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Abstract	
Accurate	characterization	of	promoter	behavior	is	essential	for	the	rational	design	
of	 functional	 synthetic	 transcription	networks	 such	as	 logic	 gates	and	oscillators.	
However,	 transcription	 rates	 observed	 from	 promoters	 can	 vary	 significantly	
depending	 on	 the	 growth	 rate	 of	 host	 cells	 and	 the	 experimental	 and	 genetic	
context	 of	 measurement.	 Further,	 in	 vivo	 measurement	 methods	 must	
accommodate	 variation	 in	 translation,	 protein	 folding	 and	 maturation	 rates	 of	
reporter	 proteins,	 as	 well	 as	 metabolic	 load.	 The	 external	 factors	 affecting	
transcription	activity	may	be	considered	extrinsic,	and	the	goal	of	characterization	
should	 be	 to	 obtain	 quantitative	 measures	 of	 the	 intrinsic	 characteristics	 of	
promoters.	
	
We	 have	 developed	 a	 promoter	 characterization	 method	 that	 is	 based	 on	 a	
mathematical	 model	 for	 cell	 growth	 and	 reporter	 gene	 expression	 and	 exploits	
multiple	 in	 vivo	 measurements	 to	 compensate	 for	 variation	 due	 to	 extrinsic	
factors.	First,	we	used	optical	density	and	fluorescent	reporter	gene	measurements	
to	account	for	the	effect	of	differing	cell	growth	rates.	Second,	we	compared	the	
output	 of	 reporter	 genes	 to	 that	 of	 a	 control	 promoter	 using	 concurrent	 dual-
channel	 fluorescence	 measurements.	 This	 allowed	 us	 to	 derive	 a	 quantitative	
promoter	 characteristic	 (ρ)	 that	 provides	 a	 robust	 measure	 of	 the	 intrinsic	
properties	of	 a	promoter,	 relative	 to	 the	 control.	We	 imposed	different	extrinsic	
factors	 on	 growing	 cells,	 altering	 carbon	 source	 and	adding	bacteriostatic	 agents	
and	demonstrated	that	the	use	of	ρ	values	reduced	the	fraction	of	variance	due	to	
extrinsic	factors	from	78%	to	less	than	4%.	This	is	a	simple	and	reliable	method	for	
quantitative	description	of	promoter	properties.		
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Introduction	
A	major	 aim	 of	 synthetic	 biology	 is	 the	 rational	 design	 and	 construction	 of	 DNAs	
composed	of	genetic	parts	from	various	sources	to	achieve	defined	novel	functions.	
Promoters,	 regulatory	proteins,	operators,	and	translation	 initiation	elements	 from	
bacteria	and	bacteriophages	have	been	combined	to	build	transcription	networks	or	
circuits	 encoding	 toggle	 switches	 (1),	 oscillators	 (2),	 logic	 (3),	 and	 simple	
computation	(4)	in	Escherichia	coli.	While	these	studies	demonstrate	the	potential	of	
the	 synthetic	 biology	 approach,	 the	 scope	 of	 designed	 genetic	 systems	 remains	
limited	due	to	lack	of	reliable	data	on	the	behavior	of	genetic	parts.	There	are	usually	
many	candidate	parts	that	could	be	used	to	build	a	given	genetic	network	topology	
and	 the	 designer	must	 select	 those	 likely	 to	 achieve	 the	 desired	 function.	 As	 the	
number	 of	 available	 parts	 increases,	 exhaustive	 testing	 or	 trial-and-error	 become	
infeasible,	 and	 quantitative	 modeling	 becomes	 essential.	 Part	 characterization	 is	
then	required	to	parameterize	these	models	in	such	a	way	that	they	are	predictive	of	
practical	 genetic	 network	 operation.	 However,	 characterization	 of	 promoters	 is	
problematic	because	their	behavior	can	vary	unpredictably	in	different	contexts.	
	
	This	variation	is	partly	due	to	dependence	on	the	host	cell.	Genetic	parts	and	host	
strains	 are	 usually	 chosen	 to	 minimize	 specific	 regulatory	 interactions	 between	
native	and	synthetic	circuits,	for	example	by	avoiding	CAP	binding	sites	in	promoters	
(5).	However,	 broad	utilization	of	 host	 resources	 cannot	 be	 avoided.	 For	 example,	
initiation	 of	 transcription	 from	 a	 promoter	 sequence	 generally	 depends	 on	 the	
availability	of	the	cell’s	native	RNA	polymerase	(RNAP),	associated	sigma	factors,	and	
RNA	 nucleotides.	 Translation	 of	 transcribed	 mRNAs	 into	 proteins,	 including	
fluorescent	 reporters,	 requires	 host	 ribosomes,	 tRNAs,	 and	 amino-acids.	 Empirical	
correlations	between	chromosome	and	plasmid	copy	number,	 ribosome	and	RNAP	
levels,	 and	 growth	 rate	 have	 been	 identified,	 which	 lead	 to	 fluctuation	 in	 gene	
expression	 (6-8).	 DNA	 sequence	 local	 to	 genetic	 parts	 can	 also	 significantly	 affect	
their	behavior.		In	particular,	the	activity	of	promoters	has	been	shown	to	depend	on	
the	adjacent	transcript	sequence	(9).	The	mechanistic	details	of	these	relationships	
are	not	fully	understood.	For	the	goal	of	characterization,	this	means	that	both	the	
promoter	 of	 interest	 and	 any	 indirect	 (fluorescence,	 luminescence,	 colorimetric)	
reporter	 measurements	 of	 its	 activity	 are	 subject	 to	 unpredictable	 variation.	
Moreover,	expression	of	a	reporter	causes	metabolic	 load	that	will	 likely	affect	the	
operation	of	the	promoter	under	study.	
	
Relative	 measurement	 is	 a	 common	 approach	 to	 reducing	 variation	 in	
measurements,	 and	 has	 been	 applied	 to	 promoter	 characterization.	 In	 higher	
organisms,	 our	 laboratory	 has	 applied	 relative	 measurement	 of	 promoters	 to	
account	 for	differences	between	cell	 types	and	the	accessibility	of	different	tissues	
to	measurement	(10).	 In	bacteria,	Kelly	et	al.	 (11)	measured	the	activity	of	a	set	of	
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promoters	 in	E.	coli	growing	in	different	conditions,	and	hosted	in	different	strains.	
Each	promoter	was	measured	 individually	 in	 separate	experiments	 in	 each	growth	
condition	 and	 strain.	 One	 of	 these	 promoters	 was	 chosen	 as	 a	 reference	 and	 its	
mean	 activity	 used	 to	 normalize	 the	 other	 promoters	 in	 the	 set.	 The	 result	was	 a	
relative	measure	of	promoter	 activity	with	 lower	 variance	 than	absolute	promoter	
activity.	More	 recently	 Keren	 et	 al.	 (12)	 screened	 a	 library	 of	 around	 1800	 E.	 coli	
promoters	expressing	GFP	 in	 ten	different	growth	media.	Supporting	 the	results	of	
Kelly	et	al.	they	found	that	the	activity	of	70-90%	of	the	promoters	was	scaled	by	a	
constant	 factor	when	 changing	 growth	 conditions.	 Further,	 they	 showed	 evidence	
that	promoters	deviating	from	this	global	scaling	were	those	specifically	regulated	by	
the	 change	 in	 conditions,	 e.g.	 metabolic	 operons	 affected	 by	 choice	 of	 carbon	
source.		
	
