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Goal-Directed Decision Making with Spiking Neurons
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Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-
directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and
the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast,
the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are
still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying
goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks
ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a
simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeco-
nomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence
on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the
network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled
framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential
decision-making tasks with multiple rewards.
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Introduction
Research in animal learning and behavioral neuroscience has
given rise to the view that reward-based decision making is gov-
erned by (at least) two distinct strategies: a habit system, which
relies on cached associations between actions or situations and
their long-run future values, and a goal-directed system, which

involves prospective planning and comparison of action out-
comes based on an internal model of the environment (Daw et al.,
2005). These systems have their formal counterparts in theories of
model-free and model-based reinforcement learning, respectively.
In particular, temporal-difference algorithms of model-free learning
account for both behavioral and neuroimaging data regarding habit-
based decision making (O’Doherty et al., 2004; Seymour et al., 2004).
Similarly, model-based reinforcement learning algorithms have
provided a powerful framework to account for goal-directed behav-
ior and to identify some of the key brain areas involved in it
(Gläscher et al., 2010; Daw et al., 2011). However, whereas the
reward prediction error theory of the phasic responses of dopami-
nergic neurons has enjoyed prominent success in providing a
circuit-level description of the implementation of model-free deci-
sion making (Schultz et al., 1997), much less is known about the
neural circuit mechanisms of model-based decision making.

In the present work, we propose the first instantiation of
model-based reinforcement learning in a biologically realistic
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Significance Statement

Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive.
We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a
novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-
optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral
decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically
realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level.

The Journal of Neuroscience, February 3, 2016 • 36(5):1529 –1546 • 1529

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/35279554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://creativecommons.org/licenses/by/4.0


network of spiking neurons. In particular, we show how such a
network can compute a quantity that forms the basis of model-
based decision making: the value of the best action in a given
situation. This optimal value expresses the prediction of cumula-
tive future reward after the execution of that action according to
an internal model of how actions lead to future situations and
rewards, and assuming that all later actions will also be chosen
optimally so as to maximize the cumulative future reward. Thus,
there is a strongly nonlinear, recursive relationship between the
optimal values of different actions (formalized by the so-called
Bellman optimality equation; Bellman, 1957), which makes the
computation of optimal values challenging (Papadimitriou and
Tsitsiklis, 1987). Indeed, goal-directed decision making is typi-
cally considered as flexible but slow, in contrast to inflexible but
fast habitual decision making (Keramati et al., 2011).

We show that goal-directed planning is performed in our net-
work on the time scale of hundreds of milliseconds in simpler
one-step neuroeconomic, and even more complex sequential,
decision-making tasks by using neurally plausible network
dynamics. We first demonstrate that our network indeed compe-
tently solves the Bellman equation by establishing its perfor-
mance on an example artificial decision-making task (after
benchmarking it more extensively on a number of standard tasks
from the reinforcement learning literature). We then present re-
sults from a set of simulations illustrating the success of our
model at accounting for a variety of experimental findings in-
volving goal-directed action selection. Our model reproduces be-
havioral and neurophysiological data on tasks ranging from
simple binary choice to multistep sequential decision making.
We also make predictions that are testable at the level of behavior
and in neural responses for a new, multiple-reward variant of an
already existing sequential decision-making task.

Materials and Methods
Optimal values. Following the theory of Markov decision processes
(MDPs), we formalize a sequential decision-making task as consisting of
a number of states, or situations, in which the agent can be, s, in each of
which there is a number of actions, a, available to the agent. Selecting
action a in state s leads to another state, s�, with probability P(s��s, a), and
results in immediate, and potentially stochastic, reward r with expected
value r�(s, a). The goal of the agent is to select actions such that its cumu-
lative expected reward over a long period is maximized.

The value of a state is the expected cumulative future reward once the
agent passes through that state, and it is a central quantity for successful
decision making that should guide the agent toward states with higher
values. The Bellman equation establishes a recursive relationship for the
values of the states when actions are chosen according to some particular
“policy” (Sutton and Barto, 1998):

V��s� � �
a

��a�s�� r��s, a� � ��
s�

P�s��s, a�V��s��� (1)

where policy �(a�s) defines the probability with which action a is chosen
in state s, and the temporal discounting factor 0 � � � 1 formalizes the
notion that future reward is worth less than immediate reward.

Under the optimal policy, which selects the best action in each state,
the optimal values are related through the Bellman optimality equation
(Sutton and Barto, 1998):

V��s� � max
a �r��s, a� � ��

s�
P�s��s, a�V��s��� (2)

which can be interpreted as the value of the best action in state s, assum-
ing that actions are chosen optimally in all other states as well. Note that
whereas Equation 1 expresses a linear relationship between values attain-
able by a particular policy, the recursive relationship between optimal

values given by Equation 2 is strongly nonlinear (because of the max
operator). Our goal is to show that a recurrently connected network of
spiking neurons can compute and represent these optimal values
through its internal dynamics.

Neural network dynamics. We used a canonical simplified model of
single-neuron dynamics, known as the stochastic spike–response model
[Gerstner et al., 2014; or, equivalently, the generalized linear model
(Truccolo et al., 2005)], which has proved to provide a compact but
faithful description of neural responses in a number of cortical and sub-
cortical areas (Pillow et al., 2005; Jolivet et al., 2006; 2008). According to
this model, the (subthreshold) membrane potential of neuron i, ui (mea-
sured with respect to the resting potential and excluding the waveform of
action potentials), decays exponentially in the absence of inputs, whereas
each presynaptic spike adds to it a constant waveform, �(t), scaled by the
corresponding synaptic weight, and each (postsynaptic) spike of the neu-
ron itself is followed by instantaneous hyperpolarization:

�m

dui

dt
� 	ui�t� � �

j
wij�

0

�

Xj�t 	 ������d� 	 
Xi�t� � Ii
ext (3)

where �m is the membrane time constant, wij is the synaptic weight be-
tween presynaptic neuron j and postsynaptic neuron i, Ii

ext is the external
current (specified below), and Xi(t) � �s �(t � ti

s) is the spike train of
neuron i represented as a sum of Dirac �-functions. The postsynaptic
current kernel �(�) vanishes for � 	 0 (to preserve causality) and has the

form ���� � �0exp�	
�

�s
� for � � 0 with synaptic time constant �s, and

�0 � �s
�1 ms mV guaranteeing normalization to 
�(t) dt � 1 mV. After-

hyperpolarization is modeled as an instantaneous current pulse with a
negative sign and magnitude 
 � 0. The instantaneous firing rate of the
neuron is a nonlinear function of the membrane potential, (u), which
we chose to be a linear-rectified function:

�u) � k[u 	 �]�, (4)

where � is the firing threshold, k is some positive constant, and the
notation [x]� denotes rectification, i.e., [x]� � x if x � 0; otherwise,
[x]� � 0. The choice of linearity for superthreshold input agrees with
experimental data (Pillow et al., 2005; albeit in the retina, not in the
cortex) and enables value representations consistent with the Bellman
equation (see below). Deviations from linearity could also be accommodated in
the model by assuming that the appropriate (inverse) nonlinearities reside
downstream from the site of spike generation (e.g., in the form of short-term
depression at efferent synapses; Pfister et al., 2010). The output spike train,
Xi, is then generated according to an inhomogeneous Poisson process with
this instantaneous rate. In the following, we define values for the parameters
of this network (wij, Ii

ext, �, and k) and show that with these choices, its
dynamics solve the Bellman optimality equation (Eq. 2).

To be able to analytically study the dynamics of the network, we re-
duced our spiking network model to a rate model using a mean field
approximation (this approximation is valid when each neuron in the
network receives input from a large number of presynaptic neurons
whose firing is statistically independent, or when firing rates in the net-
work are high relative to the inverse membrane time constants of neu-
rons). Thus, we replaced spike trains X(t) by their expected value, which
are just the underlying firing rates, (t). We also replaced the convolution
of the spike trains with the current kernel 
X(t � �) �(�) d� with (t), thus
ignoring delay effects, and assuming that �s is small compared with �m. In
our simulations, we used �s � 2 ms and 20 � �m � 50 ms, in line with our
assumption and, importantly, also with experimentally found values for
these time constants (McCormick et al., 1985). Using vector and matrix
notation to conveniently collect all neurons and weights into a single
equation, the dynamics of the network is as follows:

�mu̇ � �u � W� � 
� � Iext (5)

Neural representation of values. We consider neurons with mixed se-
lectivity, a phenomenon widely observed in prefrontal cortex (PFC) and
important for solving complex cognitive tasks (Rigotti et al., 2013). In
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particular, neurons code conjunctively for state–action pairs, i.e., cell i
codes for its corresponding (si, ai) tuple. (For the following here, we
assume discrete states and actions, and an extremely sparse population
code consisting of “grandmother” neurons, but see below for an exten-
sion of our approach to continuous state and action spaces and distrib-
uted population codes.) We interpret activities in the network such that,
at any point in time throughout the dynamics of the system, the sum of
the firing rates of cells that code for the same state, s, but different actions,
a, represents an approximation to the optimal value of s, Ṽ(s):

Ṽ�s� �
1

r
�

i�si�s
i 	 V0 (6)

where r is a positive constant, to be specified in the following, and firing
rates represent approximate values relative to a common baseline V0, such
that Ṽ(s) � �V0 @s, which ensures that non-negative firing rates can repre-
sent all values in the task, even if some of those values are negative.

Although, as we show below, within a group of cells representing the
same state s, asymptotically only one neuron contributes to the sum in
Equation 6 (the one encoding the optimal action in that state), in general
there are going to be multiple active neurons in each state contributing to
this sum while activities in the network are still evolving. Indeed, the
values represented by the network (Eq. 6) are approximate in the sense
that initially (during early parts of the dynamics) there might not exist a
policy for which Ṽ(s) is a solution to the Bellman equation (Eq. 1), and
even if there is such a policy, it need not be the optimal policy. However,
we will show below that on convergence of the neural dynamics, Ṽ not
only comes to represent a valid value function consistent with the Bell-
man equation (Eq. 1), but it specifically represents the optimal value
function corresponding to the optimal policy, Ṽ ¡ V* (Eq. 2).

Relation to other dynamic programming algorithms. Although the dy-
namics of our network are reminiscent of standard algorithms for com-
puting (optimal) values, in that they are also iterative in nature and may
involve the “backpropagation” of value information from successor
states (Sutton and Barto, 1998), there are fundamental differences between
those algorithms and ours. In particular, standard algorithms prescribe a
direct interaction between values of different states (the outcome of the sum
in Eq. 6), whereas in our network the interactions take place between neu-
rons (the individual terms of the sum in Eq. 6). As a consequence, it is
possible to initialize our network at two different points in the state space of
its neural activities that correspond to representing the same (approximate)
value function, such that as network activities evolve from these initial neural
activity states they map to different trajectories in value space (Fig. 1F,G).
This is clearly impossible with any algorithm operating directly on values.
Thus, our network is not isomorphic to any existing algorithm and rep-
resents a novel algorithmic solution to dynamic programming.

