 313 

consistent with acetyl phosphate dependent phosphorylation of VanRsc taking place in this strain 314 

background as in the native host S. coelicolor. In contrast, the introduction of vanRst into the S. 315 

coelicolor ΔvanRSsc (producing strain H2062) or S. toyocaensis ΔvanRSst (producing strain H2476) 316 

backgrounds yielded strains which are susceptible to all three glycopeptide antibiotics (Fig. 3; see also 317 

Fig. S2c and S2e respectively) suggesting that phosphorylation of VanRst using acetylphosphate as the 318 

substrate is inefficient. S. coelicolor strain H2297 (see Fig. S2b) carrying a φBT1 integrated copy of 319 

vanRsc exhibited the same phenotype as strain H2473 (see Fig. S1d) where vanRsc is present at its 320 

native location and served as a control for the genetic location of the vanR expression constructs. 321 

 322 

Site directed mutagenesis of the N-terminal REC domain of VanRst to more resemble the 323 

VanRsc REC domain fails to produce a VanSsc activatable protein but creates a variant subject 324 

to VanS-independent activation. 325 

The specificity of SHK/RR interactions is believed to be determined by coevolving residues located in 326 

the N-terminal dimerization and histidine phosphotransfer (DHp) domain of the SHK and in the 327 

receiver (REC) domain of the RR (36, 37). Mutation of these coevolving residues, either in the SHK or 328 

the RR, can allow the specificity of the cognate pairs to be rewired, as previously shown with two 329 

closely related SHK-RR systems in Escherichia coli, EnvZ-OmpR and RstB-RstA (37, 38). In this 330 

work the VanRst/VanSsc RR/SHK pairing failed to induce glycopeptide resistance in either the S. 331 

coelicolor or S. toyocaensis strain background suggesting an imperfect interaction between the VanRst 332 

and VanSsc proteins. VanRsc and VanRst differ in their REC domain by only eight amino acids 333 

residues however, so we attempted to improve this interaction by gradually altering the amino acids in 334 
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VanRst to correspond to those found in VanRsc using site-directed mutagenesis (Fig. 4). The activity of 335 

the mutagenized vanRst variants was tested by single copy integration into the S. coelicolor ΔvanRsc 336 

and S. toyocaensis ΔvanRst strain backgrounds, assessing the phenotype of the resulting strains toward 337 

A47934, teicoplanin and vancomycin. None of the mutations in VanRst tested restored resistance to 338 

wild-type levels when paired with VanSsc in S. coelicolor (Fig. 5A; see also Fig. S4), but all were 339 

functional in restoring A47934 resistance when used with their natural VanSst partner in S. toyocaensis 340 

(Fig. 5B; see also Fig. S4). One variant VanRst(T69S) did however partially complement the S. 341 

coelicolor ΔvanRsc phenotype showing an increased resistance to glycopeptide antibiotics (strain 342 

H2328 in Fig. 5A; see also Fig. S4d). Strikingly this variant also shows activity in the S. coelciolor 343 

ΔvanRSsc and S. toyocaensis ΔvanRSst mutant strains which lack any VanS kinase (strains H2329 and 344 

H2338 in Fig. 5; see also Fig. S5d and S5k), indicating that it can be activated independently of VanS, 345 

presumably via acetyl phosphate. None of the other variants tested were active in these ΔvanRS 346 

backgrounds (Fig. 5; see also Fig. S5). Interestingly, a S. toyocaensis strain harboring 347 

VanRst(L10P+M12L+R106Q+I109A+I112L)/VanSst (H2506) exhibited significantly increased 348 

resistance to teicoplanin but not to vancomycin (Fig. 5B; see also Fig. S4n). This phenotype is similar 349 

to that of S. toyocaensis strain H2309 (ΔvanRst harboring a plasmid expressing vanRsc) (see Fig. 3B 350 

and Fig. S1m) implying that the five amino acids changes in VanRst may be sufficient to reproduce the 351 

interaction behavior of VanRsc with VanSst. 352 

 353 

DISCUSSION 354 

 355 

In many bacterial glycopeptide antibiotic resistance systems the important role of recognizing the 356 

presence of the antibiotic and transducing an appropriate signal to the chromosome is performed by a 357 

