- Age of the Laschamp excursion determined by U-Th dating
- 2 of a speleothem geomagnetic record from North America
- 3 Ioan Lascu^{1,2,3*}, Joshua M. Feinberg^{1,2}, Jeffrey A. Dorale⁴, Hai Cheng^{2,5}, and R.

4 Lawrence Edwards²

- ⁵ ¹Institute for Rock Magnetism, University of Minnesota, 100 Union Street SE,
- 6 Minneapolis, Minnesota 55455, USA
- 7 ²Department of Earth Sciences, University of Minnesota, 310 Pillsbury Drive SE,
- 8 Minneapolis, Minnesota 55455, USA
- ³Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge,
- 10 *CB2 3EQ, UK*
- ⁴Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge
- 12 Hall, Iowa City, Iowa 52242, USA
- ¹³ ⁵Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049,
- 14 China
- 15 *E-mail: il261@cam.ac.uk

16 ABSTRACT

17 The Laschamp geomagnetic excursion was the first short-lived polarity event 18 recognized and described in the paleomagnetic record, and to date remains the most 19 studied geomagnetic event of its kind. In addition to its geophysical significance, the 20 Laschamp is an important global geochronologic marker. The Laschamp excursion 21 occurred around the time of the demise of *Homo neanderthalensis*, in conjunction with 22 high-amplitude, rapid climatic oscillations leading into the Last Glacial Maximum, and

23	coeval with a major supervolcano eruption in the Mediterranean. Thus, precise
24	determination of the timing and duration of the Laschamp excursion would help in
25	elucidating major scientific questions situated at the intersection of geology,
26	paleoclimatology, and anthropology. Here we present a North American speleothem
27	geomagnetic record of the Laschamp excursion that is directly dated using a combination
28	of high-precision ²³⁰ Th dates and annual layer counting using confocal microscopy. We
29	have determined a maximum excursion duration that spans the interval 42,250–39,700 yr
30	BP, and an age of $41,100 \pm 350$ yr BP for the main phase of the excursion, during which
31	the virtual geomagnetic pole was situated at the southernmost latitude in the record. Our
32	chronology provides the first age bracketing of the Laschamp excursion using
33	radioisotopic dating, and improves on previous age determinations based on 40 Ar/ 39 Ar
34	dating of lava flows, and orbitally-tuned sedimentary and ice-core records.

35 INTRODUCTION

36 One of the frontiers of paleomagnetic research is focused on the understanding of the Earth's magnetic field behavior during geomagnetic excursions. Excursions are short-37 38 lived geomagnetic events during which the virtual geomagnetic pole (VGP) deviates by 39 more than 45° from the normal range of secular variation (Merrill and McFadden, 1994), 40 typically accompanied by a decrease in the strength of the geodynamo's dipolar field 41 component (Laj and Channell, 2007). Information regarding the anatomy, timing, and 42 duration of excursions can serve to calibrate magneto-hydrodynamic modeling of outer 43 core flow dynamics on centennial to millennial scales, thus helping to understand the 44 intrinsic behavior of Earth's dynamo (Gubbins, 1999). In addition, accurate and precise, high-resolution time series of geomagnetic excursions are critical for dating geologic 45

46	phenomena, climatic episodes, astronomical events, or paleontologic and anthropologic
47	stratigraphic markers (Leonhardt et al., 2009; Richards and Andersen, 2013; Singer,
48	2014).

49 The Laschamp excursion is the first geomagnetic excursion described in the 50 paleomagnetic record, and remains the most studied geomagnetic event of its kind to date 51 (Laj and Channell, 2007, and references therein). Current estimates of the age of the 52 Laschamp, based on radioisotopic dating of volcanic rocks, place the excursion at ~41 ka 53 BP (40.70 \pm 0.95 ka BP according to Singer et al., 2009, and 41.30 \pm 0.60 ka BP 54 according to Laj et al., 2014). In parallel, developments in sediment geochronology and 55 paleomagnetism have enabled the reconstruction of past field behavior during the 56 Laschamp at very high resolution in sediment cores, placing constraints on the total 57 extent of the excursion to <3,000 years (e.g., Lund et al., 2005; Muscheler et al., 2005; 58 Channell, 2006; Laj et al., 2006; Ménabréaz et al., 2011), and on its main phase to <1,000 59 years (e.g., Channell, 2006; Laj et al., 2006; Channell et al., 2012; Nowaczyk et al., 2012; 60 Bourne et al., 2013; Laj et al., 2014). However, the timing of the Laschamp cannot be 61 directly determined from the same sediment records in most cases. This pitfall often leads 62 to tuning of geochemical proxies in the sedimentary records to those in ice core records, 63 which in turn are tuned to astronomically-paced changes in Earth's orbital parameters— 64 the so-called astrochronologic framework (Laj and Channell, 2007; Nowaczyk et al., 65 2012). This approach has some major caveats, as discussed by Blaauw (2012). 66 Speleothems (chemical sedimentary deposits formed in caves) hold certain key 67 advantages for documenting geomagnetic excursions over traditional paleomagnetic 68 archives (Lascu and Feinberg, 2011). They are crystalline, and therefore avoid

69	complications associated with remanence acquisition in soft sediments. The time lag
70	between the deposition of magnetic particles on speleothem surfaces and their
71	encapsulation in the crystalline structure is short, as demonstrated by actively-growing
72	stalagmites that record the magnetic direction of the ambient magnetic field (e.g., Latham
73	et al., 1979; Morinaga et al., 1989). Speleothems may grow continuously for thousands of
74	years, and can be dated with very high accuracy and precision using ²³⁰ Th dating, a
75	technique that can be reliably used on specimens <600–700 ka in age (Edwards et al.,
76	2003; Dorale et al., 2004, Cheng et al., 2013). Recent speleothem magnetism studies have
77	shown that magnetic minerals encapsulated in stalagmites (e.g., Strauss et al., 2013; Font
78	et al., 2014) can be used successfully in dating geomagnetic excursions (Osete et al.,
79	2012), as well as for reconstructing hydrologic and climatic variations (Xie et al., 2013;
80	Bourne et al., 2015). Here we present a speleothem geomagnetic record from Crevice
81	Cave, Missouri (Dorale et al., 1998) that captures the changes in geomagnetic field
82	direction and intensity associated with the Laschamp excursion, dated directly on
83	speleothem calcite using a combination of high-precision ²³⁰ Th dating and incremental
84	chronometry from annual growth laminae.
85	METHODS