Two classic algorithms that could be seen as being related to ours are
policy iteration and value iteration. Policy iteration alternates between
policy evaluation, i.e., keeping �(a�s) fixed and iterating Equation 1 until
convergence to update all values, and policy improvement, changing
�(a�s) such that actions more probably leading to high value states are
prioritized. Value iteration performs implicit policy improvement when-
ever one state value is updated, V(s)4maxa r�(s, a) � ��s� P(s��s, a)V(s�).
The closest analogy to these standard algorithms within our framework
would be to select actions proportionally to the activity, �(ai�si)�i/
�j�sj�si

j) � i/Ṽ(si) (ignoring constants r and V0 for simplicity). Up to
constants, i then equals the product �(ai�si) Ṽ(si) and is a compound
representation of value function and policy. Using discretized time with
step size h, our network dynamics update this representation according
to �(a�s) Ṽ(s)4 [�(a, s) Ṽ(s) � h(Q̃(s, a) � Ṽ(s))]�, with state–action
value Q̃(s, a) :� r�(s, a) � ��s� P(s��s, a)Ṽ(s�). The term in brackets
compares the estimated action value Q̃(s, a) for action a with the current
estimate of the state value Ṽ(s). Actions that are better than this estimate
get enhanced; worse actions get suppressed and finally removed from the
policy. At convergence, Ṽ(s) � maxaQ̃(s, a) and �(a�s) � 1 for the opti-
mal action and zero otherwise. In contrast to policy iteration but simi-
larly to value iteration, our algorithm does not separate between value
and policy updates, but updates both together. However, whereas value
iteration updates the policy by full maximization, our algorithm per-
forms only a small step to increase values.

Setting the parameters of the network. Our design intuition is to inter-
pret excitatory synaptic efficacies as (scaled versions of) transition prob-
abilities and to augment the network by mutual lateral inhibition to
implement the nonlinear max operation in the Bellman optimality equa-
tion (Eq. 2). Thus, the strength of the “effective” synapse connecting
presynaptic neuron j to postsynaptic neuron i, wij, summarizing the ef-
fect of asymmetric, monosynaptic excitation, wij

exc, and symmetric, bi-
synaptic inhibition between the two neurons, wij

inh (mediated by
inhibitory interneurons that we do not explicitly model), is as follows:

wij � wij
exc � wij

inh (7)

with

wij
exc � �1

k
� 
��P�sj�si, ai� (8)

wij
inh � 	�1

k
� 
���sisj

	�ij� (9)

where k is the slope of the firing rate nonlinearity of the neuron (Eq. 4), 
 is
the magnitude of afterhyperpolarization (Eq. 3), � is the temporal discount-
ing factor (Eqs. 1 and 2), and � is the Kronecker delta function, which equals
1 when its two indices are equal and is zero otherwise. In short, wij

exc reflects
the action of excitatory interactions encoding transition probabilities. Note
that state transitions are thus encoded in the reverse direction, as a transition
from state si to sj is captured by an excitatory connection from neuron j to i.
The second term, wij

inh, introduces mutual inhibition between neurons cod-
ing for the same state but different actions.

Each neuron in the network also receives external input Ii
ext, which is

modeled as a synaptic input produced by a spike train with rate r through a
synapse with the same postsynaptic time course, �(t), as that used for recur-
rent interactions (Eq. 3) and strength encoding the expected immediate
reward available for the corresponding state–action pair:

wi
r � �1

k
� 
�r��si, ai� (10)

Finally, the firing threshold represents the (appropriately scaled) magni-
tude of the baseline value in the following task:

� � �1

k
� 
�r��	1�V0 (11)

As we show below, specifying the parameters of the network in this way
ensures that it computes the optimal values for any setting of the remaining
parameters (k, 
, and r). In addition, we will also show later that the excit-
atory synaptic weights in the network, wij

exc and wi
r, do not need to be set “by

hand” but can be learned through experience by local plasticity rules.
Convergence to optimal values. Having specified all parameters of the

neural network (Eqs. 4, 5, 7–10) and the mapping from neural activities
in the network to approximate values of states in the task (Eq. 6), we now
show that in the steady state, neural activities in the network come to
represent the optimal values that satisfy the Bellman optimality equation.
(Although the existence of a fixed point by itself does not generally imply
that it would be ever discovered by the dynamics of a system, in this case
the dynamics of our network does provably converge to this fixed point
for � 	 1, i.e., this fixed point is, in fact, globally stable. However, for
brevity, we omit this rather technical proof here.)

Considering the rate equations (Eq. 5), the steady state is determined
by the following: u � W� � 
� � Iext. Plugging in Equations 7–10 yields
the following:

ui � �
j

wij j 	 
i � wi
rr

� �1

k
� 
�r�r��si, ai� � ��

s�
P�s��si, ai�Ṽ�s�� 	 Ṽ�si�

� �� 	 1�V0� �
1

k
i
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for each neuron i, where we used the definition of Ṽ(s) as given by
Equation 6. Since i � k[ui � �]� � k(ui � �), the following inequality:

i � �1 � k
�r�r��si, ai� � ��
s�

P�s��si, ai�Ṽ�s�� 	 Ṽ�si�

� �� 	 1�V0� � i 	 k�

holds for all i, with exact equality for positive i, because in this case i �
k (ui � �). Therefore, after substituting Equation 11 and canceling terms,
we obtain the following:

Ṽ�si� � r��si, ai� � ��
s�

P�s��si, ai�Ṽ�s�� � i

and since all states s are represented by some neurons in the network, the
index i can be dropped from the above inequality, which thus holds for all
states and actions in the task:

Ṽ�s� � r��s, a� � ��
s�

P�s��s, a�Ṽ�s�� � s, a (12)

Since Ṽ�s� �
1

r
�i�si�si 	 V0 � 	V0 and

1

r
� 0, there exists (at least)

one strictly positive term in the sum, say for action a*, and therefore * �
0. For this action a*, because * is positive, Equation 12 holds with the
following equality:

Ṽ�s� � r��s, a�� � ��
s�

P�s��s, a��Ṽ�s�� (13)

Since Equation 12 holds for all actions, we have the following:

Ṽ�s� � max
a �r��s, a� � ��

s�
P�s��s, a�Ṽ�s���

� r��s, a�� � ��
s�

P�s��s, a��Ṽ�s�� � Ṽ�s�

In the last inequality, we made use of the simple fact that the maximum of
a function is greater or equal to the function evaluated at any point,
choosing a* from above as the evaluation point.

Therefore, the last two inequalities hold with equality, and we obtain
the following equality:

Ṽ�s� � max
a �r��s, a� � ��

s�
P�s��s, a�Ṽ�s��� (14)

This is exactly Bellman’s optimality equation (Eq. 2), of which the solu-
tion is unique, and so in steady state, the approximate values represented
by the network must be the optimal values Ṽ(s) � V*(s).

Note that whereas optimal values are always unique, optimal actions in
general need not be. If the optimal action in a state is unique, then only
one of the terms in the sum defining the approximate value of that state,
as represented by the network (Eq. 6), is nonzero and equal to r(V*(s) �
V0). However, if multiple actions are optimal, the corresponding i can
all be different and nonzero as long as they sum to r(V*(s) � V0). In this
case, there is a linear subspace where u̇ � 0, instead there is a unique fixed
point. Although, in this case, the asymptotic value of u depends on the
initial condition, the asymptotically represented value Ṽ does not (see
Fig. 2 F, G). In either case, to achieve optimal performance, one can select the
action, ai, encoded by any of those neurons that are active and correspond to
the current state, s, i.e., for which si � s and i � 0; for example, the one with
the highest activity among these is i � argmaxj�sj � sj.

Function approximation and distributed representations. In the forego-
ing, our derivations relied on discrete states, whereas real-world prob-
lems, such as navigation, often involve continuous states. Conversely,
cortical population codes are distributed, rather than using the kind of
extremely sparse grandmother cell-type representations assumed
above. Applying a function approximation-based approach (Sutton
and Barto, 1998), we consider here the important generalization to high-
dimensional problems or continuous states (and actions) that resolves
both these issues by letting each neuron represent a continuum of states

and actions to varying degrees (as would be given by a tuning curve). In
the generalized setting, each neuron i represents a (non-negative) basis
function in the joint space of states and actions, �i(s, a), and so the
approximate values represented by the whole network are as follows:

Ṽ�s� �
1

r
�

i
i��i�s, a�da	V0 (15)

(Note that for discrete states and actions, we can set �i(s, a) � �sis
�aia

and
replace the integral by a sum, which yields Eq. 6 as a special case of Eq. 15.)
Although we use linear function approximation, this only implies linearity in
the bases and not in the states or actions, as the basis functions themselves
may be nonlinear functions of state and action. Our approach is general in
that we do not need to make explicit assumptions about the precise shape of
the basis functions and only need to assume that their overlaps are positive:
Kij � �i�s, a�, �j�s, a��L2 � ��i�s, a��j�s, a�ds da � 0 � i, j.

In this case, we set the synaptic weights in the network as follows:

wij
exc � �1

k
� 
���

l
�K�1�il�p�s��s, a��l�s, a��j�s�, a��ds da ds�da�

(16)

wij
inh � 	�1

k
� 
��

l
�K�1�il��l�s, a��j�s, a��ds da da� � �1

k
� 
��ij

(17)

wi
r � �1

k
� 
��

l
�K�1�il�r��s, a��l�s, a�ds da (18)

(For discrete states and actions, we can set �i(s, a) � �sis
�aia

and replace
the integrals by sums that yield Kij � �ij and Eqs. 8 –10 as a special case of
Eqs. 16 –18.)