In	 summary,	 several	 studies	 have	 suggested	 that	 variation	 in	 the	 activity	 of	
constitutive	 promoters	 is	 largely	 due	 to	 global	 sources	 that	 preserve	 their	 relative	
levels	of	activity,	and	that	specific	regulation	of	promoters	is	observed	as	a	change	in	
this	relative	activity	(10	–	12).	However,	both	Kelly	et	al.	 	(11)	and	Keren	et	al.	(12)	
measured	 the	 activity	 of	 promoters	 individually	 in	 separate	 experiments,	 and	
computed	 relative	 activities	 between	 experiments.	 Such	 measurements	 cannot	
capture	global	variation	due	to	the	metabolic	 load	of	an	 introduced	synthetic	gene	
circuit,	slight	differences	in	growth	conditions,	or	the	initial	state	of	inoculated	cells.	
Previous	 work	 in	 our	 laboratory	 developed	 dual	 reporter	 plasmids	 to	 enable	
concurrent	 ratiometric	measurement	 of	 promoter	 pairs	 (13),	 and	 a	 computational	
analysis	method	(14)	that	further	reduced	variance	in	measures	of	promoter	activity.	
Note	 that	 none	 of	 these	 approaches	 to	 characterization	 explicitly	 addressed	
variation	during	the	time	period	that	a	promoter	is	active,	but	considered	only	peak	
transcription.	 Hence	 characterization	 of	 promoters	 based	 on	 existing	 methods	 is	
subject	to	variation	due	to	extrinsic	factors.	
	

Intrinsic	promoter	characteristics	
Characterization	is	the	process	of	estimating	quantitative	measures	of	part	behavior,	
which	we	call	characteristics.	Promoters	drive	transcription	and	so	any	characteristic	
of	its	behavior	must	relate	to	transcription	rate:	
	
Promoter	characteristic:	a	quantitative	measure	of	transcription	rate	obtained	from	
a	given	promoter	sequence.	
	
However,	transcription	rates	are	not	intrinsic	to	promoters	because	they	are	highly	
dependent	on	 the	 context	 in	which	 they	 are	measured	–	DNA	molecule,	 host	 cell,	
and	experimental	 conditions.	 Transcription	 rates	 are	 also	 very	difficult	 to	measure	
directly	and	non-destructively	in	vivo,	meaning	indirect	reporters	such	as	fluorescent	
proteins	 are	most	 often	 employed.	 These	 reporters	 depend	on	 processes	 that	 are	
subject	to	variation	not	specific	to	the	promoter	driving	transcription,	nor	necessarily	
correlated	with	transcription	rate	(Figure	1).	Both	the	context	of	measurement	and	
the	measurement	system	itself	 therefore	 introduce	extrinsic	variation	to	estimated	
promoter	characteristics.	In	this	study	we	seek	a	measure	of	promoter	activity	that	is	



	 4	

reliable	 in	 spite	 of	 this	 extrinsic	 variation	 –	 that	 is,	 an	 intrinsic	 promoter	
characteristic:	
	
Intrinsic	 promoter	 characteristic:	 a	 quantitative	 measure	 of	 transcription	 that	 is	
specific	to	a	given	promoter	and	consistent	in	a	range	of	contexts.	
	
Here	 we	 describe	 the	 systematic	 development	 of	 a	 method	 for	 in	 vivo	
characterization	 of	 promoters	 based	 on	 dual-channel	measurement	 of	 fluorescent	
reporters.	Using	this	method	we	derived	a	ratiometric	promoter	characteristic	that	
reduced	the	fraction	of	variance	due	to	extrinsic	factors	to	less	than	4%,	suggesting	it	
is	intrinsic	to	the	promoter.	
	

	
	
Figure	1.	Steps	required	for	fluorescent	reporter	synthesis.	(Left-right)	Transcription	is	
initiated	at	promoter	sequences	in	each	copy	of	a	reporter	gene	at	rate	𝑲𝑻,	the	resulting	mRNA	is	
degraded	at	rate	𝜹𝑹	and	diluted	by	cell	growth	(𝝁),	translation	of	mRNAs	into	immature	
fluorescent	proteins	occurs	at	rate	𝑲𝑳,	followed	by	folding	and	maturation	into	active	fluorescent	
reporters.	Proteins	are	also	degraded	(𝜹𝑷)	and	diluted	by	cell	growth	(𝝁).	
	

Results	and	discussion	

Simultaneous	measurement	of	two	promoters	in	a	single	replicon	
Promoter	activity	is	commonly	measured	from	fusions	upstream	of	a	reporter	gene		
	(11,12,15).		Fluorescent	reporter	genes	are	convenient	because	they	encode	a	
single	protein	and	do	not	require	substrates	or	precursors	to	generate	a	measurable	
signal.	In	this	approach	the	promoter	sequence	is	placed	upstream	of	a	ribosome	
binding	site	(RBS)	and	fluorescent	protein	coding	sequence	(CDS),	either	in	a	plasmid	
or	integrated	into	a	genomic	locus.	However,	the	specific	sequence	to	which	a	
promoter	is	fused	can	significantly	affect	its	activity	(9),	and	will	determine	the	
translation	rate	of	the	reporter	protein	being	measured.	Synthesis	of	mature	
fluorescent	protein	is	required	to	generate	a	measurable	fluorescence	signal.	This	is	
a	multi-step	process	(Figure	1)	beginning	with	transcription	of	mRNA,	followed	by	
translation,	folding,	and	finally	maturation.	At	each	step	degradation	and	dilution	by	
cell	growth	act	to	reduce	cellular	concentrations.	Promoter	activity	itself,	and	the	
fluorescence	measurements	used	to	characterize	it	are	thus	dependent	on	the	
context	of	local	DNA	sequence	and	host	cell.	
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We	designed	promoter-reporter	fusions	to	provide	similar	local	DNA	sequence	
context	by	incorporating	a	common	RBS	(BBa_R0034)	(16)	immediately	adjacent	to	
the	transcription	start	site	of	the	promoter	of	interest.	Six	promoters	of	interest	
were	chosen	following	Kelly	et	al.	(11).	These	promoters	are	‘synthetic’	derivatives	of	
Lambda	phage	promoter	PL	(R0051,	R0011,	R0040)	and	de	novo	synthetic	promoters	
(J23101,	J23150,	J23151),	and	were	taken	from	the	Registry	of	Standard	Biological	
Parts	(16).	To	test	the	effect	of	fluorescent	protein	choice	we	measured	the	activity	
of	these	promoters	upstream	of	GFPmut3,	mCherry,	EYFP	and	ECFP	(Figure	S1A,	
Supporting	Information	and	analysis	method	below).	We	found	that	EYFP,	ECFP,	and	
mCherry	preserved	rank	order	and	that	EYFP	and	ECFP	also	preserved	relative	
magnitudes	of	promoter	activities.	GFPmut3	deviated	from	the	other	reporters,	
especially	for	apparently	strong	promoters	R0051	and	R0011.	EYFP	and	ECFP	are	
reported	to	be	similar	in	maturation	half-lives	(39	±	7	and	49	±	9	min	respectively)	
(17),	stability	(half-lives	>24	hours)	(17),	and	transcript	sequence	(19	nucleotide	
substitutions).	Combined	with	their	good	spectral	separation	(Ex./Em.	514/527nm	
for	EYFP	and	434/477nm	for	ECFP)	these	findings	suggested	that	EYFP/ECFP	would	
make	a	good	pair	for	comparative	analysis.	
	