VanR/VanS two-component system, but relatively little is known about how the two proteins involved 358 
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cooperate to achieve this. In this work we have exploited the differing responses to glycopeptide 359 

antibiotics exhibited by the VanR/VanS sensory systems in two streptomyces strains, Streptomyces 360 

coelicolor and Streptomyces toyocaensis, to explore this area and to define the functioning of each 361 

protein in each strain background. The A47934 resistance gene cluster in S. toyocaensis was first 362 

identified and reported in 2002 (14), but the molecular mechanism of A47934 resistance as well as the 363 

functioning of its key regulatory two-component system, VanRst/VanSst, has remained poorly defined. 364 

This study is the first investigation into this system and compares its activity with the analogous and 365 

well characterized two-component system VanRsc/VanSsc from S. coelicolor (25, 26).  366 

Notably, exchanging just the complete VanR/VanS two-component system between the two 367 

Streptomyces strains was sufficient to switch the glycopeptide resistance profiles. The resistance 368 

profiles are therefore determined by the differences between the amino acid sequences of the 369 

VanR/VanS proteins present rather than by inherent differences in cell wall structure or biosynthesis 370 

between the strains. The activity of extracellular D,D-carboxypeptidases has been shown to alter the 371 

efficacy of glycopeptide antibiotics in actinomycete strains expressing the VanHAX enzymes by 372 

exchanging the D-Lac reprogrammed into cytoplasmic peptidoglycan precursors for D-Ala or Gly in 373 

the periplasm (39), but differences in the control by VanR/VanS is clearly the dominant factor between 374 

S. coelicolor and S. toyocaensis. The incomplete restoration of resistance to vancomycin in S. 375 

toyocaensis H2360 (ΔvanRSst + vanRSsc) compared to wild-type S. coelicolor could however suggest 376 

some contribution from differences in carboxypeptidase activity between strains but this could also be 377 

due to a possible increase in expression of staP from the A47934 cluster which is known to have 378 

deleterious effects on growth (29). The ability to predictably alter the glycopeptide resistance profiles 379 

by swapping the VanR/VanS systems strongly supports the proposal that VanS responds directly to an 380 

antibiotic ligand such that VanSst is able to sense and interact productively with A47923 but not with 381 
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teicoplanin or vancomycin, whereas VanSsc interacts productively with vancomycin or A47934 but not 382 

with teicoplanin.  383 

Gene swaps producing hybrid combinations of either VanRsc/VanSst or VanRst/VanSsc as the sole 384 

sensory system for glycopeptides produced results which indicate differences in the activities of the 385 

two RR regulator proteins. VanRsc was able to transduce the signal detected by VanSst in both the S. 386 

coelicolor and S. toyocaensis backgrounds (producing strains H36 and H2309) while VanRst was 387 

unable to accomplish this in either background when similarly paired with VanSsc (producing strains 388 

H2123 and H3129) (Fig. 3; see also Fig. S1). In addition to being unable to interact productively with 389 

VanSsc, VanRst was found to be different to VanRsc in being resistant to VanS independent activation. 390 

In S. coelicolor VanRsc can be activated in the absence of VanSsc by phosphorylation that is dependent 391 

upon the ackA (SCO5424) and pta (SCO5425) genes required for acetyl phosphate production (25) (see 392 

