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Abstract 

Examples of transgenerational transmission of environmentally induced epigenetic traits remain 

rare and disputed. Abiotic stress can release the transcription of epigenetically suppressed 

transposons and, noticeably, this activation is only transient. Therefore, it is likely that 

mechanisms countering the mitotic and meiotic inheritance of stress-triggered chromatin changes 

must exist but are undefined. To reveal these mechanisms, we screened for Arabidopsis mutants 

impaired in the resetting of stress-induced loss of epigenetic silencing and found that two 

chromatin regulators, DDM1 and MOM1, act redundantly to restore pre-stress state and thus 

erase “epigenetic stress memory”. In ddm1 mutants, stress hyperactivates heterochromatic 

transcription and transcription persists longer than in the wild type. However, this newly 

acquired state is not transmitted to the progeny. Strikingly, although stress-induced transcription 

in mom1 mutants is as rapidly silenced as in wild type, in ddm1 mom1 double mutants, 

transcriptional signatures of stress are able to persist and are found in the progeny of plants 

stressed as small seedlings. Our results reveal an important novel function of DDM1 and MOM1 

in rapid resetting of stress induced epigenetic states, and therefore also in preventing their mitotic 

propagation and transgenerational inheritance. 

 

Significance Statement 

Much attention has been drawn to research, which suggests that environmental factors, including 

stress and maternal care, alter the way the genetic code is executed. These epigenetic changes in 

gene regulation are thought to be stable enough to be heritable and thus may influence 

subsequent generations. Such prospects are as intriguing as they are troubling, since it is possible 

to imagine that accumulation of stress memories over several generations could make life 

difficult. Therefore, we have questioned whether mechanisms exist that could prevent the 

inheritance of stress-induced epigenetic changes and have discovered such mechanisms using 

forward genetics in Arabidopsis. Interestingly, one of the critical activities erasing stress 

memories is conserved between plants and mammals. 
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Although environmentally induced traits and their transgenerational transmission in plants have 

been described repeatedly, trait stability and the involvement of epigenetic mechanisms in their 

generation remain controversial (1-3). In contrast, it has been well documented that 

environmental challenges such as elevated temperature can transcriptionally activate 

chromosomal loci normally silenced by repressive chromatin (4-7). However, this release of 

epigenetic silencing, unaccompanied by changes in DNA methylation or histone modifications, 

is only transient (4, 5). Such non-canonical release of transcriptional gene silencing (TGS) is 

similar to alterations in epigenetic regulation observed in the mom1 mutant, where release of 

TGS occurs without major changes in epigenetic marks (8-13). Although, molecular mechanisms 

used by MOM1 in TGS regulation are not well understood, genetic studies have linked MOM1 

activity to small interfering RNAs (14) and RNA processing (15). In addition, structure/function 

studies have suggested that a conserved domain of MOM1 forms a homodimer, which is possibly 

required as a binding platform for additional silencing factors (13, 16). 

The rapid re-silencing of heterochromatic transcription induced by heat stress seems to involve 

changes in nucleosome occupancy and re-silencing is delayed in mutants with impaired 

chromatin assembly (5). These observations suggest that suppressive chromatin has certain 

plasticity in response to stress, but also a robust buffering system that resets its pre-stress state. 

This counters the persistence of stress-induced epigenetic alterations during subsequent 

development and thus their transmission to the progeny. 

 

Results and Discussion 

To identify factors involved in the erasure of “epigenetic stress memory”, we performed a 

genetic screen using Arabidopsis line LUC25 carrying a transcriptionally silenced transgene 

encoding firefly luciferase (LUC) (14), which as an endogenous chromosomal TGS target loci 

can be transiently activated after heat stress. First, we introduced the mom1 mutation into LUC25 

(mom1 LUC25). The mom1 mutation partially releases silencing of LUC25, producing weak 

luciferase signals in roots but not aerial parts, where the LUC transgene remains silenced. 

Importantly, the LUC transgene in mom1 LUC25 is strongly activated by heat stress, similar to 

LUC25 (Fig. S1A). We presumed that the introduction of the mom1 mutation would enhance 
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stress-induced luciferase signals, increasing clarity and thus the efficiency of the mutant screen. 

Moreover, although the mom1 mutation does not directly influence the kinetics of stress-induced 

TGS release, MOM1 is involved in buffering epigenetic states of chromatin (11). We 

hypothesized, therefore, that any deficiency in such buffering would facilitate phenotypic 

detection of additional epigenetic regulators involved in the rapid restoration of TGS after stress 

and, thus, in the erasure of epigenetic stress memory.  