We	assembled	the	six	constitutive	promoters	mentioned	above	into	dual-channel	
reporter	plasmids	(Figure	2A).	Each	promoter	of	interest	was	fused	to	the	EYFP	
reporter	and	common	RBS.	Following	Kelly	et	al.		(11),	promoter	J23101	was	chosen	
as	a	reference	and	fused	to	the	ECFP	reporter	and	common	RBS	in	reverse	
orientation	in	the	plasmid	backbone.	Each	reporter	gene	was	transcriptionally	
isolated	with	a	bi-directional	terminator	(BBa_B0015).	This	plasmid	design	enabled	
concurrent	measurement	of	two	promoter-reporter	fusions	with	the	same	gene	
dosage	(plasmid	copy)	and	very	similar	local	DNA	contexts	(RBS	and	CDS)	for	each	
promoter.	We	refer	to	these	plasmids	according	to	the	name	of	the	promoter	of	
interest	as	p<EYFP	promoter>,	e.g.	pR0051.	In	the	following	we	analyze	
measurements	of	E.	coli	cultures	carrying	each	of	the	six	plasmids	in	a	range	of	
growth	conditions.	
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Figure	2.	Dual	channel	concurrent	measurement	of	promoter	activity.	(A)	Reporter	plasmid	
contains	one	of	six	promoters	of	interest	and	a	reference	promoter	(J23101).	Each	promoter	is	
fused	to	a	fluorescent	protein	gene	(EYFP/ECFP)	containing	a	common	ribosome	binding	
sequence	(purple	semicircle)	and	bi-directional	terminator.	(B)	Absorbance	at	600nm	as	a	
measure	of	culture	biomass,	black	line	shows	fitted	Gompertz	model,	inset	is	growth	rate.	(C)	
Plate-reader	fluorescence	intensity	measurements	from	pJ23151,	with	the	defined	period	of	
exponential	phase	marked.	(D)	Plotting	fluorescence	intensity	(I(t))	against	absorbance	(A(t))	
shows	a	clear	linear	relation	in	exponential	phase	(green).	Log-log	plot	with	dashed	line	
indicating	linear	relation.	
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Calculating	fluorescent	protein	synthesis	rate	from	time-course	data	
The	dual-channel	reporter	plasmids	described	above	allowed	us	to	measure	
concurrently	both	culture	absorbance	(𝐴(𝑡),	Figure	2B)	and	fluorescence	channels	
(EYFP	and	ECFP,	Figure	2C)	in	a	microplate	fluorometer.	Here	we	outline	the	
derivation	of	estimates	of	the	rate	of	synthesis	of	fluorescent	proteins	based	on	
these	measurements.	We	show	how	this	rate	is	related	to	the	transcription	rate.	At	
each	step	we	highlight	assumptions	made	in	the	analysis,	and	techniques	to	avoid	
amplification	of	errors	in	the	required	computations.	
	
As	described	in	previous	studies	(12,18-20)	the	multi-step	process	(Figure	1)	of	
mature	fluorescent	protein	synthesis	can	be	summarized	by	a	time-varying	synthesis	
rate	for	each	cell	𝐹- 𝑡 .	With	a	stable	protein	𝑃	(half-life	approx.	24	hours	for	EYFP	
and	ECFP)	(17)	we	may	neglect	degradation	(𝛿0 = 0),	resulting	in	the	following	
differential	equation	
	

𝑑𝑃
𝑑𝑡 = 𝐹- 𝑡 − 𝜇(𝑡)𝑃 𝑡 	

	
where	the	second	term	represents	dilution	by	cell	growth	at	average	rate	𝜇 𝑡 =
1 𝐴(𝑡) 𝑑𝐴 𝑑𝑡,	and	𝐴(𝑡)	is	culture	density	measured	by	absorbance	(Figure	2B).	
Assuming	that	fluorescence	is	detected	linearly,	and	that	absorbance	is	a	good	
measure	of	cell	number,	then	measured	fluorescence	intensity	(Figure	2C)	is	given	
by	
	

𝐼- 𝑡 = 𝐴 𝑡 𝑃(𝑡)	
	
From	this	simple	model	the	usual	expression	for	the	protein	synthesis	rate	of	each	
cell	can	be	derived	(21,22)	
	

𝐹-(𝑡) =
1

𝐴(𝑡)
𝑑𝐼-
𝑑𝑡 	

Equation	1	
	
However,	calculation	of	𝐹-(𝑡)	presents	several	technical	problems.	Early	in	time-
course	experiments	culture	density	A(t)	is	very	low	and	thus	subject	to	significant	
background	noise	(see	Supporting	Information),	which	is	amplified	in	computing	
1 𝐴(𝑡).	Further,	fluorescence	signal	during	this	period	is	also	low	and	computation	
of	𝑑𝐼- 𝑑𝑡	amplifies	measurement	noise.	This	period	of	low	culture	density	
corresponds	to	lag	and	exponential	growth	phases.	𝜎:;	promoters	such	as	those	
examined	here	are	known	to	be	most	active	during	exponential	growth		(6),	and	
characterization	of	their	behavior	must	focus	on	this	time	period.	It	is	therefore	
important	to	accurately	identify	the	period	of	exponential	growth	phase,	and	to	
quantify	promoter	activity	during	this	time.		
	
In	order	to	enable	accurate	calculation	of	𝐹-(𝑡)	we	note	that	Equation	1	can	be	re-
written	using	the	chain	rule	as	
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𝐹- 𝑡 =
1

𝐴 𝑡
𝑑𝐴
𝑑𝑡
𝑑𝐼-
𝑑𝐴 = 𝜇(𝑡)

𝑑𝐼-
𝑑𝐴 	

Equation	2	
where	𝜇(𝑡)	is	the	growth	rate	of	the	culture.	The	form	of	Equation	2	states	an	
explicit	dependence	of	gene	expression	on	growth	rate,	which	has	been	indicated	by	
several	previous	studies	in	E.	coli	(6,8,12,18,23).	The	fluorescent	protein	synthesis	
rate	𝐹- 𝑡 	is	often	used	as	a	proxy	for	transcription	rate,	assuming	that	other	
processes	occur	at	fixed	rates		(12,18-20),	but	as	illustrated	in	Figure	1	it	also	
incorporates	extrinsic	variation	due	to	gene	copy	number,	and	translation	and	
maturation	rates.	
	