The firing threshold again represents the (appropriately scaled) mag-
nitude of the baseline value in the task (compare Eq. 11):

�i � �1

k
� 
�r�� 	 1�V0�

l
�K�1�il��l�s, a�ds da (19)

In analogy to the derivations above establishing the equivalence of Ṽ to
V* at steady state, we can derive the following. Plugging in Equations
16 –18 into the steady-state equation yields the following:

ui � �
j

wij j 	 
i � wi
rr

� �1

k
� 
�r�

l
�K�1�il��l�s, a��r��s, a� � ��p�s��s, a�Ṽ�s��ds� 	 Ṽ�s�

� �� 	 1�V0�ds da �
1

k
i

for each neuron i, where we have used the definition of Ṽ(s) as given
by Equation 15. Since i � k[ui � �i]� � k(ui � �i), the following
inequality:

i � �1 � k
�r�
l

�K�1�il ���l�s, a��r��s, a� � ��p�s��s, a�Ṽ�s��ds�

	 Ṽ�s� � �� 	 1�V0�ds da � i 	 k�i

holds for all i, with exact equality for positive i, because, in this case, i

� k (ui � �i). Therefore, after substituting Equation 19 and canceling
terms, we obtain the following:
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0 � �
l

�K�1� il�� l�s, a�� r��s, a� � �� p�s��s, a�Ṽ�s��ds�

	 Ṽ�s�� ds da � i

By definition, K is a non-negative matrix, and left-multiplication with it
yields the following:

0 � ��i�s, a�� r��s, a� � �� p�s��s, a�Ṽ�s��ds� 	 Ṽ�s�� ds da � i

(20)

Equation 20 expresses the fact that instead of the exact match between the
value function represented by the network, Ṽ(s), and the true optimal
value function, V*, which we had in the discrete case (Eq. 14), here we
have an approximate match between the two. This approximation is such
that the integral of Ṽ(s) and V* in the neighborhood (defined by �) of
only a finite (but potentially large) number of “control points” in the
joint state–action space is being matched, where the neurons of the net-
work represent these control points. Also in analogy to the discrete case,
an action for each state s can be selected by maximizing the predicted value
according to the network’s representation: a* � argmaxa�ii�i(s, a). How-
ever, because of the approximate nature of this representation, there is no
guarantee that the optimal policy can be found. Nevertheless, in bench-
mark tests, we found that a very close approximation of it was still
achieved (see below; Fig. 1 I, J ).

Learning. For a known transition and reward model, the weights can be
set to their values as described in the previous sections, whereas if the
model is unknown (as it is initially in biological settings), they need to be
learned through interaction with the environment. Here we show that in
our model, a local plasticity mechanism enables learning the correct
weights.

We obtain the corresponding plasticity rule by minimizing the
squared error between the current weight and the target weight, i.e., the
right-hand side in Equation 8 or 10 [note that inhibitory weights do not
depend on the environment (Eq. 9) and are hence assumed to be set from
the beginning]. This yields a delta rule of the form �w � �(t � w) with
target t and learning rate �. (This formulates plasticity as consisting of
abrupt weight changes �w at certain time points. An online continuous
time scenario ẇ � �t� F(t � t�)�w(t�) with decision times t� and some
function F(t), e.g., a (low-pass-filtered) square pulse as in the study by
Friedrich et al. (2010) instead of a delta function, is also possible.) In our
case, the target values include the unknown probabilities, which are only
observed in the form of samples. If in state s action a is performed yield-
ing reward r and leading to state s�, the online estimation rules for up-
dating after each transition yield the following postsynaptically gated
form of plasticity:

�wi
r � ���1

k
� 
��� 	 r0� 	 wi

r	 i�si � s, ai � a

�wij
exc � ���1

k
� 
���sjs� 	 wij

exc	 � j, i�si � s, ai � a

(21)

where � � r � r0 is the rate of the external input (the same biological
quantity as that described by r, but denoted differently to emphasize the
different functional role it plays during learning than during the compu-
tation of the value function), with r the currently obtained reward and r0

a sufficiently large positive constant such that � always remains non-
negative. Thus, during learning, the activities of neurons in the network
and the rates of the external input to the network are determined by the
immediate experience of the animal, rather than the internal dynamics of
the network as described in the previous sections. Specifically, perform-
ing a state–action transition activates the corresponding neurons in the
network (Mushiake et al., 2006) and sets the rate of the external input,

making this information available to the synapse in the form of presyn-
aptic and postsynaptic activities. Beside this, plasticity also involves sim-
ple synaptic scaling. Hence, all quantities are locally available at the
corresponding synapse.

In the case of function approximation, the update rules performing
(stochastic) gradient steps on the quadratic error between the current
weights and the optimal weights defined in Equations 16 –18 are as
follows:

�wi
r � ���1

k
� 
��� 	 r0� 	 �

j
wj

r�j�s, a���i�s, a� � i

�wij
exc �

���1

k
� 
����j�s�, a��da� 	 �

k
wkj

exc�k�s, a��
� �i�s, a�

� i, j

(22)

For �i(s, a) � �sis
�aia

, Equation 22 reduces to Equation 21. In contrast to
the discrete case, here synaptic modification, at least its synaptic scaling
component, becomes more global in that it also depends on neighboring
efferent synapses of the presynaptic neuron. This challenges the locality
of the plasticity rule, but it may be possible to effectively approximate this
term by intrinsic plasticity (Savin et al., 2014), thus preserving locality.

Validation on benchmark tasks. To validate our network, we tested it on
three well known challenging sequential decision-making benchmark
tasks from the reinforcement learning literature.

The first, “Blackjack,” was based on a scenario described by Sutton and
Barto (1998): the agent is the player in a game of blackjack (played against
the dealer). Standard rules of blackjack hold but are modified to allow the
player to (mistakenly) hit on 21. States jointly encode the hand value of
cards the player is holding, the value of the open card of the dealer, and
whether the player holds a usable ace. The two available actions are to
draw or to stop. We used a reward of 0 for a loss, 1⁄2 for a draw, and 1 for
a win.

Second, in the “Maze” task (Dearden et al., 1998; Strens, 2000), the
agent needs to navigate a “grid-world” maze by moving left, right, up, or
down by one square at a time (Fig. 1A). If it attempts to move into a wall,
its action has no effect. The task is to move from the start (top left) to the
goal (top right) collecting the flags on the way. When the agent reaches
the goal, it receives a reward equal to the number of flags collected. On
top of this, a � 	 1 discounting factor encourages the agent to complete
the task in as few moves as possible. The problem is made more challeng-
ing by assuming that the agent occasionally “slips” and moves in a direc-
tion perpendicular to that intended (with probability 0.1).

Third, the “Pendulum swing-up” is a problem of swinging up a rigid pendu-
lum suspended by a 1 df joint from its base, by applying torque to rotate it (Fig.
1B; following Deisenroth et al., 2009). The dynamics of this system are de-

scribed by the equation �̈�t� �
	��̇�t� � mgl sin���t�� � a�t�

ml 2 , where

�� � � � � is the angle of the pendulum (� � 0 is vertical upward), � �
0.05 kg m 2/s is the coefficient of friction, l � 1 m is the length of the
pendulum, m � 1 kg is the mass of the pendulum, g � 9.81 m/s 2 is the
gravitational constant, and a(t) is the torque applied at time t. States
encode angular position and speed, s � (�, �̇), and the initial state is the
stable equilibrium of the upside-down hanging pendulum at rest (�, 0).
The task is to swing the pendulum up and to balance it in the inverted
position around the goal state, (0, 0). The immediate reward function is
a Gaussian centered on the goal state: r(s) � exp(�s diag(1, 0.2) sT). This
task is challenging because there are only three discrete actions available,
–, 0, and �, corresponding to an applied torque of a � �5, 0, and 5 Nm,
respectively, which is not sufficient for a direct swing-up.

For the first two tasks, we used a nondistributed (“look-up table”)
representation, with each neuron coding for a different state–action
pair. For the pendulum swing-up, we used neurons with Gaussian
receptive fields on a grid to cover the phase space and matched their
width � to the grid spacing �s via � � 1⁄2�s (Fig. 1E). As grid spacing, we

chose �s �
�

8
rad for angular position � and �s �

�

8
rad/s for angular

velocity �̇, respectively, yielding 16 � 33 grid points and a total of 16 �
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33 � 3 � 1584 neurons. For Blackjack, which is a finite horizon task, we
used discount factor � � 1, whereas for the infinite horizon tasks (Maze
and Pendulum) we used � � 0.98. Other parameters were k � 1 Hz/mV,

 � 20 mV, �m � 20 ms, and �s � 2 ms in all simulations. The reward unit
fired with a constant rate of r � 400 Hz. The firing rate of all neurons
was initialized at 0 Hz, except for that shown in Figure 1, F and G, where
we tested two different initial conditions: one corresponding to all neu-
rons firing at 200 Hz and one corresponding to neurons encoding action
–, 0, and � firing at 0, 150, and 450 Hz, respectively. Hence, the sum over
neurons with the same preferred state but different encoded actions was
600 Hz in both cases, which consequently meant (attributable to Eq. 15)
that the approximate value functions represented by these two different
initial conditions were precisely identical. We used a small fixed learning
rate � � 0.01 for Blackjack and � � 0.05 for Pendulum and Maze.

We first simulated the tasks with weights set according to perfect
knowledge of the task structure, i.e., the set of action– outcome relation-

ships and associated expected immediate rewards (Eqs. 8 –10 for discrete,
Blackjack, and Maze and Eqs. 16 –18 for continuous state spaces and
Pendulum). As the measure of performance, we used the normalized
discounted cumulative reward, such that random action selection corre-
sponded to performance 0 and following the optimal policy corre-
sponded to 1. We ran the dynamics for some time, t, and calculated the
policy, and the expected return under the inferred policy, based on the
activities recorded so far, in the time interval [0, t]. Note that with spiking
neurons, time plays a twofold rule: it allows the dynamics of the network
(Eq. 3) to converge, but it is also required to be able to estimate firing
rates (and thus the corresponding value function; Eq. 6) from spike
counts. (In fact, one could allow an initial “burn-in” time and disregard
the activity during the burn-in period for the value computation, trading
off waiting time and the accuracy of the obtained policy, but we chose the
simpler solution of having no burn-in period.) In general, convergence
time depended on task difficulty, but in all three tasks tested, a nearly

A

B

C D

E F G

H I J

Figure 1. Reinforcement learning benchmark tasks. A, Maze task (see Materials and Methods for details). B, Pendulum swing-up task (see Materials and Methods for details). C, Convergence of
the dynamics toward an optimal policy representation with weights set according to the true environment. Values were computed based on spike counts up to the time indicated on the horizontal
axis. Performance shows discounted average (�SEM) cumulative reward obtained by the policy based on these values, normalized such that random action selection corresponds to 0 and the
optimal policy corresponds to 1. D, Learning the environmental model through synaptic plasticity. In each trial, first several randomly chosen state–action pairs were experienced and weights in the
network were updated accordingly, then the dynamics of the network evolved for 1 s and its performance was measured as in C. E, Distributed representation of the continuous state space in the
Pendulum task. Ellipses show 3 SD covariances of the Gaussian basis functions of individual neurons (for better visualization only, every second basis is shown along each axis). F, Activity of four
representative neurons during planning. Color identifies the neurons’ state-space basis functions as in E, and line style shows two different initial conditions (see inset for better magnification). G,
Values of the preferred states of the neurons shown in F as represented by the network over the course of its dynamics. Although both initial state values (inset) and steady-state values coincide in
the two examples shown (solid vs dashed lines), the interim dynamics differ because of different neural initial conditions (F, inset). H, Policy (colored areas) and state space trajectory (gray scale
circles, temporally ordered from white to black) for pendulum swing-up with preset weights. I, Values actually realized by the network. J, True optimal values for the Pendulum task.
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optimal policy has been already found after a mere 200 ms (Fig. 1C). In
the Maze task, rather sudden increases in performance occurred as with
increasing planning time the policy was to pick up one flag first, then two,
and finally all three flags.