86 Crevice Cave (37.75 N, 89.83 W) is Missouri's longest known cave at >45 km in 87 length, and is situated close to the mid-continent tall grass prairie–deciduous forest 88 ecotone, ~200 km from the southern maximum extent of the Laurentide ice sheet (Dorale 89 et al., 1998). The studied speleothem was found in a naturally broken state, in a stream-90 level passage of the cave. Two parallel slabs, ~19 cm in length, were cut along the central 91 axis of the speleothem, where growth laminae were horizontal. One of the slabs was

92	sliced into ~ 0.5 cm specimens using a wire saw, and used for paleomagnetic and mineral
93	magnetic analyses at the Institute for Rock Magnetism. Details of the experimental
94	protocols can be found in the Data Repository. The other slab was used for constructing
95	the age model. A Nikon A1R confocal microscope was used on the top 5 cm of the slab
96	to image growth bands (Fig. DR1), based on the property of fluorescence of organic-rich
97	layers when exposed to source light with wavelengths of 400-500 nm. Subsequently,
98	calcite powders were collected for 234 U- 230 Th dating from 10 horizons, each between 0.6
99	and 1 mm in thickness, by drilling with a dental burr parallel to the growth laminae. The
100	locations of the third and fifth dating horizons from the top were chosen to bracket the
101	Laschamp excursion as determined from the paleomagnetic measurements. The fourth
102	dating horizon was chosen to correspond to the paleomagnetic specimen encompassing
103	the maximum VGP latitude deviation. Uranium and thorium isotope ratios were
104	measured on a Thermo Neptune multi-collector inductively coupled plasma-mass
105	spectrometer at the University of Minnesota, following the methodology of Cheng et al.
106	(2013). An incremental chronology was obtained by counting the annual layers from the
107	confocal micrographs between the base of the fifth and top of the third dating horizons.
108	RESULTS
109	Chronology
110	The radioisotopic ages are all in stratigraphic order and are reported with 2σ
111	uncertainties (Fig. 1 and Table DR1). The speleothem started forming during marine
112	isotope stage 4 and stopped growing just prior to the last glacial maximum (LGM).
113	Growth rates decreased from 7 to 8 mm/ka during the first part of the record to \sim 5 mm/ka

114 around the time of the Laschamp, eventually reaching very low values (~1 mm/ka) in the

115	final ~10 ka of the record (Fig. 1H). The age-depth curve was obtained by interpolating
116	linearly between the 230 Th dates (Fig. 1F), except between 42,167 ± 101 and 39,179 ±
117	121 yr BP, where the incremental chronology (Fig. 1G), anchored to base of the fifth
118	dating horizon, was used. We counted 2975 ± 20 laminae, which is in excellent
119	agreement with the radioisotopic age difference of 2988 (with 2σ errors of $\pm \sim 100$ years),
120	confirming the annual nature of the calcite growth bands. The depth-age relationship is
121	linear between the 230 Th dates of 42,167 ± 101 and 41,033 ± 132 yr BP, but deviates
122	slightly from this trend between $41,033 \pm 132$ and $39,179 \pm 121$ yr BP, as growth slowed
123	approaching the LGM.
124	Rock Magnetism and Paleomagnetism
125	The main magnetic carrier in our specimens is magnetite, as revealed by low
126	temperature experiments (Fig. 2B). The ratio of anhysteretic remanent magnetization
127	(ARM) susceptibility (χ_{ARM}) to isothermal remanent magnetization (IRM), or χ_{ARM} /IRM,
128	a grain size indicator, is <0.4 mm/A for specimens older than \sim 55 ka BP, and >0.4 mm/A
129	for younger specimens (Fig. 1D). Around 41 ka BP, χ_{ARM} /IRM is ~1 mm/A, a value
130	typical for pedogenic single domain magnetite particles, a few tens of nm in size (Geiss et
131	al., 2008). Lower values indicate a more important admixture of coarser, lithogenic
132	magnetic grains.
133	Paleomagnetic directions exhibit a significant deviation from normal secular
134	variation values between \sim 42 and \sim 39 ka BP, an event we associate with the Laschamp
135	excursion (Fig. 1A-C, 1E). Inclination values decrease to ~10° shortly after 42.2 ± 0.1 ka
136	BP (Fig. 1A), and the main declination swing occurs around 41.0 ± 0.1 ka BP (Fig. 1B),
137	lagging the first inclination change by ~ 1 ka. The ratio of natural remanent magnetization

138	(NRM) to ARM, a relative paleointensity proxy, is lowest at ~41 ka (Fig. 1C),
139	concomitant with the maximum directional excursion. The decrease in NRM/ARM is a
140	change of one order of magnitude compared to average background values, and is not due
141	to a magnetic grain size change, as χ_{ARM}/IRM remains fairly constant (Fig. 1D, 2A). The
142	VGP lies in the southern hemisphere at this time ($\sim -30^\circ$, Fig. 1E).
143	The alternating field (AF) demagnetization experiments generally show a (quasi-)
144	linear decay of the NRM toward the origin (Fig. 2C-D, DR2) even for specimens with
145	lower magnetic concentrations (NRM $< 10^{-7}$ Am ² /kg). Viscous overprints are removed at
146	2-5 mT peak AF demagnetization fields (Fig. 2C-E). Based on the demagnetization
147	behavior of most of the specimens, we attribute clustering demagnetization patterns (e.g.,
148	Fig. 2E) to low intensity levels (NRM $< 10^{-8}$ Am ² /kg), rather than to erratic
149	demagnetization behavior.
150	DISCUSSION
151	Timing and Duration of the Laschamp Excursion
152	Radioisotopic dating of volcanic rocks, mainly using the 40 Ar/ 39 Ar method, is the
153	current state-of-the-art approach to determining the timing of Late Quaternary
154	geomagnetic events (Singer, 2014). Recent Laschamp age determinations are reported by
155	Singer et al. (2009) and Laj et al. (2014), who place the excursion at 40.70 ± 0.95 ka BP
156	and 41.30 ± 0.60 ka BP, respectively. These age estimates, however, were determined by
157	pooling data sets from various flows that yield individual ages with errors >1 ka in all
158	cases. The $^{234}\text{U}/^{230}$ Th method applied to speleothems has the potential of providing
159	individual errors at least an order of magnitude smaller for calcite precipitated ~40 ka ago
160	(Cheng et al., 2013). The Crevice Cave specimen, albeit slow-growing, has rather high