Fluorescent	protein	synthesis	rate	is	proportional	to	growth	rate	in	
exponential	phase	
The	analysis	above	shows	that	the	relation	between	fluorescence	intensity	I(t)	and	
culture	optical	density	𝐴(𝑡)	may	in	itself	be	informative	of	time	variation	in	
promoter	activity.	For	all	plasmids	used	in	this	study	we	found	that	the	slopes	
𝑑𝐼< 𝑑𝐴	and	𝑑𝐼= 𝑑𝐴	remain	approximately	constant	until	growth	falls	off	during	the	
transition	to	stationary	phase.	In	Figure	2D	we	illustrate	this	relation	by	plotting	
measurements	of	fluorescence	𝐼<(𝑡)	(ECFP)	and	𝐼= 𝑡 	(EYFP)	against	the	
corresponding	A(t)	for	one	of	the	six	plasmids.	The	shapes	of	the	curves	𝐼<(𝐴)	and	
𝐼=(𝐴)	show	that	fluorescent	protein	synthesis	is	proportional	to	growth	rate	during	
exponential	growth	phase.	The	constant	of	proportionality	is	given	by	𝛼- = 𝑑𝐼- 𝑑𝐴,	
where	p	indicates	the	fluorescent	reporter	EYFP	or	ECFP.	This	is	the	relative	rate	of	
fluorescent	protein	synthesis	to	biomass	synthesis	as	measured	by	culture	density.	
	
In	order	to	quantify	this	relation	we	needed	to	identify	the	time	period	of	
exponential	growth	phase,	which	is	associated	with	the	peak	in	culture	growth	rate	
𝜇(𝑡).	Accurate	estimation	of	growth	rates	suffers	from	the	issues	with	noise	
amplification	described	above,	due	to	both	differentiation	of	and	dividing	by	small	
noisy	A(t)	measurements.	We	therefore	fit	a	Gompertz	model	(14,24)	to	
measurements	of	A(t)	(Figure	2B	black	line).	The	Gompertz	model	applied	to	
bacterial	culture	growth	is	parameterized	by	lag	time	(𝜆),	peak	growth	rate	(𝜇@),	and	
carrying	capacity	(K),	and	the	time	of	peak	growth	is	given	directly	as	𝑡@ = 𝐾 𝑒𝜇@ +
𝜆	(where	𝑒 = exp	(1)).		To	avoid	problems	with	low	signal	during	early	culture	
growth	we	considered	exponential	growth	phase	as	the	period	from	peak	growth	
(𝑡@)	extending	for	four	doubling	periods	(4𝑙𝑛2 𝜇@).	Exponential	phase	
measurements	identified	in	this	way	are	highlighted	in	green	in	Figure	2.	Despite	
large	variation	in	growth	rate	(e.g.	see	Figure	2B	inset)	during	exponential	phase,	
the	slope	of	fluorescence	against	optical	density	(𝛼-)	remained	constant.	We	
confirmed	this	relation	for	all	experiments	shown	in	Figure	3	(see	Supporting	
Information)	by	linear	regression,	giving	𝑅L = 0.97 ± 0.039	for	both	EYFP	and	ECFP.		
	
Hence	the	value	of	𝛼-	quantifies	fluorescent	protein	synthesis	in	relation	to	growth	
rate,	parameterizing	a	simple	linear	model	of	fluorescent	protein	synthesis	rate	

𝐹- 𝑡 = 𝛼-𝜇(𝑡)	
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We	computed	the	values	of	𝛼=	and	𝛼< 	for	the	six	dual-reporter	plasmids	in	cells	
grown	in	M9	minimal	media	with	glycerol	(Figure	3A	and	B).	For	each	experiment,	
plates	were	inoculated	from	two	separate	colonies	each	with	three	replicates	(N=6	
in	total).	The	coefficient	of	variation	(CV)	of	alpha	estimates	for	each	plasmid	ranged	
from	4	to	20%	for	the	promoter	of	interest	(EYFP)	and	7	to	21%	for	the	reference	
(ECFP)	promoter	(see	Supporting	Table	1).	Analysis	of	Covariance	(ANCOVA)	of	the	
𝛼=	and	𝛼< 	values	estimated	by	regression	for	each	plasmid	showed	significant	
differences	between	replicates	(p<0.05).	This	means	that	variance	was	not	solely	due	
to	the	analysis	method,	and	that	this	method	could	distinguish	between	replicates	at	
the	5%	significance	level.	For	a	given	growth	condition	then,	𝛼-	was	characteristic	of	
promoter	activity	despite	large	changes	in	fluorescent	protein	synthesis	over	
exponential	growth	phase.	
	
The	relative	rate	of	fluorescent	protein	synthesis	to	growth	thus	gives	a	promoter	
characteristic	𝛼-	that	is	consistent	over	exponential	phase,	and	eliminates	growth	
rate	as	a	source	of	extrinsic	variation.	
	

Fluorescent	protein	synthesis	rate	varies	significantly	in	different	
growth	conditions	
We	showed	above	that	we	could	estimate	promoter	characteristics	(𝛼-)	for	a	given	
growth	condition	(M9	with	glycerol)	with	a	CV	of	<22%.	We	next	considered	the	
effect	of	different	growth	conditions.	If	growth	rate	were	the	major	source	of	
extrinsic	variation	(8,12),	we	would	expect	the	values	of	𝛼=	and	𝛼< 	to	be	similar	in	
different	conditions.	This	is	because	they	parameterize	the	linear	relation	between	
fluorescent	protein	synthesis	and	growth	𝐹- 𝑡 = 𝛼-𝜇(𝑡).	We	repeated	the	
estimation	of	𝛼=	and	𝛼< 	for	each	plasmid	in	M9	media	with	glucose	as	the	main	
carbon	source,	and	with	the	addition	of	bacteriostatic	drugs,	rifampicin	and	
chloramphenicol	(Figure	3C-H).	These	growth	conditions	introduced	extrinsic	factors	
to	reporter	expression	and	use	of	our	dual-channel	plasmid	allowed	us	to	examine	
concurrently	their	effect	on	the	promoter	of	interest	and	reference	promoter.	We	
found	dramatic	differences	in	promoter	characteristics	(both	𝛼=	and	𝛼<)	in	these	
growth	conditions	(Figure	3A-H)	despite	maintenance	of	the	linear	relation	𝐹- 𝑡 =
𝛼-𝜇(𝑡)	(see	Supporting	Information	for	regressions).		
	