For the Pendulum task, the firing rate of a subset of neurons, obtained
by filtering their spike trains with an exponential moving average (� � 40
ms), is shown in Figure 1F for two different initial conditions of neural
activities that correspond to representing the same (approximate) value
function (see above). The values represented by the network vary as the
dynamics evolve and coincide again on convergence as the network
comes to represent the unique optimal value function (Fig. 1G). How-
ever, note that despite identical value functions represented in the initial
and steady states of the network, the value functions represented while
network activities are still evolving are different for these two trajectories,
which would be impossible if the dynamics operated directly in value
space. The convergence time of neural activities differed and could be
particularly slow for neurons with basis functions in a region of state
space where competing actions led to similar returns, as a near-optimal
policy was established before the last neuron’s activity converged (Fig.
1C). The inferred trajectory after letting the network dynamics evolve for
1 s is depicted in Figure 1H, together with the policy for the relevant
section of phase space. Comparing Figure 1, I and J, reveals that the
actually obtained cumulative reward closely matches the true optimal
value.

Figure 1D shows that the weights can also be successfully learned
through interaction with the environment according to Equation 21 or
22, for discrete or continuous state space problems, respectively. To focus
on the ability to exploit knowledge extracted about an environment, we
simplified exploration using a form of parallel sampling (Kearns and
Singh, 1999), which samples at each iteration for every state–action pair
a random next state. Because parallel sampling is not directly applicable
to continuous state spaces, as there is an infinite number of states, we
adapted it accordingly and sampled in each trial uniformly randomly 500
states from the phase space region depicted in Figure 1, E and H–J, and
for each state chose each of the three actions in turn (resulting in a total of
1500 state–action pairs available for learning in each trial). After learning,
in each trial, the dynamics of the network were run for 1 s, sufficiently
long to ensure convergence, so that suboptimal performance reflected a
mismatch between true transition and reward probabilities in the envi-
ronment and their model embedded in the synaptic weights of the net-
work. In the maze task, a rather abrupt jump in performance happened as
the agent learned to reach the goal location. In the individual runs of the
pendulum task, a sudden increase in performance occurred as soon as the
pendulum was swung up for the first time. Such changes occurred after
different numbers of trials, resulting in the average curves shown with
gradual increase and large confidence regions.

Planning-as-inference. Planning-as-inference has emerged recently as
a powerful new way of solving MDPs in a machine learning context
(Toussaint and Storkey, 2006) and also as a theory of how cortical net-
works may perform model-based sequential decision making (Botvinick
and Toussaint, 2012). Thus, we implemented it so that we could contrast
it with our network directly in a number of scenarios, in terms of their
computational performance as well as their ability to account for relevant
biological data.

Planning-as-inference treats the task of planning in an MDP as a spe-
cial case of probabilistic inference over a set of random variables, X, that
include the states (st), actions (at), and immediate rewards (rt) in future
time steps (t), the total cumulative reward ( R), and the policy (�t) that
the decision-making agent might choose to adopt for selecting actions
(which may also be time dependent). The agent then represents the fu-
ture as a joint probability distribution over X, P( X) [cf. Solway and
Botvinick (2012), their Fig. 2 D]. For planning, the agent uses this joint
distribution such that it conditions on the cumulative reward, R, starting
from the premise that its actions will yield high rewards, and then uses
inverse (Bayesian) inference to discover the policy that renders this as-
sumption most plausible, i.e., to compute P(�t�R).

To relate planning-as-inference to neural data, Solway and Botvinick
(2012) used belief propagation (BP) for inferring the policy. As a first step
for inference by BP, the joint distribution of the variables of interest,

P( X), is expressed as a product of factors: P�X�� �f �f�Xf�, where each
factor f expresses probabilistic dependencies, �f, between a subset of the
variables, Xf. For planning-as-inference, there are four kinds of factors
that are relevant: those expressing transition probabilities, P(st�1�st, at);
those expressing reward probabilities, P(rt�st); those expressing action
selection probabilities, P(at�st, �t); and those that express the way all
the immediate rewards make up the total cumulative reward,
P(R�{rt}). Note that each factor includes several variables and that the
same variable is generally included in several factors. Inference by BP
then proceeds by recursively passing “messages” from variables to
factors, �x¡f��� � �g�Fx

�f �g¡x���, and from factors to variables,
�f¡x��� � �Y � �Xf

	 x, x � ���f�Y��y � Xf
	 x � � �y¡f���, and the marginal of

any variable x can be obtained as a product of all the messages including
it: P�x � �� � �f � Fx

�f¡x���, where Fx and Fx
	 f denote all the factors

including variable x (except f for Fx
�f); and Xf and Xf

�x denote all the
variables included in factor f (except x for Xf

�x). To allow the diffusion of
information across temporally distributed events and to arrive at a deter-
ministic policy, following Botvinick and An (2009), we ran BP several
times, such that on each iteration, the inference of the posterior policy
used the posterior from the previous iteration as the new prior.

Following Rao (2004) and Solway and Botvinick (2012), we mapped
(loopy) BP to a neural network in which neural activities represented the
messages, and connections between the neurons embodied the interde-
pendencies of the messages such that only local interactions were neces-
sary between neurons (although the effect of multiple presynaptic cells
on the same postsynaptic cell, for factors including several variables,
needed to be multiplicative). In particular, Solway and Botvinick (2012)
corresponded the message from factor P(at�st, �t) to the variable repre-
senting the optimal action in the current state, at

�, to (normalized) neural
activities recorded in lateral intraparietal area, which change approximately
monotonically in experiments. However, the data we sought to account
for, recorded in pre-SMA (Sohn and Lee, 2007), showed markedly non-
monotonic activity time courses (see Fig. 6A). Therefore, to obtain model
time courses directly comparable with neural data, we scaled the magni-
tude of the message by a nonmonotonic Gaussian envelope (see below at
simulation details).

Using BP for planning-as-inference also suffers from a computational
drawback. As the messages are defined recursively, BP is only guaranteed
to converge when there are no circular dependencies between them.
Unfortunately, in the case of planning-as-inference, this is not the case in
general, and so loopy BP needs to be performed without such guarantees
(Koller and Friedman, 2009). Indeed, we verified in simulations that this
approach happens to fail (data not shown) on our specific illustrative
example task requiring closed-loop control (Fig. 2).

Using more advanced inference methods, e.g., the junction tree algo-
rithm (Lauritzen and Spiegelhalter, 1988), instead of loopy BP, for
planning-as-inference is guaranteed to result in the optimal policy even
in situations requiring closed-loop control. However, for situations in
which open-loop control suffices, such as the experimental task modeled
in Figure 6, this will result in neural time courses that are identical to
those obtained with loopy BP (see Fig. 6) and are, therefore, equally at
odds with experimental data (see above). Moreover, in contrast to loopy
BP, the junction tree algorithm lacks even more the plausibility of being
performed in the brain. For these reasons, we do not report here separate
results obtained with the junction tree algorithm.

Simulation details. For the two-step example task (Fig. 2), we used the
same parameters as in the benchmark tasks, i.e., k � 1 Hz/mV, 
 � 20
mV, �m � 20 ms, �s � 2 ms, and r � 400 Hz.

For modeling the binary choice tasks (Figs. 3–5), the strengths of the
synaptic weights carrying the reward-dependent external input were
equal to the offered values measured in units of option B. Other param-
eters were k � 1 Hz/mV, 
 � 0 mV, �m � 25 ms, and �s � 2 ms in all
simulations. For matching experimental data, we added a constant base-
line firing rate to the rates computed in the model (, Eq. 4), without
affecting the represented values. Initial and baseline firing rates (�5.2 Hz
for Fig. 3B, �16.5 Hz for Fig. 3C, and 0 Hz for Figs. 4 and 5) were
qualitatively matched to experimental data and were the same across all
conditions (pairs of offer values). Time-dependent firing rates in Figure
3 were obtained by convolving the spike trains with a Gaussian kernel
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(� � 40 ms) and averaging over 30 simulation runs. The results in Fig-
ures 4 and 5 were obtained by averaging over 100 runs.

For modeling the sequential decision-making tasks (Figs. 6 – 8), the
neural parameters were k � 1 Hz/mV, 
 � 3 mV, �m � 50 ms, and �s �
2 ms. The discount factor was � � 0.7. The initial firing rates were
qualitatively matched to the experimental data, separately for each step of
the task [indexed by the number of remaining movements (NRMs)], and
no baseline rate was used. Time-dependent firing rates were again ob-
tained by convolving the spike trains with a Gaussian kernel (� � 40 ms)
and averaging over 30 simulation runs.

The activity profile of the reward input, r(t), was chosen in all cases to
yield realistic neural time courses in the model. Note, however, that our
focus was on the differences between these time courses between differ-
ent conditions, whereas the activity profile of the reward input was iden-
tical across conditions, so this by itself could not account for our main
results, which were instead characteristic of the particular intrinsic
dynamics of our network. Specifically, in Figure 3B, we chose a

double-exponential time course r�t� �
max

� �exp�	
t 	 t�

td
� 	 exp

�	
t 	 t�

tr
����t 	 t�� with maximal firing rate max � 2.6 Hz, rise time

tr � 110 ms, decay time td � 300 ms, and delay t� � 60 ms, where

� � �tr

td
�	

1

1 	 td/tr �1 	
tr

td
� is a normalizing constant, and � is the

Heaviside step function, i.e., �(x) � 1 for x � 0 and �(x) � 0 otherwise.
In Figure 3C, we chose a raised Gaussian time course r(t) � base �
(max � base) exp(� (t � tp) 2/� 2) with baseline firing rate base � 4.5
Hz, maximal firing rate max � 27.9 Hz, peak time tp � 95 ms, and
duration � � 30 ms. In Figures 4 and 5, we again chose the double-
exponential time course with the same time constants and maximal firing
rates that differed across panels: max � 1.6 Hz (Fig. 4A), max � 5.4 Hz
(Fig. 4B), and max � 70 Hz (Fig. 5). The higher maximal firing rates for
behavioral data compared with neural data represent population firing
rates and capture the fact that decisions are encoded by populations and
not single neurons. In the sequential decision-making tasks (Figs. 6 – 8),
we also chose a raised Gaussian time course with baseline firing rate base

� 10 Hz, maximal firing rate max � 75 Hz, peak time tp � 250 ms, and
duration � � 60 ms. For the behavioral data in Figures 6D and 7C, we
increased the baseline and maximal firing rate by a factor 10.