161	concentrations of uranium (Table DR1), which allows for ²³⁰ Th dates to be determined
162	with errors of ~ 100 years for calcite horizons < 1 mm in thickness. Our paleomagnetic
163	specimens are 4–5 mm thick, so after factoring in the sampling resolution, we find that
164	the main phase of the Laschamp excursion in our speleothem occurred at 41.10 ± 0.35 ka
165	BP, as determined from the specimen that contains the maximum VGP deviation (Fig. 1).
166	This refines the precision of the excursion timing compared to the age estimates proposed
167	by Singer et al. (2009) and Laj et al. (2014), with improved error estimates by a factor of
168	2–3. The uncertainty of the timing of the Laschamp excursion could be further refined
169	using this approach by targeting speleothems with higher growth rates.
170	Although lava flows provide excellent spot records of geomagnetic excursions,
171	the current dating precision of the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ method is on the order of several ka,
172	precluding any meaningful attempt at robustly bracketing the duration of such short-lived
173	events. The two ²³⁰ Th dates bracketing the Laschamp excursion in the Crevice Cave
174	speleothem serve as anchors to an incremental age model that allows the calculation of
175	the time interval covered by the speleothem specimens that contain the field directional
176	swing and intensity low that define the excursion. According to our speleothem record,
177	the entire excursion spans the time interval from 42.25 ka BP to 39.70 ka BP, for a
178	duration of \sim 2,550 years. The main phase of the Laschamp is defined by one speleothem
179	specimen, which encompasses \sim 700 years for which the field direction was of reverse
180	polarity (average VGP latitude of around -30°). These are maximum values, and are
181	consistent with excursion durations determined from sedimentary records around the
182	globe. One of the best records of the Laschamp excursion comes from the Black Sea,
183	where the entire period of directional variations was estimated to be just under 3,000

184	years, with transitional or reverse directions (and associated paleointensity low) lasting
185	\sim 1,600 years, out of which fully reverse directions were maintained for 440 years
186	(Nowaczyk et al., 2012). Similarly, a short full reversal of 0.4–0.8 ka, superimposed on a
187	background of low relative paleointensity that lasted 1.5–2 ka is reported from cores from
188	the Blake Ridge (Bourne et al., 2013), Bermuda Rise (Kissel et al., 1999; Channell et al.,
189	2012), Irminger Basin (Channell, 2006), NW of Iceland and Southern Indian Ocean (Laj
190	et al., 2006). These paleomagnetic data are consistent with cosmogenic nuclide
191	production rates from sediment and ice cores (e.g., Muscheler et al., 2005; Ménabréaz et
192	al., 2011; Nilsson et al., 2011), and are supported by Bayesian inversion of geomagnetic
193	field evolution during the Laschamp in North America (Leonhardt et al., 2009). Bayesian
194	inversion also suggests that the timing and duration of the Laschamp may vary according
195	to locality (Leonhardt et al., 2009). Precise dating of additional speleothem geomagnetic
196	records of the Laschamp from key locations around the globe would provide the means
197	for testing this inferred asynchroneity.
198	Potential of Speleothems in Dating Brunhes-Age Excursions
199	Geomagnetic excursions are reflections of geodynamo dynamics on short time
200	scales. A rigorous documentation of the anatomy, timing, duration, and/or frequency of
201	such short-lived events can be invaluable for theoretical and numerical geodynamo

202 models. Well-constrained age models are critical for characterizing geomagnetic

203 instabilities, and are key in developing high-resolution geomagnetic time series. One such

- 204 effort is the development of the Quaternary geomagnetic instability time scale (GITS).
- 205 Within this framework, Singer (2014) has synthesized the current understanding of
- 206 excursional occurrence within the Brunhes chron. Geomagnetic excursions appear to be

207	concentrated within two ~ 200 ka time periods (722–528 ka BP and 211–17 ka BP), each
208	containing half a dozen excursions, that are in the dating range of the $^{234}U/^{230}$ Th method
209	(Edwards et al., 2003; Dorale et al., 2004, Cheng et al., 2013). The younger Brunhes
210	excursions would particularly benefit from precise pinpointing by taking advantage of
211	this method, which under ideal circumstances yields 2σ uncertainties as low as ± 0.1 ka
212	at 130 ka BP, and \pm 0.3 ka at 200 ka BP (Cheng et al., 2013). The older Brunhes
213	excursions, although pushing the limit of the ^{230}Th dating method (2 σ uncertainties of ±6
214	ka at 500 ka BP and \pm 12 ka at 600 ka BP), could also benefit from this approach,
215	especially if there is a possibility to combine radioisotopic and incremental dating
216	methods. Cheng et al. (2013) provide a good example of dating a speleothem that formed
217	between 640 and 510 ka BP, demonstrating the viability of the 234 U/ 230 Th method.
218	ACKNOWLEDGMENTS
218 219	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota
218219220	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal
218219220221	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal microscopy was performed at the University of Minnesota Imaging Centers. We are
 218 219 220 221 222 	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal microscopy was performed at the University of Minnesota Imaging Centers. We are grateful to John Geissman, Brad Singer, and James Channell for their constructive
 218 219 220 221 222 223 	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal microscopy was performed at the University of Minnesota Imaging Centers. We are grateful to John Geissman, Brad Singer, and James Channell for their constructive reviews. This is Institute for Rock Magnetism contribution 1506.
 218 219 220 221 222 223 224 	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal microscopy was performed at the University of Minnesota Imaging Centers. We are grateful to John Geissman, Brad Singer, and James Channell for their constructive reviews. This is Institute for Rock Magnetism contribution 1506. REFERENCES CITED
 218 219 220 221 222 223 224 225 	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal microscopy was performed at the University of Minnesota Imaging Centers. We are grateful to John Geissman, Brad Singer, and James Channell for their constructive reviews. This is Institute for Rock Magnetism contribution 1506. REFERENCES CITED Blaauw, M., 2012, Out of tune: The dangers of aligning proxy archives: Quaternary
 218 219 220 221 222 223 224 225 226 	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal microscopy was performed at the University of Minnesota Imaging Centers. We are grateful to John Geissman, Brad Singer, and James Channell for their constructive reviews. This is Institute for Rock Magnetism contribution 1506. REFERENCES CITED Blaauw, M., 2012, Out of tune: The dangers of aligning proxy archives: Quaternary Science Reviews, v. 36, p. 38–49, doi:10.1016/j.quascirev.2010.11.012.
 218 219 220 221 222 223 224 225 226 227 	ACKNOWLEDGMENTS This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal microscopy was performed at the University of Minnesota Imaging Centers. We are grateful to John Geissman, Brad Singer, and James Channell for their constructive reviews. This is Institute for Rock Magnetism contribution 1506. REFERENCES CITED Blaauw, M., 2012, Out of tune: The dangers of aligning proxy archives: Quaternary Science Reviews, v. 36, p. 38–49, doi:10.1016/j.quascirev.2010.11.012. Bourne, M.D., Mac Niocaill, C., Thomas, A.L., and Henderson, G.M., 2013, High-