H2473 or H2297 in Fig. 3A; see also Fig. S1d and S2b). The S. toyocaensis genome sequence (40) also 393 

contains orthologous ackA and pta sequences (85% and 87% of nucleotide sequence identity to the S. 394 

coelicolor sequences, respectively), and VanRsc can also be activated independently of VanS in this 395 

strain background (H2311 in Fig. 3B; see also Fig. S2f). The absence of VanS independent activation 396 

of VanRst in S. toyocaensis is therefore consistent with acetyl phosphate being a poor net 397 

phosphodonor for VanRst. Response regulators can exhibit wide differences in the half-life of their 398 

phsophorylated forms and it is possible that the half-life of phospho-VanRst is short compared to 399 

phospho-VanRsc. The antibiotic resistance phenotypes of the strains in which VanSst is partnered with 400 

VanRsc also indicates that, in common with VanSsc, VanSst must possess phosphatase activity in 401 

addition to its kinase function (H36 and H2309 in Fig. 3; see also Fig. S1g and S1m). If this was not the 402 

case then these strains would exhibit the same constitutive resistance to all three antibiotics shown by 403 

strains H2297 and H2311. Although VanSst in S. toyocaensis has retained the phosphatase activity seen 404 

in the S. coelicolor system, it is evidently not required for keeping expression of the resistance genes to 405 
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a minimum in the absence of glycopeptide inducers since VanRst is not phosporylated independently of 406 

VanS.  407 

It is noteworthy that VanRsc and VanRst behave so differently when their amino acid sequences, 408 

particularly in their REC domains, are highly similar (90% identity; see Fig.4). Although not 409 

exhaustive, the results of site-directed mutagenesis targeting the N-terminal REC domain of VanRst 410 

suggests additional sequences outside this region may be important for correct interaction with the 411 

VanS kinases, and goes against the general belief that this domain of RRs is the only region responsible 412 

for the interaction with a cognate SHK partner. Barbieri et al. (2010) previously demonstrated that the 413 

extent of the interdomain interface made by the REC domain with the DBED in several RRs from the 414 

OmpR/PhoB family influenced the rate of phosphotransfer from acetyl phosphate in vitro (41). Proteins 415 

with substantial interdomain interfaces phosphorylate poorly possibly because the interdomain 416 

interactions stabilize an inactive conformation of the RR which is not catalytically competent to accept 417 

phosphate from acetyl phosphate (41). Although the authors have shown that the interdomain 418 

interaction did not influence the rate of phosphotransfer from the cognate SHK, this might not be 419 

necessarily true for a non-cognate SHK. Our in vivo experiments show that in contrast to VanRsc, 420 

VanRst does not efficiently undergo phosphorylation using acetyl phosphate. While this could be due 421 

to a very short half-life of the phosphorylated form, it is also consistent with unphosphorylated VanRst 422 

occupying a conformation where the REC and DBED domains are in tighter contact than in VanRsc 423 

thus preventing phosphoacceptance from acetyl phosphate. Such structural differences between VanRsc 424 

and VanRst could also be responsible for different promiscuities with respect to phosphorylation by 425 

cognate or non-cognate SHKs. We hypothesize that VanRst requires very precise interaction with the 426 

SHK in order to release the inactive conformation putatively stabilized by substantial interdomain 427 

contact between the REC and DBED domains. This requirement would restrict the specificity of 428 

VanRst to only its cognate SHK, VanSst. In contrast, VanRsc evidently occupies a conformation more 429 
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amenable to phosphorylation using acetyl phosphate making it generally more accessible also for 430 

activation by a non-cognate SHK. Interestingly, the VanRst mutant variant VanRst(T69S) is more 431 

readily activatable in the absence of VanSst (or VanSsc) than the wild-type sequence and strains 432 

expressing this variant in these genetic backgrounds exhibit a similar constitutive but low-level 433 

glycopeptide resistance (see H2329 and H2338 in Fig. 5; see also Fig. S5d and S5k).  434 

The investigation of vancomycin resistance in bacteria has been the subject of extensive research and 435 

considerable effort has been put into studying the VanR/VanS TCS in particular, mostly using 436 

pathogenic VRE strains as a model system. A detailed topological understanding of how the 437 

phosphorelay system in the VanR/VanS complex operates has however remained elusive due to a lack 438 

of structural data. Understanding the interplay between the VanS effector ligand on the one hand, and 439 

downstream activation of VanR by VanS on the other, will be important for the development of future 440 

strategies for circumventing inducible glycopeptide antibiotic resistance in clinical infections. 441 