M2 seedlings of mutagenized mom1 LUC25 were germinated for 5 days and individuals showing 

enhanced luciferase signals prior to stress treatment were removed, since these plants release 

TGS constitutively. The remaining seedlings were subjected to heat stress and plants showing 

significantly stronger and/or longer-lasting luciferase signals were selected and grown to 

maturity (Fig. S1B). We examined their M3 progeny to determine whether selected phenotypes 

were heritable. Interestingly, several plants selected in the M2 produced progeny uniformly 

showing high luciferase signals prior to heat stress in the M3. Since such “constitutive” 

phenotypes had been discarded in the previous M2 generation, we concluded that their 

appearance in the M3 reflects transgenerational transmission of heat stress-induced TGS release 

that occurred in the previous plant generation (Fig. 1A). In other words, we may have recovered 

mutant plants severely impaired in the erasure of epigenetic stress memory. Focusing on four 

independent lines with these characteristics, we identified causal mutations by a combination of 

genetic mapping and whole genome sequencing. Two independent mutations resided in a gene 

encoding nucleosome remodeler DDM1 (17-20) (Fig. 1B). The DDM1 protein, conserved 

between plants and mammals, is required for maintenance of DNA methylation, thus TGS (21, 

22). It has been suggested that DDM1 alters accessibility of H1-containing heterochromatin to 

DNA methyltransferases (23). 

Recovery of ddm1 mutants in our screen was both surprising and disturbing. Surprising, since 

ddm1 mutants are known to release epigenetic silencing independently of stress and, therefore, 

should have been eliminated from the screen in the M2. Disturbing, since ddm1 mutants have a 

transgenerationally progressive effect on the loss of DNA methylation and silencing release (18, 

19). Thus, luciferase activity observed in the M3 could simply reflect this ddm1 property rather 

than transgenerational memory of heat stress. To address these reservations, we first analyzed 

DNA methylation of the LUC promoter. Cytosine methylation patterns were only slightly altered, 

however, surprisingly high levels of methylation remained in the M3 of both mutant lines (Fig. 1 
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C and D), which is unusual for ddm1 mutants strictly associated with hypomethylation-mediated 

TGS release (17, 20, 24, 25). This supported the possibility that the heat stress-activated state of 

the LUC transgene, which is independent of DNA methylation (4, 5), can in fact be maintained 

and transmitted to the next generation in the ddm1 background. This would define a novel and 

potentially crucial activity of DDM1 in reversing TGS after it has been destabilized by 

environmental changes/stress.  

The only way to test this hypothesis was by the re-creation and analysis of the ddm1 mutant line 

with a naïve and, thus, still-silenced LUC transgene (Fig. 2A). To obtain such a line, we crossed 

the commonly used allele of ddm1 (ddm1-2) (18) into LUC25 and subjected the F2-segregating 

progeny to temperature stress. Importantly, under control growth conditions, luciferase signals 

remained at the LUC25 level and no differences between segregating F2 individuals were 

recorded (Fig. 2B). This suggested that the LUC transgene remained silent in the first generation 

of ddm1 mutants and explains the initially unexpected presence of ddm1 among plants subjected 

to heat stress during the mutant screen. Notably, heat stress applied to segregating F2 seedlings 

revealed individuals with very strong luciferase signals (Fig. 2B) in proportion close to expected 

segregation ratio for plants homozygous ddm1 mutation containing LUC plants (18.75%). The 

genotyping of the segregating population at DDM1 and LUC loci confirmed that, all of these 

plants were found to be homozygous for the ddm1-2 mutation and contained LUC transgene in 

homozygous or hemizygous state, which had no influence on the intensity of LUC signals. 

Furthermore, we performed an analogous genetic experiment introducing the ddm1-2 allele into 

another line (L5) (26) carrying a silent transgenic locus for the glucuronidase marker gene 

(GUS). As with the LUC transgene, we observed heat stress-dependent hyperactivation of GUS 

expression in ddm1-2 mutants (Fig. S2). These results demonstrated that DDM1 down-regulates 

stress-induced heterochromatic transcription. Moreover, this novel DDM1 activity appears to be 

independent of changes in DNA methylation, with which so far DDM1 was very tightly 

associated.  