- Outer Ridge: Geophysical Journal International, v. 195, p. 1519–1533,
- doi:10.1093/gji/ggt327.
- 231 Bourne, M.D., Feinberg, J.M., Strauss, B.E., Hardt, B., Cheng, H., Rowe, H.D., Springer,
- G., and Edwards, R.L., 2015, Long-term changes in precipitation recorded by
- 233 magnetic minerals in speleothems: Geology, v. 43, p. 595–598,
- doi:10.1130/G36695.1.
- 235 Channell, J., 2006, Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland
- Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin): Earth and
- 237 Planetary Science Letters, v. 244, p. 378–393, doi:10.1016/j.epsl.2006.01.021.
- 238 Channell, J.E.T., Hodell, D.A., and Curtis, J.H., 2012, ODP Site 1063 (Bermuda Rise)
- revisited: Oxygen isotopes, excursions and paleointensity in the Brunhes Chron:
- 240 Geochemistry Geophysics Geosystems, v. 13, Q02001, doi:10.1029/2011GC003897.
- 241 Cheng, H., Edwards, R.L., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J.,
- Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Alexander, E.C., 2013,
- 243 Improvements in ²³⁰Th dating, ²³⁰Th and ²³⁴U half-life values, and U-Th isotopic
- 244 measurements by multi-collector inductively coupled plasma mass spectrometry:
- Earth and Planetary Science Letters, v. 371–372, p. 82–91,
- doi:10.1016/j.epsl.2013.04.006.
- 247 Dorale, J.A., Edwards, R.L., Ito, E., and González, L.A., 1998, Climate and Vegetation
- 248 History of the Midcontinent from 75 to 25 ka: A Speleothem Record from Crevice
- 249 Cave, Missouri, USA: Science, v. 282, p. 1871–1874,
- doi:10.1126/science.282.5395.1871.

251	Dorale, J.A., Edwards, R.L., Alexander, E.C., Shen, C., Richards, D.A., and Cheng, H.,
252	2004, Uranium-series dating of speleothems: Current techniques, limits, &
253	applications, in Sasowsky, I.D. and Mylroie, J.E., eds., Studies of Cave Sediments:
254	Physical and Chemical Records of Paleoclimate: Netherlands, Springer, p. 177–197,
255	doi:10.1007/978-1-4419-9118-8_10.
256	Edwards, R.L., Gallup, C.D., and Cheng, H., 2003, Uranium-series dating of marine and
257	lacustrine carbonates, in Bourdon, B., Henderson, G.M., Lundstrom, C.C., and
258	Turner, S.P., eds., Reviews in Mineralogy and Geochemistry: Uranium-Series
259	Geochemistry: Washington, DC, Mineralogical Society of America, p. 363-405,
260	doi:10.2113/0520363.
261	Font, E., Veiga-Pires, C., Pozo, M., Carvallo, C., de Siqueira Neto, A.C., Camps, P.,
262	Fabre, S., and Mirão, J., 2014, Magnetic fingerprint of southern Portuguese
263	speleothems and implications for paleomagnetism and environmental magnetism:
264	Journal of Geophysical Research, v. 119, p. 1–28, doi:10.1002/2014JB011381.
265	Geiss, C.E., Egli, R., and Zanner, C.W., 2008, Direct estimates of pedogenic magnetite as
266	a tool to reconstruct past climates from buried soils: Journal of Geophysical
267	Research, v. 113, no. B11, p. B11102, doi: 10.1029/2008JB005669.
268	Gubbins, D., 1999, The distinction between geomagnetic excursions and reversals:
269	Geophysical Journal International, v. 137, p. F1-F4, doi:10.1046/j.1365-
270	246x.1999.00810.x.
271	Kissel, C., Laj, C., Labeyrie, L., Dokken, T., Voelker, A., and Blamart, D., 1999, Rapid
272	climatic variations during marine isotopic stage 3: Magnetic analysis of sediments

- from Nordic Seas and North Atlantic: Earth and Planetary Science Letters, v. 171,
- 274 p. 489–502, doi:10.1016/S0012-821X(99)00162-4.
- 275 Laj, C., and Channell, J.E.T., 2007, Geomagnetic Excursions: Treatise on Geophysics,
- 276 v. 5, p. 373–416, doi:10.1016/B978-044452748-6/00095-X.
- 277 Laj, C., Kissel, C., and Roberts, A.P., 2006, Geomagnetic field behavior during the
- 278 Iceland Basin and Laschamp geomagnetic excursions: A simple transitional field
- 279 geometry?: Geochemistry Geophysics Geosystems, v. 7, p. Q03004,
- 280 doi:10.1029/2005GC001122.
- Laj, C., Guillou, H., and Kissel, C., 2014, Dynamics of the earth magnetic field in the 10-
- 282 75 kyr period comprising the Laschamp and Mono Lake excursions: New results
- from the French Chaîne des Puys in a global perspective: Earth and Planetary
- 284 Science Letters, v. 387, p. 184–197, doi:10.1016/j.epsl.2013.11.031.
- Lascu, I., and Feinberg, J.M., 2011, Speleothem magnetism: Quaternary Science
- 286 Reviews, v. 30, p. 3306–3320, doi:10.1016/j.quascirev.2011.08.004.
- 287 Latham, A.G., Schwarz, H.P., Ford, D.C., and Pearce, G.W., 1979, Palaeomagnetism of
- 288 stalagmite deposits: Nature, v. 280, p. 383–385, doi:10.1038/280383a0.
- Leonhardt, R., Fabian, K., Winklhofer, M., Ferk, A., Laj, C., and Kissel, C., 2009,
- 290 Geomagnetic field evolution during the Laschamp excursion: Earth and Planetary
- 291 Science Letters, v. 278, p. 87–95, doi:10.1016/j.epsl.2008.11.028.
- Lund, S.P., Scwartz, M., Keigwin, L., and Johnson, T., 2005, Deep-sea sediment records
- of the Laschamp geomagnetic field excursion (~41,000 calendar years before
- 294 present): Journal of Geophysical Research, v. 110, B04101,
- doi:10.1029/2003JB002943.