Furthermore, TCSs are one of the most abundant and ubiquitous adaptive signal transduction pathways 442 

present in bacteria, making them attractive targets for the modulation of bacterial function by novel 443 

bioactive molecules, particularly in pathogenic strains.  444 
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FIGURE LEGENDS 556 

 557 

FIG 1 (A) A model illustrating the function and regulation of vancomycin resistance via the 558 

VanRsc/VanSsc TCS in S. ceolicolor. In the absence of inducer drug, the small molecule phosphate 559 

donor acetyl phosphate phosphorylates and activates VanR for inducing vancomycin resistance but this 560 

is effectively supressed by the phophatase activity of VanS. In the presence of inducer drug, VanS 561 

interacts with inducer drug and switches its activity from phosphatase to kinase, leading to a strong 562 

phosphorylation of VanR. The active phospho-VanR then binds to the four promoters of the van gene 563 

cluster and induces transcription of the van genes to render the S. coelicolor cells resistant to 564 

vancomycin. (B) Genetic organization of the A47934 resistance in S. toyocaensis. 565 

 566 

FIG 2 The bioassay activity of glycopeptide antibiotics against resistant strains correlates with the 567 

ability of the antibiotics to induce the VanR/VanS system. Bioassay analyzing the activity of three 568 

selected glycopeptide antibiotics A47934 (A), teicoplanin (T) and vancomycin (V) and their MIC 569 
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against S. coelicolor M600 (A) and S. toyocaensis NRRL15009 (B). Paper discs containing 30 µg of 570 

each antibiotic were placed on freshly spread lawns of each strain, and plates were incubated for 2 days 571 

at 30°C. A clear and strong dark colored halo around the paper discs indicate the zone of inhibition. 572 

The corresponding antibiotic zone of inhibition diameter (ZID; mm) and MIC (µg/ml) values are 573 

presented below the bioassay plates, together with quantification of the response in vanH transcription 574 

in each strain to each antibiotic as determined by qRT-PCR. Cells were grown to mid-exponential 575 

phase in NMMP liquid medium and exposed to 10 µg/ml of each antibiotic. Total RNAs were extracted 576 

from samples taken immediately before the addition of antibiotic (0) and at subsequent 30 min intervals 577 

up to 90 min (30, 60, 90). The x axis indicates time (min) after addition of the antibiotic, and the y axis 578 

shows the fold change in normalized vanH transcript abundance calculated relative to the abundance at 579 

time 0 which was defined as 1.  580 

 581 

FIG 3 Antibiotic resistance indexes summarizing the activity of different combinations of VanRS 582 

proteins in providing resistance against treatment with A47934 (A), teicoplanin (T) and vancomycin 583 

(V) in the S. coelicolor (A) and S. toyocaensis (B) genetic backgrounds. The status and origin of each 584 

component in the VanR/VanS system in each strain tested is illustrated in the first column of each table 585 

alongside the strain numbers (VanR/VanS proteins shaded dark grey originate from S. coelicolor and in 586 

contrast those shown in white originate from S. toyocaensis). Resistance indexes were determined from 587 

the ZID (in mm) and MIC (in µg/ml) values as described in the Materials and Methods, and the keys to 588 

these categories are presented beneath each table. The genotype of all strains is described in detail in 589 

Table 1, and the data from which the indexes are derived are presented in Figs. S1 and S2. 590 

 591 

FIG 4 Amino acid sequence alignment of VanRsc and VanRst. The black bar beneath the sequences 592 

indicates the conserved N-terminal REC domain. The eight amino acid residues which differ in the 593 



 

26 
 

REC domain between VanRsc and VanRst are highlighted. The VanRst variants constructed by site-594 

directed mutagenesis to be more similar to VanRsc are summarized on the right hand side. 595 