However, we found that in ddm1-2 mutants the stress-hyperactivated LUC transgene was re-

silenced within a few days (Fig. 2B) and there was no difference in LUC signals in the progeny 

(F3 generation) between stressed and non-stressed ddm1-2 LUC25 plants (Fig. 2D). 



 6 

Considering the genetic screen was performed in the mom1 LUC25 background, we repeated the 

genetic reconstruction experiment including the mom1 mutation. ddm1-2 was crossed with mom1 

LUC25 and stress-induced LUC activation in the segregating F2 populations was examined as 

before, as well as its inheritance in the F3 (Fig. S3). LUC phenotyping and subsequent 

genotyping of F2 plants showed that the mom1 mutation alone did not affect stress-induced 

expression of LUC, confirming the previous observations with the mom1 LUC25 line. Although, 

the stress-induced LUC activation levels in the ddm1-2 mom1 double mutants were similar to 

those in the ddm1-2 single mutants (Fig. S4A), however, the LUC signals remained high only in 

ddm1-2 mom1 double mutants (Fig. 2C). Furthermore, in the next (F3) generation, progeny from 

stressed ddm1-2 mom1 LUC25 plants showed significantly higher LUC signals than non-stressed 

ddm1-2 mom1 LUC25 controls (Fig. 2D and Fig. S4B), indicating that the stress-induced active 

state of the LUC transgene initiated at the small seedling stage could persist throughout plant 

development and be transgenerationally transmitted, however only in ddm1 mom1 double 

mutants.  

To further investigate stability and possible transgenerational inheritance in ddm1 mom1 double 

mutants of stress-triggered TGS release, we examined transcriptional changes at endogenous 

chromosomal loci. For this we first performed RNA-seq analyses on four independent 

populations of stressed and control-treated ddm1-2 mom1 double mutant plants. This genome-

wide approach should uncover chromosomal loci stably activated following the stress subjected 

to the parental plants. The MDS plot analysis of the RNA-seq data revealed well-clustered 

biological repetitions for each individual line (Fig. 3A), indicating the robustness of the RNA-

seq data. Noticeably, the largest difference between biological repetitions was seen for ddm1 

mom1 double mutant seedlings derived from ancestors not subjected to stress. This may simply 

reflect an intrinsic property of ddm1 mom1 double mutants, which exhibit variation in 

heterochromatin silencing among individual plants (27). Most importantly, the samples were 

clearly clustered according to whether seedlings of the previous generation were stressed or not 

(Fig. 3A). Therefore, the genome-wide transcriptional profiles supported and extended our 

previous conclusion based on transgenic loci that temperature stress-activated transcription 

occurs genome wide, and that newly acquired transcriptional signatures can be 

transgenerationally inherited in ddm1 mom1 double mutants.  
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Of the loci affected in the progeny of stressed ddm1-2 mom1, compared with progeny of control-

treated ddm1-2 mom1, 340 loci were up-regulated more than twofold (P<0.01) and 484 down-

regulated less than twofold (P<0.01) (Fig. 3B). Approximately 60% and 20% of the up-regulated 

and down-regulated transcripts, respectively, are derived from transposable elements (TEs) (Fig. 

3B). These results are consistent with our previous demonstration that heterochromatic regions 

enriched in TEs are predominantly transcriptionally activated by temperature stress, and that 

euchromatic regions are either activated or repressed by this treatment (4). Such a transcriptional 

signature of the genome-wide stress-induced alteration of transcription appears to be inherited by 

the progeny of ddm1 mom1 double mutant plants.  

Due to economic constraints, we refrained from genome-wide analyses of plant populations 

constituting various experimental controls. Using the transcriptional profiling data described 

above we selected several genomic loci displaying heritable stress-induced alteration of 

transcription in ddm1 mom1 double mutants, and examined by quantitative RT-PCR persistence 

of their transcriptional activation in wild type and single mom1 or ddm1 mutant plants relative to 

stress treatments in the preceding generation. No significant differences in transcript levels were 

found between the progenies of stressed and control wild-type plants or single mutants, which is 

in contrast to ddm1 mom1 double mutants (Fig. 3C). This supports our previous conclusion, 

derived from the properties of transgenic loci, that DDM1 and MOM1 both act redundantly in 

resetting chromatin status destabilized by heat stress, which prevents transgenerational 

propagation of transcriptional stress memory (Fig. 4).  