For modeling the sequential decision-making task (Fig. 6) by
planning-as-inference, we ran noiseless rate-based simulations, rather
than simulating a spiking neural version, thus merely adding noise, and
averaging over various runs to reduce the noise (Fig. 6 E, F ). For this, we
used the code of Solway and Botvinick (2012) with loopy BP, which
yields activations in the interval [0,1] that represent probabilities. To
obtain activation patterns as similar to the experimental data (Fig. 6A) as
possible, we scaled the output of the simulated activities by a time

(iteration)-dependent factor 10 � 55 exp �	
�t 	 10�2

42 �, in analogy to

the Gaussian activity profile of the reward inputs we chose in our model
(see above).

For modeling behavior, we assumed that a decision was made when
the spike count difference between any two populations encoding differ-
ent currently available actions reached a threshold �dec (Fig. 5C). When
the threshold was reached, a decision in favor of the action encoded by
the population with higher spike count was made deterministically.
Thus, once the parameters of the neural simulations were determined,
only one more parameter, determining the setting of the threshold, was
fitted to match the overall scale of reaction times in the behavioral data.
Specifically, in the binary decision task (Fig. 5), this threshold was set
such that the average decision times over the offer value ratios in Figure
5E were similar to those reported in experiments. From Padoa-Schioppa
et al. (2006), we extracted a mean reaction time of 490 ms and subtracted
a nondecision time of 370 ms (Resulaj et al., 2009), resulting in a mean
decision time of tdec � 120 ms. Accumulation of spike counts started with
the onset of the reward input, i.e., t� � 60 ms after offer presentation
(Fig. 5C, dashed line). This sensory delay contributed to the nondecision
time; hence, we chose the threshold �dec � 7 such that it was crossed after

180 ms (t� � tdec), on average. In the sequential decision-making tasks
(Figs. 6 – 8), the threshold was discounted with the time horizon of the
current decision, corresponding to NRMs (Fig. 6A): �dec � �0� NRM,
where � � 0.7 was the discount factor chosen to match neural activation
time courses as described above, and �0 � 70 was chosen to match the
average reaction time reported in the experiment (�320 ms; Sohn and
Lee, 2007). To account for the shorter time horizon in Figure 8, we used
�0 � 7 for this task.

For modeling the spreading activity profile in Figure 8E, we first cal-
culated for each position its distance d from each goal, using the �1-l.
(The �1-l was used to capture the fact that the animal is forced to move
along the center of the corridors, i.e., either horizontally or vertically, in
this case.) The contribution of each goal to the steady-state activity at a
given position was then computed as re�d/�, with reward size r (as shown
in the figure) and attenuation length scale � � 1.2 times the length of the
second segment of the green path in Figure 8E (the exact value of � did
not affect our results). Finally, the overall activity at each position was
obtained by a linear superposition of these contributions. For simplicity,
we allowed activity to spread symmetrically along every corridor, e.g.,
even from state 2 via 0 to 1. However, restricting activity spread to be
strictly retrodromic (i.e., only toward the initial position of the rat), thus
breaking symmetry and preventing the rat to ever turn around, did not
change our conclusions. We constrained the path along the gradient to
stay in the middle of the corridors.

Results
The central difficulty of sequential decision making is that actions
need not simply be chosen based on the immediately ensuing
rewards (or punishments); instead, their long-term conse-
quences need to be considered, which in turn depend on several
other actions we have already made or will make in the future. To
solve this problem flexibly, an internal model of the environment
needs to be maintained and used to compute these consequences
before making each new decision. Although there exist well
known computer algorithms that can solve this problem (collec-
tively known as dynamic programming) and there is evidence for
the behavioral and neural correlates of such computations, it is
unknown how networks of spiking neurons actually implement
them.

We were able to show mathematically that a recurrently cou-
pled network of spiking neurons, when connected appropriately,
is able to represent, through its internal dynamics, the value of the
best action in a given situation (see Materials and Methods). This
value expresses the average total future reward attainable from
the current situation if the next action as well as all future actions
are selected optimally, and it is a central quantity of mathematical
theories of sequential decision making (and optimal control) be-
cause it itself allows the selection of optimal actions. Crucially, the
value computed by our network also depends on an internal
model of the environment, in particular on the knowledge of how
situations follow from each other depending on the actions cho-
sen (so-called transition probabilities), and how they result in
immediate rewards (reward probabilities). In the case of a recur-
rent neural network, this internal model is implicitly embedded
in the efficacies of the synapses connecting the neurons to each
other (as well as to an external input signaling immediate re-
wards). Thus, we also showed how (semi-)local forms of synaptic
plasticity can tune synapses in the network appropriately, in an
experience-dependent manner using reward-prediction and
state-prediction errors akin to those described experimentally
(Gläscher et al., 2010), so that the internal model validly captures
the relevant statistical structure of the environment. As the com-
putations in our network did not directly correspond to any pre-
viously described dynamic programming algorithm, we were
interested in how well it approximated optimal performance and
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whether there were signatures of the particular dynamics of our
network in cortical areas involved in decision making.

Illustrative example task
Besides benchmarking the performance of our network exten-
sively on a range of standard reinforcement learning tasks of
increasing complexity (see Materials and Methods; Fig. 1), we
also studied in more detail its underlying neural dynamics in a
simple but nontrivial artificial decision-making task (Fig. 2). We
considered a two-step navigation task in a simple maze with one
stochastically operating door (Fig. 2A). This task corresponded to
a simple decision tree with four states, in each of which two
alternative actions were available: turning left or right (Fig. 2B).
Although this task is simple, it is not trivial. “Open loop” control,
which precommits to one action sequence already at the start and
plays it out regardless of what happens on the way, would per-
form action L in the first step and L or R in the second step,
yielding reward 3⁄4 compared with 1⁄2 (on average) if choosing R
first and then either L or R. However, optimal behavior requires
“closed loop” control to first take action R and then select the
next action depending on the state that is reached through the
stochastically operating door (L for 2 and R for 3), achieving a
total reward of 1. Hence, this deceptively simple task differenti-
ates between optimal open-loop and closed-loop action selec-
tion. Interestingly, the only proposal so far for how neural
networks may perform model-based decision making (Solway
and Botvinick, 2012) failed on the specific task considered here
(data not shown; see also Materials and Methods).

In our neural network, which solved this task successfully,
each action in each state was represented by a separate neuron
(Fig. 2C, colored circles), receiving external input signaling im-
mediate reward (Fig. 2C, black circle). Excitatory synaptic effica-
cies were proportional to the transition probabilities and the
(expected) reward (Fig. 2C, green connections), respectively. In-
hibitory synapses between neurons coding for different actions in
the same state were all of the same strength (Fig. 2C, red connec-

tions). The dynamics of this spiking network quickly, within 10
ms, settled into a steady state (Fig. 2D,E), which was most appar-
ent when measured in terms of firing rates (Fig. 2F). In this steady
state, the network correctly represented the optimal values (Fig.
2G). This representation was achieved by eventually only one
neuron remaining active in each group representing a state (be-
cause the optimal action was unique), through competition me-
diated by lateral inhibition within the group (Strait et al., 2014).
The only exception for this was the group representing state 1, in
which both actions had exactly the same value and thus both
corresponding neurons remained active (Fig. 2F). The asymp-
totic firing rates of these neurons depended on the initial condi-
tions, but the state value that was represented by their sum did
not (data not shown). The transient behavior of the network was
also revealing. In particular, the wrong action in the root state
(action L in state 0; Fig. 2F, cyan) was preferred initially until the
optimal decisions in later stages have been found. This temporal
delay in computing the values of distal actions (Fig. 2G) is a
characteristic feature of our network that we will exploit when
comparing against neural and behavioral data in the following.
Although neural networks implementing planning-as-inference
can also result in such delayed reversals in some cases (Solway and
Botvinick, 2012), they fail to compute the correct values for
closed-loop control in our example task and also cannot predict
reversal in this case (data not shown).

Neural dynamics in two-alternative forced choice tasks
Having introduced the model and verified its ability to solve chal-
lenging benchmark tasks (Figs. 1-2), we considered tasks used in
decision-making experiments to test our model against empirical
data. We began with the simple case of two-alternative forced
choice with deterministic outcomes. Padoa-Schioppa (2013) per-
formed an experiment in which monkeys chose between two
juice offers by making a saccade to one of two locations. On each
trial, two types of juice (A and B, where A is preferred) were
offered in different amounts. We formalized this task as consist-

A B C D

E F G

Figure 2. Two-step example task. A, The rat moving through the maze can choose the left (L) or right (R) arm at four decision points (states 0, 1, 2, and 3). Turning right in the first step (state 0)
leads to a place where one of two doors opens randomly, indicated by the coin flip. The sizes of the cheeses indicate reward magnitudes (see also B). B, The decision graph corresponding to the task
in A is a tree for this task. Numerical values indicate rewards (r) and transition probabilities (p) for nondeterministic actions. C, The corresponding neural network: action nodes in B are identified with
neurons (colors). Lines indicate synaptic connections, with thickness and size scaled according to their strength. A constant external input (black) signals immediate reward. Synaptic efficacies are
proportional to the transition probabilities or the (expected) reward. D, Voltage traces for two neurons in C. E, Spike trains of all neurons. The color code is the same as in C. F, Activity for rate neurons
with random initial values. The color code is the same as in C. The line style indicates neurons coding for optimal (solid) and suboptimal (dashed) actions. G, The approximate values Ṽ, represented
by the sum of the rates in F, converge to the optimal values (black dashed lines). Values of states 0 –3 are shown from the bottom to top. The color code is the same as in B.
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ing of a single state and two actions corresponding to the two
kinds of juice being offered on a trial (Fig. 3A, top). Thus, our
model network only consisted of two populations of neurons,
each corresponding to one of the two actions, i.e., juices (Fig. 3A,
bottom). Although the architecture of the network in this case
was extremely simple, this matched the simplicity of the task it
needed to solve in this special case. In general, as we show later,
our model is more powerful and extends to multistep sequential
tasks with potentially stochastic rewards at several steps, which
imply more complex network architectures.