 596 

FIG 5 Antibiotic resistance indexes summarizing the activity of the VanRst variants described in Fig. 4 597 

in providing resistance against treatment with A47934 (A), teicoplanin (T) and vancomycin (V) in the 598 

S. coelicolor (A) and S. toyocaensis (B) genetic backgrounds. The status and origin of each component 599 

in the VanR/VanS system in each strain tested is illustrated in the first column of each table alongside 600 

the strain numbers (VanR/VanS proteins shaded dark grey originate from S. coelicolor and in contrast 601 

those shown in white originate from S. toyocaensis). Resistance indexes were determined from the ZID 602 

(in mm) and MIC (in µg/ml) values as described in the Materials and Methods, and the keys to these 603 

categories are presented beneath each table. The genotype of all strains is described in detail in Table 1, 604 

and the data from which the indexes are derived are presented in Figs. S4 and S5. 605 

 606 

 607 
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 627 

Table 1. Plasmids and bacterial strains used in this study.  628 
Plasmid/Strains Description/Genotype Reference
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Plasmids 
 pMS81 
 pIJ10257 
 pIJ6902 
 pHJH2000 
 pHJH2002 
 pHJH2003 
 pHJH2005 
 pDU006 
 pHJH2006 
 pJG001 
 pGN078 
 pGN083 
 pGN082 
 pGN080 
 pGN081 
 pGN079 
 pGN073 
 pHJH2001 
 pGN067 
 pHJH2004 
 pDU001 
  
Strains 
 M600 
 H27 
 J3201 
 H21 
 J3200 
 H28 
 H2474 
 H2473 
 H2060  
 H2123 
 H36 
 H2297 
 H2062 
 H2255 
 H2259 
 H2328 
 H2263 
 H2500 
 H2504 
 H2257 
 H2261 
 H2329 
 H2265  
 H2501 
 H2505 
 NRRL15009 
 H2251 
 H31 
 H320 
 H33 
 H229 
 H2205 
 H2118    
 H2360       
 H2309 
 H312   
 H2476    
 H2311 
 H2233 
 H2239 
 H2336    
 H2245      
 H2502 
 H2506   
 H2231 
 H2237    
 H2338 
 H2243    
 H2503 
 H2507  
 ET12567 pUZ8002 
 BW25113 pIJ790 
 BT340 

 
 
φBT1 attP-int derived integration vector for the conjugal transfer of DNA from E. coli to Streptomyces spp. (HygR) 
pMS81 carrying ermEp with ribosome binding site and multicloning sites (HygR) 
integrative (∅C31 attP-int) and conjugative (oriT RK2), tipAp expression vector (AprR)(ThioR) 
pMS81 carryig vanRSst including van promoter sequence  
pGEM-T easy carrying vanRst including van promoter sequence  
pMS81 carryig carrying vanRst including van promoter sequence  
pGEM-T easy carrying vanSst  
pIJ10257 carryig vanSst under ermEp  
pIJ6902 carryig vanSst under ermEp  
pIJ10257 carrying vanRst under ermEp 
pIJ10257 carrying vanRst (L10P, M12L) under ermEp 
pIJ10257 carrying vanRst (V62I) under ermEp  
pIJ10257 carrying vanRst (T69S) under ermEp  
pIJ10257 carrying vanRst (Q92G) under ermEp  
pIJ10257 carrying vanRst (R106Q, I109A, I112L) under ermEp 
pIJ10257 carrying vanRst (L10P, M12L, R106Q, I109A, I112L) under ermEp 
pMS81 carrying vanRSsc including van promoter sequence  
pIJ10257 carrying vanRsc under ermEp  
pMS81 carrying vanRsc including van promoter sequence 
pGEM-T easy carrying vanSsc  
pIJ10257 carrying vanSsc under ermEp 
 