- 296 Ménabréaz, L., Thouveny, N., Bourlès, D.L., Deschamps, P., Hamelin, B., and Demory,
- F., 2011, The Laschamp geomagnetic dipole low expressed as a cosmogenic ¹⁰Be
- atmospheric overproduction at ~41ka: Earth and Planetary Science Letters, v. 312,
- 299 p. 305–317, doi:10.1016/j.epsl.2011.10.037.
- 300 Merrill, R.T., and McFadden, P.L., 1994, Geomagnetic field stability: Reversal events
- 301 and excursions: Earth and Planetary Science Letters, v. 121, p. 57–69,
- 302 doi:10.1016/0012-821X(94)90031-0.
- 303 <jrn>Morinaga, H., Inokuchi, H., and Yaskawa, K., 1989, Palaeomagnetism of
- 304 stalagmites (speleothems) in SW Japan: Geophysical Journal, v. 96, p. 519–528,
- 305 doi:10.1111/j.1365-246X.1989.tb06011.x.</jrn>
- 306 Muscheler, R., Beer, J., Kubik, P.W., and Synal, H.-A., 2005, Geomagnetic field
- 307 intensity during the last 60,000 years based on ¹⁰Be and ³⁶Cl from the Summit ice
- 308 cores and ¹⁴C: Quaternary Science Reviews, v. 24, p. 1849–1860,
- doi:10.1016/j.quascirev.2005.01.012.
- 310 Nilsson, A., Muscheler, R., Snowball, I., Aldahan, A., Possnert, G., Augustinus, P.,
- 311 Atkin, D., and Stephens, T., 2011, Multi-proxy identification of the Laschamp
- 312 geomagnetic field excursion in Lake Pupuke, New Zealand: Earth and Planetary

313 Science Letters, v. 311, p. 155–164, doi:10.1016/j.epsl.2011.08.050.

- 314 Nowaczyk, N.R., Arz, H.W., Frank, U., Kind, J., and Plessen, B., 2012, Dynamics of the
- 315 Laschamp geomagnetic excursion from Black Sea sediments: Earth and Planetary
- 316 Science Letters, v. 351–352, p. 54–69, doi:10.1016/j.epsl.2012.06.050.
- 317 Osete, M.-L., Martín-Chivelet, J., Rossi, C., Edwards, R.L., Egli, R., Muñoz-García,
- 318 M.B., Wang, X., Pavón-Carrasco, F.J., and Heller, F., 2012, The Blake geomagnetic

319	excursion recorded in a radiometrically dated speleothem: Earth and Planetary
320	Science Letters, v. 353-354, p. 173-181, doi:10.1016/j.epsl.2012.07.041.
321	Richards, D.A., and Andersen, M.B., 2013, Time Constraints and Tie-Points in the
322	Quaternary Period: Elements (Quebec), v. 9, p. 45-51,
323	doi:10.2113/gselements.9.1.45.
324	Singer, B.S., 2014, A Quaternary geomagnetic instability time scale: Quaternary
325	Geochronology, v. 21, p. 29-52, doi:10.1016/j.quageo.2013.10.003.
326	Singer, B.S., Guillou, H., Jicha, B.R., Laj, C., Kissel, C., Beard, B.L., and Johnson, C.M.,
327	2009, ⁴⁰ Ar/ ³⁹ Ar, K–Ar and ²³⁰ Th– ²³⁸ U dating of the Laschamp excursion: A
328	radioisotopic tie-point for ice core and climate chronologies: Earth and Planetary
329	Science Letters, v. 286, p. 80-88, doi:10.1016/j.epsl.2009.06.030.
330	Strauss, B.E., Strehlau, J.H., Lascu, I., Dorale, J.A., Penn, R.L., and Feinberg, J.M., 2013,
331	The origin of magnetic remanence in stalagmites: Observations from electron
332	microscopy and rock magnetism: Geochemistry Geophysics Geosystems, v. 14,
333	p. 5006–5025, doi:10.1002/2013GC004950.
334	Xie, S., Evershed, R.P., Huang, X., Zhu, Z., Pancost, R.D., Meyers, P.A., Gong, L., Hu,
335	C., Huang, J., Zhang, S., Gu, Y., and Zhu, J., 2013, Concordant monsoon-driven
336	postglacial hydrological changes in peat and stalagmite records and their impacts on
337	prehistoric cultures in central China: Geology, v. 41, p. 827-830,
338	doi:10.1130/G34318.1.
339	
340	FIGURE CAPTIONS
341	

342	Figure 1. Magnetic properties and chronology of the Laschamp excursion in the
343	speleothem specimen studied from Crevice Cave, Missouri: A) Inclination; B)
344	Declination; C) Relative paleointensity (NRM/ARM); D) Magnetic grain size
345	(χ_{ARM}/IRM) ; E) Virtual geomagnetic pole (VGP) latitude; F) Age-depth model based on
346	²³⁰ Th dates; G) Incremental chronology (from confocal microscopy layer-counting)
347	across the Laschamp, anchored to radioisotopic dates; and H) Speleothem growth rates
348	from the radioisotopic (black) and incremental (grey) age models. Upper and lower limits
349	for declination (dashed lines in B) were calculated by rotating the specimen from -10°
350	(lower limit) to 30° (upper limit). VGP latitude uncertainty (interval delineated by
351	continuous lines in E) was calculated via rotating the specimen through a 40° declination
352	range (see Data Repository). The Laschamp excursion is defined by the three specimens
353	with notable departures in inclination, declination and relative intensity from background
354	values (shades of grey; the main phase of the Laschamp is represented with a darker
355	grey). A close-up of the 3 specimens (G) shows their individual thickness and time period
356	covered. Previous age determinations of 40.7 ± 1.0 (Singer et al., 2009) and 41.3 ± 0.6 ka
357	BP (Laj et al., 2014) are shown for comparison.
358	