Clearly	𝛼-	is	not	an	intrinsic	characteristic	of	a	promoter	even	over	the	limited	range	
of	conditions	we	tested	in	this	study.	Peak	growth	rates	(𝜇@)	in	each	of	the	four	
conditions	we	tested	were	significantly	different	(ANOVA,	p<10-36),	but	the	
estimated	𝛼=	and	𝛼< 	tended	to	decrease	in	conditions	leading	to	faster	growth	
(Figure	4).	This	result	is	somewhat	surprising	given	the	literature	on	correlations	
between	growth	rate	and	gene	expression,	and	highlights	the	complexity	of	
interactions	between	growth	rate,	gene/plasmid	copy,	transcription	and	translation	
rates.	
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To	quantify	the	reliability	of	promoter	characteristics	we	performed	Analysis	of	
Variance	(4-way	ANOVA)	on	the	estimated	𝛼=	and	𝛼< 	from	the	experiments	shown	
in	Figure	3.	In	this	analysis	we	partitioned	the	variance	in	these	measures	of	
promoter	activity	into	that	due	to	the	identity	of	the	promoter	of	interest	(plasmid),	
experimental	replicate,	inoculating	colony,	and	the	four	growth	conditions	tested	
(Figure	5).	In	each	ANOVA	test	(for	𝛼=	and	𝛼<)	all	factor	effects	were	significant	
(p<0.01),	but	their	contribution	to	variance	was	very	different	for	each	measure.	
Ideally	a	robust	characteristic	of	promoters	would	be	subject	to	variance	only	due	to	
the	identity	of	the	promoter	being	measured,	and	invariant	to	non-specific	factors.	
	
For	𝛼=	(Figure	5A,C)	we	found	that	only	22%	of	variance	was	attributed	to	the	
identity	of	the	promoter	being	measured	(N=24),	and	the	largest	contribution	to	
variance	was	due	to	changing	growth	conditions	(47%,	N=36).	A	further	30%	of	the	
variance	in	𝛼=	was	not	attributed	to	the	four	factors	included	in	the	analysis	and	
represents	some	combination	of	technical	(due	to	equipment)	and	biological	(due	to	
cells)	variation.	For	𝛼< 	(Figure	5B,D)	variance	was	dominated	by	growth	conditions	
(76%,	N=36),	with	little	effect	(6%,	N=24)	from	the	identity	of	the	host	plasmid,	i.e.	
the	EYFP	promoter.	Hence	in	our	experiments	the	activity	of	the	reference	promoter	
was	largely	independent	of	the	promoter	of	interest.	Similar	to	the	EYFP	channel,	𝛼< 	
was	also	subject	to	variance	from	sources	unspecified	(16%).	
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Figure	3.	Promoter	characteristics	𝜶𝒑measured	from	dual	channel	plasmids	in	four	
growth	conditions.	EYFP	(𝜶𝒚)	and	ECFP	(𝜶𝒄)	promoter	characteristics	measured	from	cells	
growing	in	M9	+	0.2%	glycerol	(A,B),	M9	+	0.4%	glucose	+	1μg/ml	chloramphenicol	(C,D),	M9	+	
0.4%	glucose	+	1μg/ml	rifampicin	(E,F),	and	M9	+	0.4%	glucose	(G,H).	Error	bars	show	one	
standard	deviation.	
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Figure	4.	Promoter	characteristic	𝜶𝒑	and	peak	growth	rate	𝝁𝒎	in	different	growth	media.	
(A)	Mean	and	standard	deviation	(error	bars)	of	peak	growth	rate	(𝝁𝒎)	for	cells	containing	the	
six	dual	channel	plasmids	growing	in	four	different	growth	media.	(B,C)	Promoter	characteristics	
for	(B)	the	promoter	of	interest	(𝜶𝒚)	and	(C)	the	reference	promoter	(𝜶𝒄)	for	each	plasmid	
measured	in	the	four	growth	media	showed	a	clear	negative	relation	to	peak	growth	rate.	
	

	
Figure	5.	Heat	maps	of	promoter	characteristics	𝜶𝒑	from	six	plasmids	in	four	growth	
conditions.	(A,B)	Heat	maps	of	promoter	characteristics	𝜶𝒚	(A),	𝜶𝒄	(B)	from	each	of	six	plasmids	
(y-axis),	and	6	measurements	(3	replicates	of	2	colonies)	in	each	of	four	growth	conditions	(x-
axis).	(C,D)	Analysis	of	Variance	(4-way	ANOVA)	shows	that	single	channel	characterisation	of	
the	promoter	of	interest	(𝜶𝒚)	is	not	robust	to	media	changes	(22%	of	variance	attributed	to	
plasmid	or	promoter	identity).	Pie	chart	sectors	not	labelled	were	<1%.	
	

Mathematical	derivation	of	promoter	characteristics	from	fluorescent	
protein	synthesis	rates	
We	now	outline	a	simple	model	of	the	observed	variation	in	promoter	characteristic	
𝛼-,	the	rate	of	fluorescent	protein	synthesis	relative	to	growth,	and	in	the	following	
section	use	it	to	derive	an	intrinsic	promoter	characteristic.		
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Previous	studies	have	shown	that	promoter	activity	is	a	saturating	function	of	
growth	rate	(6,8),	or	proportional	to	growth	rate		(12,23).	These	observations	are	
consistent	with	each	other	at	sub-saturating	growth	rates	such	as	those	that	might	
be	expected	in	minimal	media.	Note	that	in	these	reports	the	growth	rate	variation	
considered	was	between	experimental	conditions	rather	than	over	the	population	
growth	cycle.	Our	results	confirm	the	observed	dependence	of	promoter	activity	on	
growth	rate	during	exponential	growth	phase	in	given	growth	conditions.	However,	
comparing	estimated	promoter	characteristics	(𝛼-)	between	experimental	
conditions	showed	a	decreasing	trend	in	relation	to	peak	growth	rate	(Figure	4B,C).	
	
The	empirical	relation	between	promoter	activity	and	growth	rate	suggests	that	
growth	rate	is	an	indicator	of	limiting	factors	(or	‘resources’)	common	to	both	
biomass	production	and	promoter	activity	(e.g.	RNA	polymerase	holoenzyme)	(23).	
Intuitively,	as	limiting	factors	increase	growth	rate	will	eventually	saturate	to	some	
maximum.	Denoting	limiting	factors	as	R(t),	we	represent	saturation	of	growth	rate	
with	a	Michaelis-Menten	equation	

𝜇 𝑡 = 𝜇∗
𝑘𝑅(𝑡)

1 + 𝑘𝑅(𝑡) 	

where	𝜇∗	is	the	theoretical	maximum	growth	rate	with	increasing	R(t),	and	k	is	the	
rate	of	use	of	limiting	factors	in	growth.	In	the	case	of	low	R(t),	that	is	𝑘𝑅(𝑡) ≪ 1,	
this	simplifies	to	

𝜇(𝑡) ≈ 	𝜇∗𝑘𝑅 𝑡 	
Solving	for	R(t)	gives	

𝑅 𝑡 =
1
𝑘
𝜇(𝑡)
𝜇∗ 	

Similarly	promoter	activity	is	also	dependent	on	limiting	factors	R(t),	and	again	at	
low	values	of	R(t)	we	have	the	transcription	rate	(Figure	1):	

𝐾[ 𝑡 ≈ 𝐾[∗𝑚𝑅 𝑡 = 𝐾[∗
𝑚
𝑘
𝜇(𝑡)
𝜇∗ 	

where	m	is	the	rate	of	use	of	limiting	factors	in	promoter	activity,	and	𝐾[∗	is	the	
theoretical	maximum	transcription	rate	at	saturation	(𝑚𝑅(𝑡) ≫ 1).	Hence	promoter	
activity	is	proportional	to	growth	rate.	With	short	mRNA	half-lives	(typically	~2	
minutes)	we	can	assume	quasi-steady-state	and	assuming	first-order	degradation	at	
fixed	rate	𝛿^ 	we	have	mRNA	concentration:	