Despite the apparent simplicity of the task, our simulations
revealed complex time courses in the activities of the model neu-
rons that changed systematically as we varied the value of the
juice encoded by a neuron (Fig. 3B, solid lines). First, the overall
amplitude of the activity scaled with the value, which was simply
attributable to the fact that the efficacies of the synapses connect-
ing the reward input to the two units also scaled with these values.
Second, and more importantly, the peak time also depended on
reward magnitude, such that both medium- and high-value trials
resulted in later peak times than low-value trials, despite the fact
that the activity of the reward input itself followed the same time
course during all trial types (Fig. 3B, black line). This was because
for low values, the network often discovered that the encoded
juice was not the best option offered, and so after a short initial
increase, the activity of the neuron was actively suppressed by
network interactions (compare Fig. 2F, dotted lines). In contrast,
during high-value trials, the juice was often the best option, in
which case its activity was not suppressed by the internal dynam-
ics of the network, and primarily followed the time course of the
feedforward reward input, which still continued to rise after the
activity of the other neuron had been suppressed. For medium-
value trials, both options had similar values, and in this case, it
was the internal dynamics of the network, the mutual inhibition-
driven winner-takes-all process, that took longer, resulting in a
delayed peak time. These value-dependent time courses showed a
close similarity to the activity of so-called “offer value” cells that
Padoa-Schioppa (2013) recorded in orbitofrontal cortex (OFC;
Fig. 3B, dotted lines).

Neural activities similar to those found in OFC have also been
described in the frontal eye fields, but with the difference that
rather than decaying back to baseline, neural activities persisted
at an elevated baseline level for several seconds in the trial until a
saccade was executed (Roesch and Olson, 2003; Fig. 3C), consis-
tent with a role in reward-based decision making (Curtis and Lee,

2010). In these experiments, one of the options (B) was always
unrewarded, whereas the other (A) was always rewarded, with
one of two magnitudes, as indicated by a cue on each trial. We
simulated this experimental paradigm in the same network using
a higher baseline firing rate and constant activity for the reward
input plus an initial Gaussian “bump” (Fig. 3C, black line). (The
additional bump might be merely epiphenomenal, attributable to
a transient at the presentation of a cue, or it could have a func-
tional role by facilitating the accuracy of decision making with
increased firing rates, which become unnecessary once the values
are established, at which point lower activity levels may be more
beneficial for metabolic reasons.) The overall time courses of
neurons were similar to those found in OFC, with one key differ-
ence: neurons coding for the unchosen option B did not show an
initial increase in activity (Fig. 3C, purple lines). The model cor-
rectly captured these results and accounted for the immediate
decrease, without a transient increase, in the activity of the B
population. This was attributable to the fact that the correspond-
ing value was zero, implying that the input to the B population
never increased beyond baseline, which in turn meant that lateral
inhibition from the A population dominated from the very be-
ginning of the trial. Furthermore, the model also reproduced
higher persistent activity for the larger reward in the A population
(Fig. 3C, thick vs thin blue lines) but not in the B population (Fig.
3C, thick vs thin purple lines). This was a fundamental property
of our network, as the activities of neurons representing a subop-
timal action in it are always suppressed to baseline asymptoti-
cally, even if the input, and hence the activity of neurons
representing the optimal action, is persistent.

We also examined how the magnitude of activities in our net-
work varied as the values associated with the two offers were
varied systematically (Fig. 4). We found that the firing rate of a
neuron showed a nonlinear, monotonically increasing depen-
dence on the value of the juice it encoded, such that it was zero as
long as this value was inferior to that of the other option, and
approximately scaled with the value when it represented the bet-
ter option (Fig. 4A, blue). We also found that the firing rate was
primarily independent of the alternative offer in the latter case
(data not shown). These patterns were again qualitatively similar
to the behavior of offer value cells in the OFC (Padoa-Schioppa
and Assad, 2006; Fig. 4A, green). Although the neurons in our
network computed the value of a particular action (i.e., choosing
a juice), theories of decision making often also require computing
the value of a state, which is the value of the best action that can be

A B C

Figure 3. Time course of neural activity in a binary choice task. A, The task (top) consisting of a single state (s0) and two actions (A and B) associated with different values (which, in this case, were
also their immediate rewards, rA and rB) and the corresponding neural network (bottom). B, Average population activity for offer value cells (dashed line) from the study by Padoa-Schioppa (2013)
and simulation results (solid line). Trials were divided into three groups depending on the offer value (colors). C, Average population activity (dashed line) from the study by Roesch and Olson (2003)
and model results (solid line). Trials were divided depending on whether the cell encoded the optimal action (blue) or not (purple) and on whether the reward was large (thick) or small (thin). The
activity of the reward input used in the simulations is shown as a black curve in B and C with the corresponding y-axis plotted on the right side.
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taken in a situation (Sutton and Barto, 1998). Based on our net-
work, this could be computed as the sum of the activities of all
neurons corresponding to a state (i.e., implying a simple feedfor-
ward architecture from our network to such state value-
representing neurons), which thus showed a nonmonotonic
dependence on offer value, such that activity increased with ei-
ther of the two offers becoming increasingly valuable (Fig. 4B,
blue). This behavior was observed in another population of OFC
cells, called “chosen value” cells (Padoa-Schioppa and Assad,
2006; Fig. 4B, green), which have indeed been suggested to receive
feedforward input from offer value cells (Padoa-Schioppa, 2013).

Behavioral dynamics in two-alternative forced choice tasks
Behavioral measures in decision tasks have often been demon-
strated to offer useful constraints on the underlying neural
mechanisms (Smith and Ratcliff, 2004). Thus, we compared psy-
chometric and chronometric curves predicted by our model with
those reported in binary choice experiments. In our model, fol-
lowing previous work (Zhang and Bogacz, 2010), a decision was
made when the difference between the cumulative spike counts of
the two populations reached a predetermined threshold (Fig.
5C). Given the population rates in our model, we set the decision
threshold to reproduce average reaction times reported experi-
mentally (Padoa-Schioppa et al., 2006) and obtained psychomet-
ric and chronometric curves without further parameter fitting
(see Materials and Methods).

As we saw above, the internal dynamics of the model ensured
that firing rates of the two populations directly related to the
values of the two offers, at least in the steady state, and so the
decisions that were based on the spike counts (effectively accu-
mulating the rates) naturally showed a preference for the choice
with the higher value. Despite decisions depending deterministi-
cally on the spike counts in the model, this preference was not
deterministic because of the stochastic spiking of the neurons, the
finite size of the network, and the finite reaction times enforced
by the fixed decision threshold. Thus, the model naturally
reproduced the standard sigmoidal psychometric curves found
experimentally (Padoa-Schioppa et al., 2006; Fig. 5A,B). Both
simulated and experimentally measured psychometric curves
had an indifference point where the values of the two offers were
equal, by definition. However, more importantly, the slopes of
the psychometric curves were also well matched by our simula-
tions without specific parameter tuning.

Reaction time data provided a particularly useful basis for
comparing decision dynamics in the model to experimental data.

As we described above (Fig. 3B), easier de-
cisions led to the losing population being
suppressed sooner, and so the spike count
difference between the winning and losing
populations also reached the decision
threshold sooner (Fig. 5C). Specifically,
decision times increased with the value ra-
tio (defined as the ratio of the smaller to
the larger value and thus ranging from
zero to one; Fig. 5D, right, colored sym-
bols), such that pooling across trials with
diverse value ratios resulted in a near-
lognormal distribution of decision times
(Fig. 5D, right, gray histogram), as often
found in binary choice experiments
(Luce, 1986). This meant that the trans-
formation ensuring that normalized reac-
tion times were distributed as a standard

normal was very close to logarithmic (Fig. 5D, left). In turn, on
average, normalized reaction times were a simple linear function
of the value ratio (slope � 1.63 � 0.15, R 2 � 0.958), in agreement
with experimental results (slope � 1.75 � 0.15, R 2 � 0.951;
Padoa-Schioppa et al., 2006; Fig. 5E). The residuals of this linear
regression were also similarly distributed in the model and in the
experimental data (Fig. 5E, inset). These results were again ob-
tained without specifically fitting model parameters to these data.
Furthermore, they could not be explained solely by the different
inputs that the two populations received in our model. This could
be seen in a simple feedforward variant of our network lacking
lateral inhibition that could actively suppress the responses of
neurons representing the less valuable option. (Note that this
variant still implied lateral inhibition between the notional units
accumulating the spike counts of neurons in our network because
the final decision depended on the difference between these cu-
mulative spike counts.) Such a feedforward network produced
overlong reaction times for difficult choices, i.e., value ratios near
1, resulting in a significantly higher slope of the normalized reac-
tion time-value ratio regression (2.22 � 0.13). Thus, the reaction
times we obtained were diagnostic of the specific recurrent inter-
actions in our network.

Sequential tasks
We next turned to tasks involving multiple steps as a more gen-
eral test bed of our theory. In one such sequential task, monkeys
were trained to produce a series of hand movements instructed by
visual stimuli (Sohn and Lee, 2007). The sequence and its length,
which were manipulated across trials, were determined by the
first stimulus, based on which the whole sequence could thus be
planned in advance. At each step of a trial, the current position
and the next visual target were displayed. Executing the correct
action, the hand movement taking the cursor to the visual target,
brought the animal one step closer to the reward. If an incorrect
action was performed, the trial was aborted without reward, and
the same sequence of targets was presented again in the next trial
(Fig. 6A, inset). (Although the presentation of the next target in
each step provided some means to solve the task in a piecemeal
fashion by individual one-step decisions, the neural responses
and reaction times indicated that the monkeys were planning
ahead, using a sequential decision-making strategy.) During the
execution of the task, the activity of neurons was recorded in the
pre-SMA. Pre-SMA is a frontal area strongly connected to PFC
but not to primary motor cortex and involved in planning of
internally generated action sequences (Nachev et al., 2008). In

A B

Figure 4. Value dependence of neural firing rates in a binary choice task in experiments (open green circles; adapted from
Padoa-Schioppa and Assad, 2006) and simulations (filled blue circles). A, Neuron encoding offer value of option B. One unit of juice
A was worth 2.2 units of juice B. B, Neuron encoding chosen value, 1A � 2.5B. Error bars show SEM and were often smaller than
the symbols.
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particular, Sohn and Lee (2007) found neurons that besides en-
coding kinematic parameters of the current movement also mod-
ulated their activity according to the NRMs in a trial (Fig. 6A).

We simulated the sequential task such that states corre-
sponded to steps in a trial, and we report here the activity of
neurons representing the optimal action in one of the states while
varying the NRMs, i.e., the number of steps (movements) needed
from this state to reach the reward, across trials (Fig. 6B). Al-
though the activity profile of the reward input remained the same
across steps (Fig. 6B, black line), the activities of neurons repre-
senting the correct current action showed systematic modulation
by NRMs in close correspondence with the experimental data
(Fig. 6B, colored lines). In particular, activities became larger and
peaked earlier as the reward became more proximal (decreasing
NRMs). Whereas the overall shape of activities was, to a large
extent, inherited from our particular choice for the activity pro-
file of the reward input, and NRM-dependent initial firing rates,
these modulations of the amplitude and delay were fundamental
predictions of our model. The amplitude was modulated as a
result of the discounting of reward, and the response peak was
delayed because activity had to spread from the reward input via
neurons coding for the remaining movements to the neuron cod-
ing for the current action. These modulations matched experi-
mental data remarkably well (compare Fig. 6A). Moreover, using
the same mapping from neural activities to behavioral output in
the model as in the simple one-step binary decision tasks de-
scribed above (with a temporally discounted decision threshold;
see Materials and Methods), the model also reproduced the ap-
proximately linear scaling of reaction times with NRMs (Fig. 6D).