360 remanent magnetization (ARM), and isothermal remanent magnetization (IRM) time

361 series. Note deviation of NRM values from trends exhibited by ARM and IRM between

- 362 42 and 39 ka BP; B) Low temperature saturation IRM (LT-SIRM) behavior on warming
- after field-cooled (FC) and zero field-cooled (ZFC) pre-treatments, and room temperature
- 364 saturation IRM (RT-SIRM) behavior on successive warming (black triangles) and

- 365 cooling (open triangles) cycles, showing the presence of oxidized magnetite; C-E)
- 366 Orthogonal projections and azimuthal equidistant plots of specimens defining the
- 367 Laschamp excursion (labeled on the NRM curve in A). Full (open) squares represent the
- 368 horizontal (vertical) projections of the demagnetization vectors (grey arrows). Grey
- 369 symbols are viscous overprints removed by AF peak fields of 5 mT. Unit in orthogonal
- 370 plots is 5×10^{-12} Am². Magnetometer noise level is $\sim 10^{-11}$ Am².
- 371
- ¹GSA Data Repository item 2016xxx, xxxxxxx, is available online at
- 373 www.geosociety.org/pubs/ft2015.htm, or on request from editing@geosociety.org or
- 374 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure1

LascuFig1

LascuFig2

MAGNETIC METHODS

The slab used for paleomagnetism, with a cross section of $1.7 \text{ cm} \times 0.7 \text{ cm}$, was sectioned into 38 specimens, ~0.5 cm in thickness each. After measuring the natural remanent magnetization (NRM), each specimen was demagnetized in stepwise fashion with a D-Tech 2000 alternating frequency (AF) demagnetizer, using peak fields progressively increasing on a logarithmicallyspaced scale from 0.5 mT until the magnetization reached magnetometer noise levels ($\sim 10^{-11}$ Am²). Remanence at each step was independently measured 30 times on each specimen using a 2G Enterprises superconducting quantum interference device magnetometer. Measurements with high noise/signal ratios were excluded from the calculation of the average values. Standard deviations were on the order of 1 nAm²/kg. The characteristic remanence was isolated via principal component analysis (Kirschvink, 1980) using PuffinPlot (Lurcock and Wilson, 2012). We adopted the protocol devised by Peppe et al. (2009) for weak specimens, as follows: to define the characteristic remanence component we used either a) the best-fit line through a minimum of three consecutive demagnetization steps that trended toward the origin and had a maximum angular deviation (MAD) less than 20° (for specimens with quasi-linear trajectories, e.g., Figs. DR2, 2C-D), or b) a minimum of 4 consecutive demagnetization steps anchored to the origin, with MAD <20° (for specimens with directions clustering around one point, e.g., Fig. 2E). Because the speleothem is not azimuthally oriented, declination values were rotated so that average baseline values were situated in the interval [-10°, 30°], corresponding to realistic field declination values at the time in North America (e.g., Lund et al., 2005; Channell, 2006; Böhnel and Molina-Garza, 2002; Negrini et al., 2014). Mean declination was obtained by averaging adjusted declinations in the considered azimuthal interval at 1° increments. Virtual geomagnetic pole (VGP) coordinates were calculated at each adjusted declination step, and then combined to obtain mean and standard deviation values. After completing the NRM demagnetization, anhysteretic remanent magnetization (ARM) was imparted in the presence of a 0.05 mT bias field superimposed on an AF field decaying from a peak value of 100 mT, at a rate of 5 μ T per half cycle. ARM susceptibility (χ_{ARM}) was calculated by normalizing

the ARM to the bias field. Isothermal remanent magnetization (IRM) was imparted in a 1 T direct field using an impulse magnetizer. The ARM/IRM ratio (χ_{ARM} /IRM), computed by normalizing the ARM susceptibility by the IRM, is used as a magnetic grain size indicator, with higher values indicating finer bulk magnetic grain size.

Additional discrete (<500 mg) specimens from the speleothem were used for low temperature magnetic measurements to determine magnetic mineralogy. Low temperature saturation IRM was imparted in a 2.5 T field at 10 K following two separate treatments: field cooling in a 2.5 T field and zero-field cooling, from 300 to 10 K. Remanence behavior was then measured in zero field at 5 K intervals upon warming to room temperature. Finally, the behavior of a room temperature saturation IRM imparted in a 2.5 T field was measured in zero field at 5 K intervals while cooling the sample down to 10 K and then warming it back to 300 K.

REFERENCES CITED

- Böhnel, H., and Molina-Garza, R., 2002, Secular variation in Mexico during the last 40,000 years: Physics of the Earth and Planetary Interiors, v. 133, p. 99–109.
- Channell, J., 2006, Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin): Earth and Planetary Science Letters, v. 244, no. 1-2, p. 378–393, doi: 10.1016/j.epsl.2006.01.021.
- Kirschvink, J.L., 1980, The least-squares line and plane and the analysis of paleomagnetic data: Geophysical Journal of the Royal Astronomical Society, v. 62, p. 699–718.
- Lund, S.P., Scwartz, M., Keigwin, L., and Johnson, T., 2005, Deep-sea sediment records of the Laschamp geomagnetic field excursion (~41,000 calendar years before present): Journal of Geophysical Research, v. 110, B04101, doi: 10.1029/2003JB002943.
- Lurcock, P.C., and Wilson, G.S., 2012, PuffinPlot: A versatile, user-friendly program for paleomagnetic analysis: Geochemistry, Geophysics, Geosystems, v. 13, no. 6, Q06Z45, doi: 10.1029/2012GC004098.
- Negrini, R.M., McCuan, D.T., Horton, R.A., Lopez, J.D., Cassata, W.S., Channell, J.E.T., Verosub, K.L., Knott, J.R., Coe, R.S., Liddicoat, J.C., Lund, S.P., Benson, L. V, and Sarna-Wojcicki, A.M., 2014, Nongeocentric axial dipole field behavior during the Mono Lake excursion: Journal of Geophysical Research, v. 119, p. 2567–2581, doi: 10.1002/2013JB010846.
- Peppe, D.J., Evans, D.A.D., and Smirnov, A.V., 2006, Magnetostratigraphy of the Ludlow Member of the Fort Union Formation (Lower Paleocene) in the Williston Basin, North Dakota: Geological Society of America Bulletin, v. preprint, no. 2008, p. 1, doi: 10.1130/B26353.1.