A closer look at the results of the genome-wide transcriptional analyses reveals that DDM1 and 

MOM1 are not the only factors reverting the properties of chromatin affected by stress. We found 

previously that approximately 3,000 loci are activated under stress conditions analogous to those 

used here (4) and, thus, only a small fraction (340) remain transgenerationally active in the ddm1 

mom1 double mutants. This suggests that the prevention of transgenerational transmission of 

stress memory extends far beyond the activities of DDM1 and MOM1 and, thus, that the 

unequivocal demonstration of transgenerational transmission of environmentally-induced 

epigenetic traits remains a significant challenge. 
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Materials and Methods 

Plant materials 

The LUC25 line was described previously(14). mom1 LUC25 was obtained by crossing mom1-6 

and LUC25. mom1-6 seeds were obtained from INRA-Versailles, Genomic Resource Center 

(FLAG_340E12) and ddm1-2 seeds were provided by Dr. E. Richards. LUC25 and mom1-6 are 

in the Wassilewskija (WS) background and ddm1-2 in the Columbia (Col-0) background. 

 

Mutagenesis and screening 

mom1 LUC25 seeds (20,000) were mutagenized in 0.3% EMS for 15 h. After washing with 

water, seeds were germinated on soil to give 78 M2 pools, each derived from approximately 150 

M1 plants. For each pool, 1,000 seeds were plated on 1/2 MS medium (0.8% agar, 1% sucrose) 

and screened for mutants by spraying with a luciferin (Biosynth) solution (31.5 mg per 100 ml 

water) and examining treated seedlings using an Aequoria dark box with a mounted ORCAII 

CCD camera (Hamamatsu). Luciferase luminescence and chlorophyll auto-fluorescence image 

overlays were created using the Wasabi software package (Hamamatsu). Isolated mutants were 

crossed with wildtype in the Col-0 background to generate mapping populations. 

 

DNA methylation analysis 

Bisulphite sequencing was performed as described previously (14). Sequencing data were 

analyzed with Kismeth (http://katahdin.mssm.edu/kismeth)(28). Primers used for bisulphite 

sequencing are listed in Table S1. 

 

Histochemical GUS staining 

Staining was performed on cotyledons of 12-day-old plants as described previously (13).  

 

 

 

http://katahdin.mssm.edu/kismeth
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RAN-seq analyses 

Total RNA samples were isolated from 7-day-old seedlings using TRI reagent (Sigma). The 

libraries were prepared using a TruSeq RNA Sample Prep Kit (Illumina) and sequenced using 

HiSeq 2500 (Illumina) with single-end 50 base reads. The trimmed reads were mapped with the 

TopHat v1.3.3 software to the TAIR10 annotations. The normalization and differential 

expression analysis were performed with R/Bioconductor package edgeR v.2.6.12 (29).  

 

Real-time qPCR analysis 

Total RNA was isolated from 7-day-old seedlings using TRI reagent (Sigma). After RQ1 DNase 

treatment (Promega), cDNA was synthesized with the Superscript VILO cDNA synthesis kit 

(Life Technologies). Real-time qPCR analyses were performed using Power SYBR Green PCR 

Master Mix (Life technologies) in ABI7900FT (Life technologies). PCR conditions were 95°C 

for 10 min followed by 40 cycles of 95°C for 15 s and 60°C for 60 s. Primers are listed in Table 

S1. 
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Figure Legends 

 

Fig. 1. Identification and characterization of mutants showing transgenerational 

transmission of the heat-stress release of TGS. (A) Bioluminescence images of the progeny 

(M3 and M4) of two mutant candidates (9.2.1 and 62.2.1) and of the controls (LUC25, and mom1 

LUC25), all grown under control conditions at 21°C. The two mutant lines are M3 progeny of 

heat stressed M2 parents recovered from the mutant screen. The green and red signals are 

luciferase luminescence and auto-fluorescence of chlorophyll, respectively. (B) Two new mutant 

alleles of the DDM1 gene (9.2.1 and 62.2.1) were identified in the screen. The ddm1-2 allele was 

used for the experiments presented in Fig. 2. (C) DNA methylation distribution at the ubiqutin3 

promoter of the LUC transgene in 9.2.1 (M3), 62.2.1 (M3), and LUC 25 (WT). Colored and open 

circles represent methylated and unmethylated cytosines respectively, with red representing CG 

sites, blue CHG and green CHH (H can be A,T or C). (D) Percentage of cytosine methylation in 