𝑀 𝑡 =
𝐾[ 𝑡

𝜇(𝑡) + 𝛿^
	

	
Approximating	translation	as	a	first-order	process,	and	assuming	that	maturation	is	
in	steady-state,	the	synthesis	rate	of	mature	fluorescent	proteins	from	each	cell	then	
follows:	

𝐹- 𝑡 = 𝜑-𝑛 𝑡 𝐾a 𝑡
𝐾[ 𝑡

𝜇 𝑡 + 𝛿^
	

and	substituting	for	transcription	rate	gives:	

𝐹- 𝑡 = 𝜑-𝑛(𝑡)𝐾a(𝑡)
1

𝜇(𝑡) + 𝛿^
𝐾[∗

𝑚
𝑘
𝜇(𝑡)
𝜇∗ 	

where	𝜑-	is	the	fraction	of	fluorescent	proteins	in	the	mature	state,	and	the	terms	
𝑛(𝑡)	and	𝐾a(𝑡)	are	the	time-varying	plasmid	copy	number	and	translation	rate	
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respectively.	Relating	this	model	to	the	equation	for	fluorescent	protein	synthesis	
rate	given	in	Equation	2	gives	an	expression	for	the	promoter	characteristic,	

𝛼- = 𝜑-𝑛(𝑡)𝐾a(𝑡)
1

𝜇(𝑡) + 𝛿^
𝐾[∗

𝑚
𝑘𝜇∗	

Equation	3	
	
This	model	predicts	that	promoter	characteristics	(𝛼=	and	𝛼<)	are	subject	to	
variation	from	a	number	of	sources.	Firstly,	gene	copy	𝑛(𝑡)	and	translation	efficiency	
𝐾a(𝑡)	can	vary	in	different	media	and	over	time	(8)	due	to	availability	of	ribosomes	
and	other	limiting	factors	(7).	Allocation	of	resources	to	growth	(𝜇∗	and	𝑘)	would	
likely	depend	on	growth	media	and	other	experimental	conditions.	Finally,	despite	
accounting	for	growth	rate	dependence	of	promoter	activity,	𝛼-	is	predicted	to	
decrease	with	increasing	growth	rate	(𝜇(𝑡))	and	maximal	growth	rate	(𝜇∗)	as	we	
found	from	our	results	in	different	media	(Figure	4).	However,	it	seems	reasonable	
to	assume	that	the	affinity	of	a	promoter	for	available	resources	(𝑚)	and	its	maximal	
attainable	activity	(𝐾[∗)	are	specific	or	intrinsic	characteristics,	and	not	dependent	on	
growth	conditions.	
	
Now	consider	promoter	characteristics	measured	from	our	dual-channel	plasmids.	
Since	both	promoters	are	encoded	on	the	same	plasmid,	we	can	assume	that	gene	
copy	(𝑛(𝑡))	is	common.	Similarly,	with	concurrent	in	vivo	measurement	we	have	
promoters	active	in	the	same	cells,	which	exhibit	particular	allocation	of	resources	to	
growth	(𝜇∗	and	𝑘).	Further,	the	close	similarity	in	our	fluorescent	reporter	transcripts	
(ECFP	and	EYFP)	suggests	that	translation	efficiency	𝐾a(𝑡)	and	mRNA	degradation	
rate	𝛿^ 	would	be	similar.	Our	model	then	predicts	that	the	characteristics	of	the	
promoter	of	interest	(𝛼=)	and	the	reference	promoter	(𝛼<)	across	a	range	of	
conditions	should	be	correlated	due	to	common	sources	of	variation.	Confirming	this	
prediction,	across	the	four	growth	conditions	we	tested,	with	three	replicates	of	two	
colonies	in	each	condition,	variation	in	the	estimated	promoter	characteristics	
(Figure	3A-H)	for	EYFP	and	ECFP	were	closely	correlated	(R>0.95	for	each	plasmid,	
Figure	6A).	Flow	cytometry	of	cells	grown	in	M9	+	0.4%	glucose	also	indicated	
correlation	at	single	cell	level	(R>0.7)	for	all	plasmids	(see	Supporting	Information).	
	

	
Figure	6.	Promoter	characteristics	from	dual	channel	plasmids	were	well	correlated	
across	all	growth	conditions.	(A)	Characteristics	of	promoter	of	interest	(y-axis)	and	reference	
promoter	(x-axis)	for	each	plasmid	(colours)	in	all	four	growth	conditions.	Lines	show	regression	
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fits	(R>0.95	in	all	cases).	(B)	The	ratios	of	promoter	characteristics	(𝝆 = 𝜶𝒚 𝜶𝒄)	were	
maintained	in	all	growth	conditions	(CVs<12%,	N=24,	error	bars	show	standard	deviation).	
	
	

Ratiometric	measurement	approximates	intrinsic	characteristics	of	
promoters	
The	model	derived	above	shows	that	the	fluorescent	reporter-based	promoter	
characteristic	𝛼-	is	a	product	of	intrinsic	factors	(𝑚	and	𝐾[∗)	and	extrinsic	factors	due	
to	mRNA	degradation,	translation,	fluorescent	protein	maturation	and	cell	growth.	
Without	accounting	for	all	extrinsic	factors,	individual	promoter	characteristics	(𝛼=	
and	𝛼<)	were	not	reliable	in	changing	growth	conditions.	In	the	absence	of	direct	
measurement	of	most	of	these	extrinsic	factors,	Equation	3	suggests	that	we	can	
use	our	dual-channel	measurements	to	extract	an	intrinsic	promoter	characteristic	
via	the	ratio:	
	

𝜌 =
𝛼=
𝛼<

=
𝜑=𝐾[,=∗ 𝑚=

𝜑<𝐾[,<∗ 𝑚<
≈
𝐾[,=∗ 𝑚=

𝐾[,<∗ 𝑚<
	

	
where	we	have	assumed	common	copy	number	(𝑛(𝑡)),	translation	rate	(𝐾a(𝑡)),	and	
mRNA	degradation	rate	(𝛿^)	consistent	with	our	dual-channel	plasmid	design	
(Figure	2).	A	further	reasonable	approximation	given	their	similar	maturation	half-
lives	is	that	the	fractions	of	EYFP	and	ECFP	in	the	mature	state	are	the	same	(𝜑= ≈
𝜑<).	
	
We	computed	the	ratio	𝜌	for	the	experiments	(Figure	3)	in	which	each	plasmid	was	
measured	in	four	growth	conditions.	Even	though	single	channel	characteristics	of	
promoter	activity	varied	significantly	(around	4-fold)	between	these	conditions,	the	
computed	ratios	showed	low	coefficients	of	variation	(Figure	6B,	CVs	6-12%).	
Analysis	of	variance	(4-way	ANOVA	as	above,	p<0.01	for	all	factors)	showed	that	96%	
(N=24)	of	variance	was	due	to	the	identity	of	the	promoter	of	interest	(Figure	7).	
Variance	due	to	growth	conditions	was	largely	eliminated	(<1%,	N=36)	and	
unspecified	sources	of	variance	were	also	reduced	(3%).	In	separate	experiments	we	
measured	the	six	plasmids	in	cells	growing	in	LB	rich	media	and	found	that	estimates	
of	𝜌	agreed	closely	with	those	measured	in	M9	minimal	media	(see	Supporting	
Information).	
	