Table DR1. ²³⁰Th dating results. The error is 2o

Sample depth (mm)	ple ²³⁸ U (mm) (ppb)		232 (p	²³² Th ²³⁰ Th / ²³ (ppt) (atomic ×		/ ²³² Th c x10 ⁻⁶)	³² Th δ ²³⁴ U* (10 ⁻⁶) (measured)		²³⁰ Th / ²³⁸ U (activity)		²³⁰ Th Ag (uncorre	²³⁰ Th Age (yr) (uncorrected)		²³⁰ Th Age (yr) (corrected)		$\delta^{234} U_{Initial}^{\dagger}$ (corrected)		²³⁰ Th Age (yr BP) [§] (corrected)	
1.90 ±0.30	790	±1	18977	±380	612	±12	3507.5	±3.3	0.8925	±0.0015	23399	±48	23252	±115	3745	±4	23189	±115	
13.45 ±0.25	688	±1	4537	±91	2921	±59	3079.8	±3.5	1.1679	±0.0022	35237	±82	35193	±87	3401	±4	35130	±87	
23.00 ±0.50	778	±1	941	±19	16874	±342	2935.3	±4.3	1.2375	±0.0030	39250	±121	39242	±121	3279	±5	39179	±121	
30.95 ±0.35	1003	±2	835	±17	24854	±504	2835.8	±3.9	1.2548	±0.0032	41102	±132	41096	±132	3184	±5	41033	±132	
37.80 ±0.30	828	±1	489	±10	35313	±722	2780.2	±3.3	1.2656	±0.0024	42234	±101	42230	±101	3132	±4	42167	±101	
49.40 ±0.30	772	±1	520	±11	31206	±639	2641.8	±2.8	1.2757	±0.0024	44560	±106	44556	±106	2996	±3	44493	±106	
82.10 ±0.40	580	±1	1512	±30	8627	±174	2451.1	±2.8	1.3647	±0.0022	51538	±114	51518	±114	2835	±3	51455	±114	
116.45 ±0.35	648	±1	5408	±108	2863	±58	2441.3	±3.5	1.4493	±0.0032	55650	±167	55587	±173	2856	±4	55524	±173	
150.90 ±0.50	550	±1	36857	±739	365	±7	2308.2	±3.3	1.4856	±0.0032	60317	±181	59793	±412	2732	±5	59730	±412	
185.80 ±0.80	449	±1	10149	±203	1157	±23	2335.8	±2.9	1.5854	±0.0031	64768	±177	64595	±215	2803	±4	64532	±215	

U decay constants: $\lambda_{238} = 1.55125x10^{-10}$ (Jaffey et al., 1971) and $\Delta_{234} = 2.82206x10^{-6}$ (Cheng et al., 2013). Th decay constant: $\lambda_{230} = 9.1705x10^{-6}$ (Cheng et al., 2013).

 δ^{234} U = ([²³⁴U/²³⁸U]_{activity} - 1)x1000.

 $^{\dagger}\delta^{234}U_{initial}$ was calculated based on 230 Th age (T), i.e., $\delta^{234}U_{initial} = \delta^{234}U_{measured} \times e^{\lambda_{234xT}}$.

Corrected ²³⁰Th ages assume the initial ²³⁰Th/²³²Th atomic ratio of 4.4 ±2.2 x10⁻⁶. Those are the values for a material at secular equilibrium, with the bulk earth ²³²Th/²³⁸U value of 3.8. The errors are arbitrarily assumed to be 50%.

[§]B.P. stands for "Before Present" where the "Present" is defined as the year 1950 A.D.