The NRM-dependent modulation of delays was a hallmark of
the particular dynamics our network used to compute the correct
action. Specifically, the alternative proposal that the cortex im-
plements planning as inference (Solway and Botvinick, 2012; see
also Materials and Methods) did not produce such delay modu-
lations, only modulations of the amplitude (Fig. 6E). Even these
amplitude modulations for planning-as-inference were unlike
those found experimentally as, in contrast to experimental data,
the activity profiles for zero and one NRM almost completely
overlapped.

Another difference between planning-as-inference and our
network, which remains to be tested, was the sensitivity to the
number of available actions in the current state. Our network
produced the same firing rate time courses regardless of the num-
ber of actions out of which it had to choose the correct one (Fig.
6C). This was because incorrect actions did not yield reward, and
so the corresponding neurons in our model were always inhibited
and never active. That is, increasing the number of available ac-
tions with negligible value in our model amounted to adding
neurons that were virtually inactive and hence had no way to
influence network dynamics. (However, for the same reason, ad-
ditional actions with non-negligible values did influence neural
dynamics and increased behavioral reaction times in our model;
data not shown.) In contrast, planning-as-inference was inher-
ently more sensitive to this manipulation, showing strong ampli-
tude modulations by the number of available actions such that
more actions led to smaller responses (Fig. 6F).

Our theory also generalizes for tasks with many rewards at
various time points rather than just a single reward solely at the

A B

C D E

Figure 5. Psychometric and chronometric curves in a binary decision-making task. A, B, Choice probabilities in experiments (open green squares; Padoa-Schioppa and Assad, 2006) and
simulations (filled blue squares) for two different relative values of the two juices: 1A � 2.2B (A) and 1A � 2.5B (B). C, Difference between the cumulative spike counts of populations representing
the two potential choices in the model. Accumulation starts with sensory delay (dashed line; compare input onset in Fig. 3B). When a threshold (red line) is reached, a decision is made. Colors indicate
different value ratios as in D. D, Decision time distributions in the model. Right, Dependence of raw decision times on the value ratio (colored Tukey’s boxplots) and their overall distribution across
all value ratios (gray histogram). Left, Normalizing function (solid blue line), together with a logarithmic fit (dashed black line), which transforms the raw decision time distribution into a standard
normal distribution (gray histogram). E, Normalized reaction times (�SEM) as a function of value ratio in experiments (open green squares; Padoa-Schioppa and Assad, 2006) and simulations (filled
blue squares). Lines show least squares fits (dotted green, experiments; solid blue, simulations); the inset shows distribution of residuals after fitting (green bars, experiments; blue bars,
simulations).
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end of a trial as in the experiments described above. To make
predictions for the more general case, we simulated a modified
version of the task of Figure 6 by adding an intermediate reward
and by setting up subsequent wrong actions to lead to the state
immediately thereafter (Fig. 7A). This latter change of the transi-
tion structure of the task was introduced to discourage multiple
collections of the intermediate reward by simply looping between
the beginning of the sequence and the immediate reward without
ever progressing to the second half of the sequence. We verified
that this change alone, without including the intermediate re-
ward, did not change the predictions of Figure 6 (data not

shown). Thus, any effects reported below in Figure 7 were pri-
marily attributable to the inclusion of the intermediate reward.

In contrast to the single-reward case (Fig. 6B), the simulations
with intermediate reward showed a nonmonotonic relationship
between the peak amplitude of firing rate curves and the NRMs
(Fig. 7B). According to our theory, neural activity encoded value
(of a particular action) and not the NRMs. Although the task in
Figure 6 was inappropriate for distinguishing between these two
alternatives, a task such as the one proposed here enables a stron-
ger test of our theory. Note that although the structure of transi-
tions between states 7 and 4 matched that between states 3 and 0,

A B C

D E F

Figure 6. Sequential decision making. A, An example neuron in pre-SMA showing activity modulated by the NRMs (colored lines; Sohn and Lee, 2007): amplitude decreases and delay increases
with NRM. The inset shows task structure: colored circles indicate states (numbers show NRMs), arrows show state transitions (colored lines, correct action; black lines, incorrect action), and the gray
square represents terminal state with reward (modeled as r � 1). B, Activity time courses of an example model neuron as a function of NRMs. The color code is the same as in A. The black line shows
activity of the reward input chosen to fit experimental data. C, Activity time courses of an example model neuron as a function of the number of available actions (1 correct, others incorrect) in the
state with NRM � 3. D, Experimental (open green squares; Sohn and Lee, 2007) and simulated (filled blue squares) reaction times increased approximately linearly with NRMs. Error bars
(SEM) are all smaller than the symbols. E, F, Predictions of planning-as-inference for neural time courses as a function of NRMs (E) and number of available actions (F ). The color code is
the same as in B and C.

A B C

Figure 7. Predictions for a novel sequential decision-making task. A, Task structure with rewards in two distinct steps; symbols are as in Figure 6A (inset). B, Simulation results for the suggested
task with added intermediate reward. The color code and activity of the reward input are as in Figure 6B. C, Reaction times (blue squares) and peak firing rates (purple circles) from the simulations
in B vary nonmonotonically with NRM. Error bars (SEM) are often smaller than the symbols.
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the corresponding neural activities predicted by the model did
not overlap, showing substantial differences in both peak rates
and times (Fig. 7B). In particular, the activity profiles for earlier
states were always higher than in the respective late states (e.g.,
NRM 4 vs 0 or 5 vs 1). This asymmetry was attributable to the
contribution of the final reward to the values of the earlier states
(albeit in a temporally discounted form), whereas the intermedi-
ate reward could not possibly contribute to the values of the later
states. As reaction times in our model were directly linked to the
magnitudes of neural activities (see above), we similarly predict a
nonmonotonic relationship between NRM and reaction times
for such multireward tasks (Fig. 7C).

Multigoal environments and devaluation
Finally, we turn to a sequential task that involves choosing be-
tween multiple rewards (Fig. 8A). This task has been introduced
by Niv et al. (2006) to study shifts in motivational state and, in
particular, when the value of one choice (cheese in Fig. 8A, top
left) depends on the current motivational state of the animal such
that devaluation decreases it from a high baseline to a lower level.
This task corresponds to a simple decision tree with three states
(Fig. 8A, colored numbers), in each of which two alternative
actions are available: turning left (L) or right (R). Figure 8B shows
the evolution of neural activities in the corresponding neural
network with six (groups of) neurons before devaluation. Note
that, as before (Fig. 2), the activity of the neuron encoding the
wrong action in the root state (state 0, action R, dark blue) is
initially higher than the activity of the neuron encoding the cor-
rect action in the same state (L, light blue), and it takes time for
the network to reverse this and thus arrive at representing the
correct course of action. Figure 8C shows that the optimal se-
quence (L–L) is selected most of the time, and Figure 8D reveals

again an increase in reaction times with NRMs (state 0 vs 1 and 2;
compare Fig. 6D), as well as with the value ratio of available
actions (state 1 vs 2; compare Fig. 5E).

The effect of devaluation can be captured in our model by
simply reducing the reward value associated with the formerly
preferred cheese from r � 4 to 2. Note that this change directly
affects only the feedforward reward input into the neuron coding
for action L in state 1. Nevertheless, during planning, the impact
of this local change propagates to the neurons coding for the
distal root state (Fig. 8F), yielding a reversal in choice (Fig. 8G)
immediately after devaluation (i.e., without having experienced
traversing the maze in this devalued state), which is a hallmark of
goal-directed decision making. In addition, the reaction time in
state 1 for the now less appealing cheese increases (Fig. 8H).

This task also offers a further opportunity to distinguish our
model from other potential proposals for the neural network
dynamics underlying goal-directed decision making. In particu-
lar, a broad class of models uses spreading activation back from
goal(s) to the current state, not unlike the spreading of value
signals in our network (Schmajuk and Thieme, 1992; Hasselmo,
2005; Koene and Hasselmo, 2005; Martinet et al., 2011). In these
models, backward spreading of activity establishes a pattern of
population activities, such that the steady-state firing rate of each
cell in the network depends inversely on the distance between the
state it represents and the goal state (Fig. 8E, gray scale), and so
the animal simply needs to follow the gradient of this steady-state
activity map to reach the desired goal. However, when multiple
potential goals exist, each offering different rewards as in our
case, this simplistic mechanism can easily fail to find the best
sequence of actions (Fig. 8E, green trajectory). This is because
spreading activation, as a fundamentally diffusive process, com-
bines rewards in different states linearly, whereas the computa-

A B C D

E F G H

Figure 8. Reinforcer devaluation. A, The rat moving through the maze can turn left or right at three decision points (states 0, 1, and 2; colored numbers). The numbers above the terminal positions
indicate the corresponding rewards. Devaluation decreases the reward associated with cheese (top left) from a baseline level of 4 to a devalued level of 2. [Adapted from Niv et al. (2006).] B,
Simulated firing rates with baseline reward values. Colors indicate the state–action pair encoded by each cell, following the color scheme in A. The activity of the reward input (black) is as in Figure
6B. C, D, Choice probabilities (C) and reaction times (D; �SEM) in each state. E, Activity profile for a spreading-activation model (darker means increasing activity). The path of an agent following
the activity gradient (green) yields only a reward of 3 instead of the optimal 4. F–H, Same as in B–D following devaluation in our model. Note the change in the choice at the initial decision point
(state 0).
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tion of optimal values requires nonlinear operations (Eq. 2). In
contrast, in our network, lateral inhibition between neurons en-
coding different actions in the same state combined with the
nonlinear activation function of individual neurons provides just
the right nonlinearities for computing optimal values. More spe-
cifically, in our example task, simple spreading activation results
in the activities of the two smaller rewards reachable from state 2
adding up such that the gradient at the root state points to the
right instead of the left, despite the fact that only one of the two
smaller reward items can be consumed there. In contrast, in our
network, as the decision between alternative actions is being
made in each state, activity caused by suboptimal targets is sup-
pressed, and only the activity of the best (reachable) goal spreads
further to downstream neurons (eventually implementing the
highly nonlinear max operation).