the ubiqutin3 promoter. Black bars, 9.2.1; grey bars, 62.2.1; white bars, LUC25. 
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Fig. 2. Inheritance of stress-induced transcriptional activation of LUC. (A) Crossing scheme 

for the re-creation of the ddm1-2 mutant line with the naïve LUC transgene. P0: ddm1-2 was 

crossed with WT LUC25, F1: heterozygous for ddm1 and carrying the hemizygous naïve LUC 

transgene, F2: ddm1 homozygous mutants are segregated in the progeny.F2 seedlings were 

separated into two subpopulations, one of which was subjected to heat stress. Bioluminescence 

images were captured (panel B) and each plant was genotyped at the DDM1 and LUC loci. (B) 

Bioluminescence images of segregating progeny of a hybrid between ddm1-2 and LUC25 (Fig. 

2A). The F2 seedlings were expected to include 18.75 % of individuals homozygous for the 

ddm1-2 mutation and carrying the LUC transgene, these were predicted to display enhanced 

luminescence. Rows of LUC25 and mom1 LUC25 plants are shown as a control. Note, LUC 

signals in mom1 after heat stress are restricted to roots. (C) Bioluminescence images of 

segregating progeny of a cross between ddm1-2 mom1 LUC25 (for details Fig. S3). The F2 

progeny is expected to include 4.69 % of individuals homozygous for both ddm1-2 and mom1 

and carrying the LUC transgene. White arrowheads point towards ddm1-2 mom1 double mutant 

plants, as revealed by the genotyping of the population at DDM1 and MOM1 loci. Quantification 

of LUC signals is displayed in Fig. S4. (D) Bioluminescence images of ddm1 LUC25 and ddm1 

mom1 LUC25 F3 progenies (as depicted on panel A) of F2 heat stressed parents at the seedlings 

stage (+stress) or non-stressed controls (-stress). Two independent F3 populations (upper or 

lower row) derived from two ddm1 LUC25 or ddm1 mom1 LUC25 F2 plants (panel B and C).  
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Fig. 3. Genome-wide analysis of transcriptional changes in the progeny of heat-stressed 

ddm1 mom1. (A) Multidimensional scaling (MDS) plot (R/Bioconductor) showing the overall 

similarity of RNA expression patterns between samples using RNA-seq data of two biological 

repetitions. These were performed with two independent populations (circled) of ddm1 mom1 

progeny plants obtained from stressed or non-stressed parents at the seedling stage (mom1 

transcriptome was used as an additional control). (B) Pie charts showing the difference in 

functional distribution of up- and down-regulated loci between heat-stressed or non-stressed 

double mutants. (C) Relative levels of mRNA of selected targets as determined by qRT-PCR. 

Values were normalized to 18s ribosomal RNA. The mean of one sample of stressed ddm1 mom1 

was set to 1. White and gray bars indicate the progeny of control plants and heat-stressed plants, 

respectively. Pooled F3 plants (approximately 20 individuals), progeny of two independent F2 

plants for each category were used for these analyses. Gene annotations of each target: 

AT1G43880 - ATLANTYS1 (TE), AT2G05564 - VANDAL2 (TE), AT5G29560 - caleosin-

related family protein, AT5G34790 - VANDAL20 (TE), AT2G12345 - ATHILA3 (TE), 

AT5G48850 - ATSDI1, SULPHUR DEFICIENCY-INDUCED 1. Error bars indicate standard 

deviation of results from three repeated experiments. *P < 0.01, student's t test. 
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Fig. 4. Model summarizing a putative epigenetic mechanism preventing the transmission of 

“stress memory” to progeny. Schematic illustration on a possible chromatin states upon heat 

stress. Although heterochromatic loci are transcriptionally activated by temperature stress in WT 

and mom1 mutants, they are rapidly re-silenced after stress is removed. Stress-induced 

transcription is hyper-activated and persists longer in ddm1 mutants than in WT and mom1; 

however, the altered transcriptional status is not transmitted to the progeny. In contrast, stress-

induced transcriptional activation in ddm1 mom1 double mutants is transgenerationally inherited. 

The transcriptional activation in ddm1 mom1 could due to altered positioning of nucleosome or 

other modifications of chromatin properties. 

 

 



 18 

 

Fig. 1 



 19 

 
Fig. 2 



 20 

 

Fig. 3 



 21 

 

 

Fig. 4 