Table DR2. Paleomagnetic and rock magnetic time series

Age (yr BP)	NRM (Am2/kg)	ARM (Am2/kg)	IRM (Am2/kg)	NRM/ARM	χ _{ARM} /IRM (mm/A)	Declination (degrees)	Inclination (degrees)	VGP Latitude (degrees)	VGP Latitude error (degrees)
23292	5.33E-07	2.56E-06	6.25E-05	0.207922	0.515064	28.26	52.67	66.6	10.7
27944.6	4.75E-08	8.34E-08	1.29E-06	0.569124	0.81343	19.49	49.38	71.3	9.3
33114.1	1.42E-07	2.70E-07	6.42E-06	0.524644	0.529256	30.46	53.68	65.2	10.7
36423.2	8.23E-08	1.69E-07	2.82E-06	0.487076	0.75422	-15.56	46.81	72	7.9
38542.9	8.45E-08	9.81E-08	2.35E-06	0.862019	0.524338	34.17	65.11	63.2	9.1
39995	1.13E-08	3.68E-08	5.01E-07	0.306445	0.922701	84.89	30.47	14	10.6
41103.1	3.73E-09	4.71E-08	4.73E-07	0.0791692	1.25149	133.79	11.32	-28.3	8.8
41910.1	5.23E-09	2.96E-08	4.21E-07	0.176279	0.884015	28.23	9.82	47.3	7.4
42858.4	2.79E-08	4.47E-08	5.58E-07	0.62411	1.00707	12.99	56.03	78	8.8
43845.9	1.66E-08	3.85E-08	5.42E-07	0.430773	0.892482	-4.87	57.31	80.8	6.2
44843.8	2.33E-08	4.75E-08	8.09E-07	0.490018	0.737676	67.55	66.02	41.3	8.8
45897.7	5.00E-08	6.30E-08	9.53E-07	0.793532	0.831496	10.50	75.71	62.9	2.1
46941	3.51E-08	6.10E-08	1.64E-06	0.576282	0.465807	33.40	29.22	52.5	9.2
47973.6	4.29E-08	5.99E-08	1.10E-06	0.715997	0.682593	4.97	53.26	79.3	5.5
49016.9	3.09E-08	6.95E-08	1.09E-06	0.444806	0.802337	4.76	43.75	73.6	4
50070.8	3.19E-08	5.24E-08	8.62E-07	0.608729	0.763337	19.49	46.98	70	8.9
51124.8	3.62E-08	1.07E-07	1.37E-06	0.33816	0.980018	-18.46	53.65	74	9.9
51833.8	2.75E-08	4.14E-08	8.18E-07	0.664378	0.635575	13.16	74.37	64.4	2.9
52402.5	4.26E-08	6.41E-08	7.80E-07	0.664964	1.03262	17.99	69.03	69.4	5.6
52988.8	1.59E-07	2.20E-07	4.79E-06	0.722937	0.576672	0.00	47.33	76.2	3.7
53584.1	2.03E-07	3.06E-07	8.19E-06	0.66483	0.469031	-1.36	50.51	78.2	4.3
54170.5	7.73E-08	1.60E-07	2.63E-06	0.483591	0.762092	9.07	56.13	79.5	7.4
54742.1	1.53E-07	3.63E-07	6.29E-06	0.421753	0.726309	35.50	56.02	61.9	10.7
55322.5	1.52E-07	2.27E-07	5.05E-06	0.668087	0.56533	11.71	36.99	67.8	5.5
55908.5	1.54E-07	2.01E-07	6.96E-06	0.766462	0.361779	-13.45	31.26	64	5.5
56494.6	2.60E-07	4.25E-07	1.76E-05	0.6121	0.30387	-12.93	35.84	66.7	5.7
57099	4.21E-07	7.48E-07	3.20E-05	0.563701	0.293534	-11.50	52.44	77	7.6
57691.2	8.23E-07	2.43E-06	0.00012813	0.338623	0.238231	-2.55	57.84	81	5.4
58283.3	7.06E-07	1.98E-06	0.00012026	0.35683	0.206741	11.93	55.31	78.2	8.3
58878.6	3.56E-07	1.19E-06	5.83E-05	0.298329	0.257438	-9.26	65.56	75.4	4.8
59437.1	3.13E-07	1.24E-06	6.88E-05	0.252824	0.225952	12.31	33.21	65.4	5.3
60057	6.65E-07	2.36E-06	0.00013179	0.28189	0.225067	-16.21	45.98	71.2	7.9
60769	6.73E-07	1.02E-06	5.44E-05	0.65775	0.23625	34.71	58.18	63	10.5
61477.7	4.66E-07	1.20E-06	6.84E-05	0.388535	0.220435	24.26	41.07	64	9.1
62172.5	2.96E-07	6.18E-07	2.78E-05	0.478151	0.279665	0.44	38.51	70.7	2.9
62888.1	3.04E-07	7.64E-07	3.37E-05	0.398166	0.284751	-10.61	39.09	69.4	5.4
63596.7	3.51E-07	1.03E-06	4.18E-05	0.339652	0.311065	12.76	47.12	73.4	7
64284.7	1.64E-07	9.09E-07	3.12E-05	0.180789	0.366401	5.28	58.74	80.5	5.9

Depth (mm)	Age (yrs BP)	Growth rate (mm/kyr)	Depth (mm)	Age (yrs BP)	Growth rate (mm/kyr)
22.500	39192	4.24	29.168	40770	6.54
22.623	39221	4.24	29.522	40812	8.41
22.777	39266	3.41	29.772	40849	6.78
23.187	39392	3.25	29.859	40863	6.21
23.316	39434	3.07	30.312	40917	8.38
23.592	39551	2.37	30.410	40928	8.91
23.623	39564	2.37	30.724	40964	8.72
24.053	39742	2.42	30.860	41001	3.68
24.178	39763	5.95	30.952	41014	7.10
24.368	39813	3.80	31.149	41040	7.56
24.436	39833	3.37	31.423	41076	7.63
24.475	39847	2.80	31.448	41081	5.00
24.542	39870	2.91	31.669	41116	6.32
24.624	39894	3.40	31.771	41131	6.78
24.690	39909	4.43	32.016	41166	7.00
24.725	39917	4.41	32.282	41209	6.19
24.976	39977	4.18	32.368	41223	6.16
25.188	40017	5.29	32.578	41258	5.99
25.366	40048	5.76	32.648	41270	5.85
25.408	40057	4.67	32.740	41287	5.37
25.654	40109	4.73	32.922	41318	5.87
25.858	40156	4.34	33.086	41348	5.48
26.116	40214	4.44	33.460	41408	6.23
26.203	40229	5.82	33.767	41452	6.98
26.267	40242	4.96	33.963	41485	5.95
26.380	40261	5.91	34.192	41522	6.18
26.503	40281	6.18	34.359	41547	6.66
26.762	40331	5.18	34.610	41592	5.59
26.977	40373	5.11	34.688	41608	4.84
27.201	40417	5.09	34.760	41624	4.52
27.270	40432	4.62	34.793	41631	4.75
27.492	40466	6.51	34.898	41652	4.96
27.563	40482	4.45	34.977	41668	4.94
27.801	40523	5.80	35.281	41716	6.34
27.896	40552	3.29	35.503	41747	7.15
27.986	40569	5.26	35.607	41767	5.22
28.198	40611	5.05	36.266	41869	6.46
28.312	40630	6.00	36.410	41889	7.16
28.442	40646	8.16	36.478	41900	6.20
28.614	40677	5.52	36.573	41917	5.62
28.708	40694	5.54	37.191	42013	6.43
28.788	40708	5.70	37.623	42084	6.08
28.902	40728	5.71	37.766	42111	5.30
29.083	40757	6.26	38.100	42167	5.97

Fig. DR1. Confocal micrograph showing fluorescent annual layering in the studied speleothem.

Fig. DR2. Orthogonal projection and azimuthal equidistant plot of the specimen from 62 ka BP. Full (open) squares represent the horizontal (vertical) projections of the demagnetization vectors (grey arrows). Magnetometer noise level is $\sim 10^{-11}$ Am².

~62 ka BP