Thus	we	define	𝜌	as	an	intrinsic	ratiometric	promoter	characteristic	that	reliably	
quantifies	the	behavior	of	a	promoter	with	respect	to	an	in	vivo	reference.	
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Figure	7.	Heat	map	of	ratiometric	promoter	characteristic	𝝆	from	six	plasmids	in	four	
growth	conditions.	(A)	Heat	map	of	ratiometric	promoter	characteristics	𝝆 = 𝜶𝒚 𝜶𝒄	from	each	
of	six	plasmids	(y-axis),	and	6	measurements	(3	replicates	of	2	colonies)	in	each	of	four	growth	
conditions	(x-axis).	(B)	Analysis	of	Variance	(4-way	ANOVA)	shows	that	normalisation	to	an	in	
vivo	reference	promoter	provides	a	reliable	characteristic	with	96%	of	variance	explained	by	
promoter	identity.	Pie	chart	sectors	not	labelled	were	<1%.	
	

Discussion	
Synthetic	biology	aims	to	create	an	engineering	discipline	for	the	design	of	functional	
genetic	circuits.	Promoters	often	perform	critical	functions	in	such	circuits	(3,4)	and	
so	obtaining	 reliable	quantitative	 characteristics	of	 their	activity	 is	essential	 to	 this	
design	 process.	 In	 this	 work	 we	 studied	 fluorescent	 reporters	 fused	 to	 previously	
well-characterized	 constitutive	 promoters	 carried	 on	 plasmids.	 Using	 microplate	
fluorometer	measurements	we	 highlighted	 technical	 issues	 affecting	 estimation	 of	
promoter	activity	from	time-series	data.	We	developed	a	simple	analytical	approach	
to	 computing	 promoter	 activity	 that	 overcame	 several	 of	 these	 issues	 to	 give	
accurate	 characteristics.	 This	 analysis	 explicitly	 revealed	 the	 dependence	 of	
promoter	activity	computation	on	growth	rate	during	exponential	phase	as	a	linear	
model.	The	slope	of	this	 linear	model	 (𝛼-)	gave	a	promoter	characteristic	that	was	
largely	 invariant	 to	 approximately	 4-fold	 changes	 in	 growth	 rate	 over	 exponential	
phase.	
	
We	 then	 subjected	 cells	 to	 extrinsic	 factors	 known	 to	 affect	 promoter	 activity	 by	
growing	 them	with	different	 carbon	 sources,	 and	 in	 the	presence	of	bacteriostatic	
drugs.	While	𝛼-	was	reliable	over	exponential	growth	phase	in	a	given	experimental	
condition,	with	 these	 additional	 extrinsic	 factors	we	observed	 significant	 variation.	
Further,	this	variation	showed	a	negative	relation	to	the	peak	growth	rate	observed	
in	each	test	growth	condition.	Statistical	analysis	showed	that	78%	of	the	variance	in	
characteristics	 was	 attributed	 to	 extrinsic	 factors,	 of	 which	 47%	 was	 due	 to	 the	
imposed	extrinsic	factor	and	30%	to	unidentified	sources.	Only	22%	of	variance	was	
attributed	to	the	identity	of	the	promoter.		
	
Our	design	of	dual-channel	fluorescent	reporter	plasmids	allowed	us	to	concurrently	
measure	and	compute	promoter	characteristics	(𝛼=,	𝛼<)	from	a	promoter	of	interest	
and	a	reference	in	very	similar	genetic	contexts.	We	derived	a	simple	mathematical	
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model	of	these	promoter	characteristics.	This	model	confirmed	our	observation	that	
𝛼-	 decreased	 with	 increasing	 peak	 growth	 rate.	 It	 also	 suggested	 that	 promoter	
characteristics	𝛼=	and	𝛼< 	would	be	correlated	due	to	common	extrinsic	factors.	This	
was	 supported	 by	 our	 data	 in	 which	 promoter	 characteristics	measured	 from	 the	
same	 plasmid	 were	 closely	 correlated	 across	 all	 conditions	 tested	 (R>0.95).	 This	
analysis	 then	 predicted	 that	 the	 ratio	𝜌 = 𝛼= 𝛼< 	 would	 be	 consistent	 when	 cells	
were	subjected	to	extrinsic	factors.	Our	data	showed	that	the	fraction	of	variance	in	
promoter	 characteristics	 attributed	 to	 imposed	extrinsic	 factors	was	 reduced	 from	
47%	 to	 less	 than	 1%	 after	 computing	 the	 ratio	 𝜌 = 𝛼= 𝛼<.	 Other	 unidentified	
sources	 of	 variance	 were	 reduced	 from	 30%	 to	 just	 3%	 of	 variance.	 Overall	 the	
identity	of	the	promoter	accounted	for	96%	of	the	variance	and	only	4%	was	due	to	
extrinsic	 factors.	 We	 therefore	 propose	 the	 ratiometric	 characteristic	 (𝜌)	 with	
respect	to	an	in	vivo	reference	as	an	intrinsic	promoter	characteristic.		
	
We	 showed	 that	 common	extrinsic	 factors	 dominated	 the	 variation	 in	 constitutive	
transcription	 from	 promoters	 hosted	 on	 the	 same	 plasmid,	 and	 that	 ratiometric	
characteristics	were	 largely	unaffected	by	this	variation.	The	mechanisms	by	which	
extrinsic	 factors	affect	promoters	and	 fluorescent	 reporter	measurements	of	 them	
are	currently	poorly	understood	and	thus	cannot	be	 incorporated	 into	quantitative	
models.	Our	approach	utilized	an	in	vivo	constitutive	reference	promoter	placed	in	a	
genetic	 context	as	 similar	as	possible	 to	 that	of	 the	promoter	of	 interest,	with	 the	
same	RBS	and	almost	 identical	 fluorescent	reporter	coding	sequence.	This	context-
matched	 reference	 promoter	 therefore	 provided	 a	 live	 concurrent	 readout	 of	
common	 extrinsic	 effects	 on	 promoter	 activity.	 This	 means	 that	 in	 principle	
ratiometric	 characteristics	 could	 be	 used	 to	 estimate	 the	 activity	 of	 promoters	
operating	in	novel	conditions	from	measurements	of	the	reference	promoter	alone.	
	
