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Abstract 
Structural insights into protein complexes have had a broad impact on our understanding of 
biological function and evolution. Here we seek a comprehensive understanding of the general 
principles underlying quaternary structure organisation in protein complexes. To do this, we first 
examine the fundamental steps by which protein complexes can assemble using experimental 
and structure-based characterisation of assembly pathways. Most assembly transitions can be 
classified into three basic types, which can then be used to exhaustively enumerate a large set 
of possible quaternary structure topologies. These topologies, which include the vast majority of 
observed protein complex structures, give rise to a natural organisation into a periodic table. 
Based upon this, we are then able to accurately predict the expected frequencies of quaternary 
structure topologies, including those not yet observed. Overall, these results have important 
implications for quaternary structure prediction, modelling and engineering. 

Introduction 
Evolution has given rise to an enormous variety of protein complexes (1–3). The organising 
principles that underlie this diversity remain poorly understood, particularly in comparison with 
protein folds, which have been classified extensively in terms of their architecture (4–6) and 
evolution (7, 8). However, network models have shown considerable promise for characterising 
and comparing protein complexes in recent years. For example, complexes are often 
represented as networks of associations between proteins, with little consideration for structure 
or stoichiometry. Alternatively, one can use a graph representation, which we introduced several 
years ago, that captures the main features of quaternary structure topology (9). In this model, 
the nodes are the polypeptide chains, defined by their amino acid sequence and often referred 
to as subunits, while the edges are the interfaces between physically interacting chains, 
weighted according to size. 

Many protein complexes assemble spontaneously via ordered pathways in vitro, and we have 
shown that these assembly pathways have a strong tendency to be evolutionarily conserved 
(10, 11). Furthermore, there are striking similarities between protein complex assembly and 
evolutionary pathways, with assembly pathways often being reflective of evolutionary histories, 
and vice versa (12). In other words, quaternary structure evolution can essentially be thought of 
as an assembly process occurring on an evolutionary time scale. This suggests it may be useful 
to consider the types of protein complexes that have been formed in evolution from the 
perspective of assembly pathways. 

Here we attempt to understand and explain the organisation of protein complexes in quaternary 
structure space using the principles of assembly. First, by characterising the assembly 
pathways of a large number of protein complexes, we find that assembly can be generally 
explained by three basic steps: dimerisation, cyclisation and subunit addition. Combinations of 
these steps allow us to exhaustively enumerate possible quaternary structure topologies within 
a given region of quaternary structure space.  

To achieve this, we consider each polypeptide chain as a distinct self-assembly building block 
and consider all the ways in which interfaces can be distributed across the chains that are 
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present in the complex. The large variety of possible topologies that are generated by this 
procedure can then be compared to those structures that are actually observed. We find that 
~92% of known protein complex structures are compatible with this model.  

A major benefit of this assembly-centric view of protein complexes is that it gives rise to a 
natural organisation of complexes into a “periodic table”, by numbers of subunit repeats and 
numbers of subunit types. Exceptions are primarily the result of quaternary structure assignment 
errors or cases where sequence-identical subunits can form different interactions and thus 
introduce asymmetry. Many of these asymmetric complexes also fit the paradigm of a periodic 
table when their assembly role (rather than their subunit identity) is considered. 

Finally, by combining the periodic table with our enumeration, we introduce a model to predict 
the expected frequencies of different quaternary structure topologies. Not only does this show 
an excellent correspondence with known protein complex structures, it also predicts new 
topologies most likely to be observed in the future. 

A survey of transitions in the assembly pathways of protein 
complexes 
If we wish to understand the principles that underlie quaternary structure organisation, it is 
useful to begin by considering the different ways in which protein complexes can assemble. We 
therefore first seek to determine the assembly and disassembly, i.e. (dis)assembly, pathways 
for as many protein complexes as possible. Previously, we used electrospray mass 
spectrometry to characterise the (dis)assembly of 8 homomers (10) and 8 heteromers (11, 13). 
While the homomers followed quite simple pathways, more diversity was observed for the 
heteromeric complexes. For this reason, here we experimentally characterise the (dis)assembly 
pathways of 9 additional heteromers with widely varying quaternary structures (Fig. 1). In all of 
these cases, well-defined intermediate subcomplexes could be identified under at least one set 
of experimental conditions. All of the 8 homomers and 15/17 heteromers characterised by 
electrospray mass spectrometry to date have stoichiometries under native conditions consistent 
with the published biological units in the Protein Data Bank (PDB). 

We also searched the literature for protein complexes of known structure where experimental 
(dis)assembly data is available, as we have done previously (10, 11). Often, these are cases 
where at least two different oligomeric states have been observed under equilibrium conditions. 
In total, we identified 11 homomers and 13 heteromers for which some (dis)assembly 
information is available in the literature. 