 
S. coelicolor SCP1- SCP2- 
S. coelicolor M600 + pMS81 
S. coelicolor ΔvanRSsc SCP1- SCP2- 
S. coelicolor ΔvanRsc SCP1- SCP2- 
S. coelicolor ΔvanSsc SCP1- SCP2- 
S. coelicolor J3201 + pMS81 
S. coelicolor H21 + pMS81  
S. coelicolor J3200 + pMS81  
S. coelicolor J3201 + pHJH2000 
S. coelicolor H21 + pHJH2003 
S. coelicolor J3200 + pDU006 
S. coelicolor J3201 + pGM067 
S. coelicolor J3201 + pHJH2003 
S. coelicolor H21 + pGN078 
S. coelicolor H21 + pGN083 
S. coelicolor H21 + pGN082 
S. coelicolor H21 + pGN080 
S. coelicolor H21 + pGN081 
S. coelicolor H21 + pGN079 
S. coelicolor J3201 + pGN078 
S. coelicolor J3201 + pGN083 
S. coelicolor J3201 + pGN082  
S. coelicolor J3201 + pGN080  
S. coelicolor J3201 + pGN081  
S. coelicolor J3201 + pGN079  
S. toyocaensis A47934 producer, wild type 
S. toyocaensis NRRL15009 + pMS81 
S. toyocaensis ΔvanRSst::apr 
S. toyocaensis ΔvanRSst::apr + pHJH2006 
S. toyocaensis ΔvanSst::apr 
S. toyocaensis H31 + pMS81 
S. toyocaensis H320 + pMS81  
S. toyocaensis H33 + pMS81  
S. toyocaensis H31 + pGN073 
S. toyocaensis H320 + pGN067 
S. toyocaensis H33 + pDU001 
S. toyocaensis H31 + pHJH2003 
S. toyocaensis H31 + pGN067 
S. toyocaensis H320 + pGN078  
S. toyocaensis H320 + pGN083  
S. toyocaensis H320 + pGN082  
S. toyocaensis H320 + pGN080  
S. toyocaensis H320 + pGN081  
S. toyocaensis H320 + pGN079  
S. toyocaensis H31 + pGN078  
S. toyocaensis H31 + pGN083  
S. toyocaensis H31 + pGN082  
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FIG 1 (A) A model illustrating the function and regulation of vancomycin resistance via the VanRsc/VanSsc TCS in S. 

ceolicolor. In the absence of inducer drug, the small molecule phosphate donor acetyl phosphate phosphorylates and 

activates VanR for inducing vancomycin resistance but this is effectively supressed by the phophatase activity of VanS. 

In the presence of inducer drug, VanS interacts with inducer drug and switches its activity from phosphatase to kinase, 

leading to a strong phosphorylation of VanR. The active phospho-VanR then binds to the four promoters of the van gene 

cluster and induces transcription of the van genes to render the S. coelicolor cells resistant to vancomycin. (B) Genetic 

organization of the A47934 resistance in S. toyocaensis. 
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FIG 2 The bioassay activity of glycopeptide antibiotics against resistant strains correlates with the ability of the 

antibiotics to induce the VanR/VanS system. Bioassay analyzing the activity of three selected glycopeptide antibiotics 

A47934 (A), teicoplanin (T) and vancomycin (V) and their MIC against S. coelicolor M600 (A) and S. toyocaensis 

NRRL15009 (B). Paper discs containing 30 µg of each antibiotic were placed on freshly spread lawns of each strain, and 

plates were incubated for 2 days at 30°C. A clear and strong dark colored halo around the paper discs indicate the zone of 

inhibition. The corresponding antibiotic zone of inhibition diameter (ZID; mm) and MIC (µg/ml) values are presented 

below the bioassay plates, together with quantification of the response in vanH transcription in each strain to each 

antibiotic as determined by qRT-PCR. Cells were grown to mid-exponential phase in NMMP liquid medium and exposed 

to 10 µg/ml of each antibiotic. Total RNAs were extracted from samples taken immediately before the addition of 

antibiotic (0) and at subsequent 30 min intervals up to 90 min (30, 60, 90). The x axis indicates time (min) after addition 

of the antibiotic, and the y axis shows the fold change in normalized vanH transcript abundance calculated relative to the 

abundance at time 0 which was defined as 1. 
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FIG 3 Antibiotic resistance indexes summarizing the activity of different combinations of VanRS proteins in providing 

resistance against treatment with A47934 (A), teicoplanin (T) and vancomycin (V) in the S. coelicolor (A) and S. 