While	this	study	focused	on	constitutive	promoters,	ratiometric	characterization	can	
also	 enable	 accurate	 quantification	 of	 specifically	 regulated	 promoters	 (e.g.	
inducible)	 by	 minimizing	 the	 effects	 of	 common	 extrinsic	 factors	 and	 revealing	
specific	 regulatory	 effects	 on	 promoters	 measured	 in	 different	 conditions.	 These	
conditions	might	for	example	be	concentrations	of	inducers	(e.g.	IPTG,	aTC)	that	bind	
transcription	 factors	 associated	 with	 promoters	 (e.g.	 LacI,	 TetR).	 Such	 approaches	
will	 be	 essential	 to	 the	 accurate	 design	 of	 functional	 genetic	 circuits	 by	
parameterizing	 models	 of	 transcription	 regulation.	 Previous	 work	 from	 our	
laboratory	 demonstrated	 this	 approach	 to	 modeling	 of	 a	 homoserine	 lactone	
regulated	promoter	(14).	
	
The	results	presented	here	were	based	on	microplate	fluorometer	measurements	of	
bacteria	 in	 bulk	 culture.	 However,	 the	 principle	 of	 ratiometric	 promoter	
characterization	 could	 be	 applied	 to	 other	 techniques	 in	 which	 concurrent	 dual-
channel	 fluorescence	 measurements	 can	 be	 made,	 and	 even	 to	 multicellular	
organisms.	 Previous	 work	 from	 our	 laboratory	 successfully	 applied	 a	 similar	
approach	 to	 confocal	 microscopy	 images	 of	 plant	 tissues	 (10).	 Thus	 we	 have	
presented	 an	 approach	 to	 characterization	 that	 enables	 simple	 and	 reliable	
quantification	of	promoter	activity	in	a	range	of	conditions	and	organisms,	and	that	
we	hope	will	further	progress	towards	rational	design	of	synthetic	genetic	circuits.	
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Methods	
Protocol.	A	step-by-step	protocol	for	ratiometric	characterization	of	a	promoter	of	
choice	using	our	plasmids	is	given	in	Supporting	Information.	
	
Microbial	 strains	and	growth	conditions.	Escherichia	coli	strain	EC10G	 (Invitrogen)	
was	 used	 for	 all	 experiments.	 Growth	media	were	 based	 on	M9	minimal	medium	
(25)	with	0.2%	(w/v)	casamino	acids,	kanamycin	(50	μg	ml−1)	for	selection,	and	four	
different	additional	supplement	combinations:	
	

A. 0.4%	(w/v)	glucose	
B. 0.4%	(w/v)	glucose	+	1	μg	ml−1	chloramphenicol	
C. 0.4%	(w/v)	glucose	+	1	μg	ml−1	rifampicin	
D. 0.2%	(w/v)	glycerol	

	
Plasmids.	All	constructs	used	in	this	study	were	constructed	from	BioBricks	obtained	
from	the	Registry	of	Biological	Parts	distribution	kit	 (Registry	of	Standard	Biological	
Parts,	MIT,	 http://partsregistry.org)	 and	 assembled	 into	 pSB3K3CY.	 pSB3K3CY	 was	
created	 by	 cloning	 BBa_J23101	 promoter,	 ribosome	 binging	 site	 BBa_B0034,	 cyan	
fluorescent	 protein	 BBa_E0020	 and	 BBa_B0015	 terminator	 into	 pSB3K3	 vector	
backbone	between	the	kanamycin	resistance	gene	and	p15A	origin	of	replication	by	
Gibson	 assembly	 	 (26).	 Each	 of	 the	 promoters	 used	 in	 this	 study,	 R0051,	 R0011,	
R0040,	 J23101,	 J23150,	and	J23151	was	fused	to	RBS	BBa_B0034,	EYFP	BBa_E0030	
and	 bi-directional	 terminator	 BBa_B0015;	 and	 these	 cassettes	 were	 subsequently	
cloned	 between	 prefix	 and	 suffix	 sequences	 of	 pSB3K3CY	 using	 BioBrick	 assembly	
(sequences	listed	in	Supporting	Information). 
 
For	assembly,	a	master	mix	was	prepared	by	combining	100μl	x5	isothermal	reaction	
buffer,	 2μl	 of	 1U	 μl–1	 T5	 exonuclease	 (Epicentre),	 6.25μl	 of	 2U	 μl–1	 Phusion	 DNA	
polymerase	(Thermo	Scientific),	50μl	of	40U	ml–1	Taq	DNA	ligase	(NEB)	and	water	up	
to	a	final	volume	of	375	µl.	15μl	of	this	reagent-enzyme	mix	were	added	to	purified	
DNA	fragments	totaling	5μl	and	incubated	for	one	hour	at	50C.	5x	isothermal	buffer	
was	prepared	following	Gibson	et	al.	 	 (26).	EC10G	chemically	competent	cells	were	
transformed	by	heat	shock	and	plated	on	LB	agar	plates	with	kanamycin	(50	μg	ml−1).	
	
Plasmids	are	available	from	AddGene	[*ACCESSION	DETAILS	TBC].	
	
Plate	 fluorometry	 assays.	 Each	 of	 the	 plasmids	 described	 above	 (Figure 2A)	were	
transformed	 into	 chemically	 competent	 E.	 coli	 strain	 EC10G	 (Invitrogen)	 and	
incubated	 overnight	 in	 LB	 agar	 plates	 containing	 kanamycin	 (50	 μg	 ml−1)	 for	
selection.	 	Next,	 two	 colonies	of	 each	of	 these	 transformations	were	 selected	 and	
inoculated	into	5	ml	of	one	of	the	M9	media	(A-D,	see	above)	and	grown	overnight	in	
a	shaking	incubator	at	37°C	for	approximately	16	hours.	Cultures	were	then	diluted	
1:100	 into	 fresh	 identical	medium.	Then	200μl	of	 this	diluted	culture	was	added	 in	
three	 replicates	 to	 each	 well	 of	 a	 black	 96-well	 microplate	 with	 clear	 bottom	
(Greiner).	A	BMG	Fluostar	Omega	plate	reader	was	used	to	measure	optical	density	
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at	 600	 nm	 and	 fluorescence	 every	 ~12	 minutes.	 Excitation	 filter	 430/10nm	 and	
emission	 filter	 480/10nm	were	 used	 for	measuring	 ECFP;	whereas	 excitation	 filter	
500/10nm	 and	 emission	 filter	 530/10nm	 were	 used	 for	 EYFP	 measurements.	 The	
plate	 was	 maintained	 at	 37°C	 during	 the	 measurement	 assay.	 Between	 readings	
plates	were	shaken	at	200	rpm.		
	
Data	 Analysis.	 Matlab	 (Mathworks)	 was	 used	 for	 all	 data	 analysis	 and	 a	 custom	
python	 script	 used	 to	 import	 data	 from	 the	 BMG	 spreadsheet	 format	 (all	 code	
available	 from	www.github.com/timrudge/platypus).	Gompertz	models	were	 fitted	
to	 OD	 data	 using	 the	 “nlinfit”	matlab	 function,	 which	 implements	 the	 Levenberg-
Marquardt	algorithm	(27).	Statistical	analysis	was	carried	out	with	Matlab	functions	
that	 implement	 standard	 methods	 for	 linear	 regression,	 ANOVA	 and	 ANCOVA	
(“polyfit”,	“anovan”,	and	“aoctool”).	
	

Supporting	Information	
Supporting	tables	and	figures.	This	information	is	available	free	of	charge	via	the	
Internet	at	http://pubs.acs.org/.	
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