Discussion
Optimal decision making in a complex world is a challenging
computational task in itself (Sutton and Barto, 1998), without
constraining computations to be performed in a biologically
plausible manner, which was the problem we addressed here.
Neural network instantiations had been suggested for model-free
reinforcement learning using gradient-based methods (Frémaux
et al., 2010; Legenstein et al., 2010; Friedrich et al., 2011, 2014;
Friedrich and Senn, 2012), as well as temporal-difference meth-
ods (Potjans et al., 2011; Frémaux et al., 2013). However, here we
suggested, to our knowledge, the first biologically realistic imple-
mentation for complex model-based decisions. For biological
plausibility, we used a canonical, phenomenological single-
neuron model, the spike–response model (Gerstner et al., 2014),
or, equivalently, the generalized linear model (Pillow et al., 2008;
which has been demonstrated to be an accurate predictor of neu-
ral responses in a wide variety of brain areas), and a synaptic
plasticity rule that was local and Hebbian in nature and was based
on prediction errors (Gläscher et al., 2010) to acquire an appro-
priate internal model of the environment. We showed that model
circuits constructed from such elements achieved competent per-
formance in model-based sequential decision making and that
the neural dynamics predicted by our model were consistent with
a broad range of experimental data.

We suggest that our network resides in PFC. More specifically,
we hypothesize that the state–action neurons, of which the dy-
namics our network explicitly modeled, correspond to so-called
offer value cells found in OFC (Padoa-Schioppa and Assad,
2006). Whether the NRM-modulated neurons of pre-SMA re-
ceive inputs from these neurons or implement a parallel network
is unclear, but our model suggests that they should be similarly
modulated by values as OFC neurons are and, conversely, OFC
neurons should show similar activation patterns as pre-SMA
neurons in sequential decision-making tasks. We further hypoth-
esize that the accumulation of spike count differences underlying
the final decision takes place in ventromedial prefrontal cortex,
which receives input from OFC (Rushworth et al., 2012) and has
been implicated in the comparison of options (Wunderlich et al.,
2012; De Martino et al., 2013).

Our network was constructed such that neurons encoded (or
preferred) specific state–action pairs. However, empirical data
suggest that actions may be represented in an ordinal fashion,
such that even the same action in the same state may be repre-
sented by different neurons depending on how distal (i.e., how
many time steps away) it is to the current state of the animal
(Mushiake et al., 2006). It is straightforward to extend our model
to represent state–action–time step tuples by replicating the

state–action neurons for each time step in our current network
and having excitatory synapses connect to neurons encoding the
previous time step. Whereas such an implementation allows for
time-dependent policies, it deals only with the case of finite ho-
rizon and comes at the expense of growing the size of the network
with time horizon. Nevertheless, based on such a representation,
action–time step neurons can be obtained by projecting down into
a downstream area, akin to obtaining chosen value cells from offer
value cells in OFC, and thus account for ordinal action representa-
tions. To make our model metabolically more efficient, and more
comparable in that regard to earlier models (Solway and Botvinick,
2012), it could further be extended such that a separate network
computing the reachability of future states from the current one
(e.g., by forward spread of activation) provides an extra input to our
network so that only neurons representing reachable states (and ac-
tions) in it are close to the threshold.

To simplify exposition, we presented our network as a mini-
mal neural circuit allowing neurons to have both excitatory and
inhibitory synapses. The violation of Dale’s principle could be
avoided by explicitly considering the interneurons that mediate
lateral inhibition between all excitatory cells coding for the same
state (but potentially different actions). Moreover, bisynaptic in-
hibition may also account for offer value cells showing negative
modulation by value (Padoa-Schioppa and Assad, 2006) and pre-
SMA cells negatively modulated by NRM (Sohn and Lee, 2007),
which our simplified network could not capture.

Lateral inhibition was a key element of the dynamics of our
network. While many previous models used lateral inhibition to
implement a winner-take-all mechanism between different
choices, there are important differences between those models
and ours. This is because the precise ways in which lateral inhibi-
tion acts in a model, and in particular whether it acts between
units having neural-like or longer time constants, can have pro-
found consequences for its dynamics (Teodorescu and Usher,
2013). For example, models of nonsequential perceptual decision
making typically use long (�100 ms) time constants that match
the time scale of individual trials to achieve reliable accumulation
of evidence, whereas in our network we used shorter, more real-
istic membrane time constants (�20 ms) and thus relied on ac-
cumulation happening as a “postprocessing step.” This difference
has important implications for the interplay between accumula-
tion and lateral inhibition. In earlier models, lateral inhibition
occurred at the level of the accumulated decision variables (Bo-
gacz et al., 2006; Wong and Wang, 2006). In contrast, in our
model, which might otherwise appear a close (spiking) analog of
these earlier models in the case of two-alternative forced choices,
it affected already the nonaccumulated decision variables repre-
sented by the neurons of our network. Inhibition between accu-
mulated variables tends to lead to unrealistically skewed reaction
time distributions (Smith and Ratcliff, 2004), which our model
successfully avoided (Fig. 5) but which we also found in simula-
tions of an alternative variant of our network lacking inhibition
between fast time scale neurons (data not shown). Moreover, the
specific form of lateral inhibition used in our network was also
crucial for allowing us to generalize it to solving the ecologically
more relevant and computationally more challenging task of
multistep sequential decision making (in contrast to simple
spreading activation models that do not use lateral inhibition;
Fig. 8E) and also predicted neural and behavioral data in such
richer tasks with high accuracy.

As a consequence of the specific role that lateral inhibition
plays in its dynamics, our model also provides an alternative
account of the stochasticity of decisions and the distribution of
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decision times in simple perceptual decision-making tasks in
which the stimulus is not explicitly stochastic. Previous models
relied on stochasticity in the inputs to the network, even for non-
stochastic stimuli, and the fact that this stochasticity needs to be
integrated out over time (Usher and McClelland, 2001; Smith
and Ratcliff, 2004). Thus, both psychometric and chronometric
curves primarily depended on this external noise. In contrast, our
network receives deterministic input, and so psychometric curves
are a result of the spiking “noise” within the network itself,
whereas chronometric curves are a consequence of the specific
form of lateral inhibition used in it.

Our approach to perform sequential decision making was based
on the principle of dynamic programming (Bellman, 1957): instead
of performing a sequential tree search, planning in our model oc-
curred in a near-parallel fashion, as suggested by near-parallel neural
activations observed in PFC (Averbeck et al., 2002; Mushiake et al.,
2006). Importantly, dynamic programming-based, goal-directed
decision-making algorithms, such as that implemented by our
network, require an internal model of task contingencies that
needs to be acquired through interactions and experience with
the environment. For this, our network required that the same
neurons that encode states and actions during planning of an
action sequence become activated later while that sequence is
being performed, so that the synaptic weights between neurons
faithfully reflect the transition and reward probabilities implied
by the task. Such reactivation of neurons taking part in planning
and execution has also been observed in the PFC (Mushiake et al.,
2006).

Off-line replay of experience, during periods of rest or sleep, as
observed throughout the neocortex (Hoffman and McNaughton,
2002) and, in particular, in multiple brain areas implicated in
goal-directed decision making, such as the ventral striatum (Pen-
nartz et al., 2004; Lansink et al., 2008), the PFC (Euston et al.,
2007; Peyrache et al., 2009), and the hippocampus (Foster and
Wilson, 2006; Gupta et al., 2010), may also serve to reinforce and
consolidate internal models of the environment (Lin, 1992; Mnih
et al., 2015). Although several other models have been proposed
in which the replay of experience underlies model learning (Re-
dish and Touretzky, 1998), our model differs from these in a
crucial aspect. Although those models used Hebbian plasticity to
store information about the experienced sequences, our model
requires either the replay of sequences in reverse temporal order
or forward replay to be coupled with anti-Hebbian forms of plas-
ticity (such that post-before-presynaptic activation is needed for
potentiation). This is because in our model, an excitatory synap-
tic weight connecting a presynaptic neuron i to postsynaptic neu-
ron j represents the probability of reaching the state represented
by neuron i from that represented by neuron j. Reverse replay has
only been observed in the hippocampus (Foster and Wilson,
2006; Diba and Buzsáki, 2007), and it remains to be tested
whether, for example, it also exists in PFC or whether there are
anti-Hebbian forms of plasticity operating there.

On-line reverse hippocampal replay in the form of spreading
activation has also been suggested to provide the neural substrate
of spatial navigation (Hasselmo, 2005; Martinet et al., 2011).
Considering navigation a special case of sequential decision mak-
ing allows a direct comparison between these models and ours. In
line with previous work, our model predicts activity spreading
from neurons representing the goal to neurons representing
more proximal locations. However, the precise form of spreading
activation in our network is different, and notably nonlinear,
thus allowing the network to solve the more general problem of
maximizing return in sequential decision-making tasks with

multiple rewards, for which classical spreading activation models
would fail to account (Fig. 8). Therefore, our model also makes
the novel prediction that the replay-like phenomenon of spread-
ing activation during planning should also generalize to distinctly
nonspatial domains (albeit perhaps in other cortical areas).

Previous proposals for how cortical circuits may solve se-
quential decision tasks were based on the powerful idea of
using probabilistic inference algorithms for planning (Attias,
2003; Toussaint and Storkey, 2006). Although this idea is concep-
tually and algorithmically attractive, especially in light of the con-
verging evidence that cortical circuits may naturally perform
probabilistic inference (Fiser et al., 2010), the neural instantia-
tions suggested so far relied on two particularly speculative
assumptions (Solway and Botvinick, 2012): they required multi-
plicative interactions between presynaptic neurons and assumed
that dendrites approximately perform a logarithmic transforma-
tion on their inputs. Furthermore, state and action neurons
needed to be replicated for each time step of a sequential task;
hence, the size of the network grew with the time horizon, which
had to be finite. Moreover, as our illustrative example task re-
vealed (Fig. 2), the particular form of probabilistic inference af-
forded in these networks (belief propagation) leads to severely
suboptimal behavior in even simple test cases, which our network
successfully solved. Whereas belief propagation has been often
evoked as the algorithmic basis of how the cortex performs prob-
abilistic inference (Lochmann and Deneve, 2011), recent results
suggest that the cortex may, in fact, implement other kinds of
inference algorithms (Fiser et al., 2010; Berkes et al., 2011; Bues-
ing et al., 2011; Hennequin et al., 2014) that are rich enough to
capture the structure of any decision-making task. Thus, even
simple tasks such as those presented here could be used to dis-
criminate competing proposals for the type of algorithm that the
cortex implements for model-based decision making.

Notes
Supplemental material for this article, which consists of python scripts
used for the simulations, the proof that the dynamics of our network
converge to a fixed point where neural activities come to represent the
optimal values that satisfy the Bellman optimality equation, as well as
additional information, is available at https://github.com/j-friedrich/
Goal-directed_decision_making_with_spiking_neurons. This material
has not been peer reviewed.
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