toyocaensis (B) genetic backgrounds. The status and origin of each component in the VanR/VanS system in each strain 

tested is illustrated in the first column of each table alongside the strain numbers (VanR/VanS proteins shaded dark grey 

originate from S. coelicolor and in contrast those shown in white originate from S. toyocaensis). Resistance indexes were 

determined from the ZID (in mm) and MIC (in µg/ml) values as described in the Materials and Methods, and the keys to 

these categories are presented beneath each table. The genotype of all strains is described in detail in Table 1, and the 

data from which the indexes are derived are presented in Figs. S1 and S2.  
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FIG 4 Amino acid sequence alignment of VanRsc and VanRst. The black bar beneath the sequences indicates the 

conserved N-terminal REC domain. The eight amino acid residues which differ in the REC domain between VanRsc and 

VanRst are highlighted. The VanRst variants constructed by site-directed mutagenesis to be more similar to VanRsc are 

summarized on the right hand side. 
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VanRsc: EIAERIVASGSGMPILMLTAADRLDDKASGFGLGADDYLTKPFELQELALRLRALDRRRA
VanRst: EVAERIVATGSGMPILMLTAADRLDDKASGFQLGADDYLTKPFELRELILRIRALDRRRA

VanRsc: MRVLIVEDEPYLAEAIRDGLRLEAIAADIAGDGDTALELLSVNAYDIAVLDRDIPGPSGD
vanRst: MRVLIVEDELYMAEAIRDGLRLEAIAADIAGDGDTALELLSVNAYDIAVLDRDIPGPSGD

VanRsc: HSRPPVREIAGLRLDPFRREVYRGGRYVALTRKQFAVLEVLVAAEGGVVSAEELLERAWD
VanRst: HIRPPVREIAGLRLDPFRREVYRDDRYIALTRKQFAVLEVLVAAEGGVVSAEELLERAWD

VanRsc: ENADPFTNAVRITVSALRKRLGEPGIIATVPGVGYRIDTAPVSEQAGGDGG
VanRst: ENADSFTNAVRITVSALRKRLGEPQIIATVPGVGYRIATPTDIRREGDAGA

Mutations in N-terminus REC domain of VanRst

VanRst(1) = VanRst(L10P+M12L)

VanRst(2) = VanRst(V62I)

VanRst(3) = VanRst(T69S)

VanRst(4) = VanRst(Q92G)

VanRst(5) = VanRst(R106Q+I109A+I112L)

VanRst(6) = VanRst(L10P+ M12L+R106Q+I109A+I112L)



FIG 5 Antibiotic resistance indexes summarizing the activity of the VanRst variants described in Fig. 4 in providing 

resistance against treatment with A47934 (A), teicoplanin (T) and vancomycin (V) in the S. coelicolor (A) and S. 

toyocaensis (B) genetic backgrounds. The status and origin of each component in the VanR/VanS system in each strain 

tested is illustrated in the first column of each table alongside the strain numbers (VanR/VanS proteins shaded dark grey 

originate from S. coelicolor and in contrast those shown in white originate from S. toyocaensis). Resistance indexes were 

determined from the ZID (in mm) and MIC (in µg/ml) values as described in the Materials and Methods, and the keys to 

these categories are presented beneath each table. The genotype of all strains is described in detail in Table 1, and the 

data from which the indexes are derived are presented in Figs. S4 and S5. 
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