Finally, we attempted to obtain further information on protein assembly by considering the large 
number of protein complexes of known structure. We searched for pairs of protein complexes 
where the quaternary structure of one complex could be described as a subset of the other. This 
includes, for example, a homodimer and a homotetramer with highly similar or identical 
sequences, suggesting that the tetramer assembles via a dimeric intermediate. This also 
includes homomer:heteromer pairs, where the heteromer has acquired a subunit with respect to 
the homomers. In total, this provided 154 homomers and 263 heteromers with putative 
structure-based assembly information. 
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Importantly, we recognise that the structure-based pathways do not represent direct 
characterisation of assembly. Instead, they indicate that two or more different quaternary 
structure states have been observed, and we assume that assembly transitions can occur 
between them. It is worth noting that even for biophysically characterised assembly pathways, 
we do not always have evidence that they are physiologically relevant. However, the fact that 
the biophysical and structure-based pathways have a strong tendency to reflect evolutionary 
history (10) and be evolutionarily conserved (11) does suggest that they have a functional 
relevance. 

Given this large set of assembly data, we next asked what quaternary structure transitions (i.e. 
assembly steps) tend to be observed. For homomeric complexes, we can classify all possible 
transitions into three different types (Fig. 2A, left). First, there is dimerisation, where a doubling 
of the complex occurs and a twofold axis of rotational symmetry is formed (e.g. monomer-to-
dimer or dimer-to-tetramer). Second, there is cyclisation, which involves the assembly of a ring-
like quaternary structure with higher-order rotational symmetry (e.g. monomer-to-trimer or 
monomer-to-tetramer). Finally, there is fractional transition, an inherently asymmetric step in 
which the quaternary structure changes by a non-integer ratio (e.g. dimer-to-timer or trimer-to-
tetramer). 

For each homomer with assembly data, we identified all the assembly steps that could account 
for the transitions between the free monomers, the observed subcomplexes and the full 
complex (see Methods). The distributions of these three different assembly steps are shown in 
Fig. 2B. All three datasets show a similar trend, with dimerisation being the most common step, 
cyclisation being the next most common, and fractional transitions being quite rare. This is 
consistent with previous observations of the favourable assembly and evolutionary transitions 
between homomers with different symmetries (10). 

In heteromers, there are two further assembly steps that are possible, in addition to the three 
steps observed for homomers. These are illustrated in Fig. 2A (right): subunit addition, in which 
a new subunit is acquired (e.g. monomer-to-heterodimer), and non-stoichiometric transition, in 
which, the types of subunits within the heteromer remain the same, but the relative ratios 
between them change (e.g. assembly from 1:1 to 2:1 stoichiometry). 

The distributions of all five possible assembly steps for heteromers are shown in Fig. 2C. The 
same basic trend is observed for the homomeric steps, with dimerisation being the most 
common and few fractional transitions. However, the most common observed step for 
heteromers from all three datasets is heteromeric subunit addition. 

Within the heteromers, there is an interesting difference between the transitions observed in the 
mass spectrometry data and those observed in the other datasets. Specifically, non-
stoichiometric transitions are much more common with mass spectrometry, evident from the 
considerable number of subcomplex intermediates with uneven stoichiometry (i.e. different 
numbers of each subunit type) observed in Fig. 1. This can be attributed due to two factors: the 
sensitivity of the mass spectrometry measurements to low-populated assembly intermediates, 
and the way in which the mass spectrometry experiments are performed, over a range of 
destabilising solution conditions designed to progressively disrupt the quaternary structure of 
the complex. We know that such non-stoichiometric transitions must occur in many cases where 
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they are not observed. For example, consider the transition from an αα homodimer to a βααβ 
heterotetramer, where there is no interaction between the two β subunits. In this case, an ααβ 
assembly intermediate should form, as it is highly improbable that two separate β subunits 
would bind simultaneously. However, this asymmetric subcomplex is unlikely to be observed 
under non-destabilising conditions and without highly sensitive mass spectrometry 
measurements. 

Enumeration of the topological space of protein complexes 
Next, we seek to explore quaternary structure space by combining different assembly steps to 
determine which protein complex topologies are possible. Given that the protein complex 
assembly pathways from above are dominated by dimerisation, cyclisation and subunit addition, 
we have focused on these three steps. 

An important consideration here is interface symmetry. Dimerisation results in a twofold axis of 
rotational symmetry, and therefore the interface formed by dimerisation will be isologous (i.e. 
symmetric or head-to-head) and involve two identical surfaces on subunits of the same type 
(14). In contrast, cyclisation results in higher-order rotational symmetry and is associated with 
interfaces that are heterologous (i.e. asymmetric or head-to-tail) and involve two different 
surfaces on the same type of subunit. Finally, there are heteromeric interfaces, formed between 
two distinct polypeptide chains, and hence by definition also heterologous. 

Proteins are inherently asymmetric at the level of individual polypeptide chains, so we can make 
the assumption that the same interface surface cannot appear twice on the same protein, or on 
two structurally different proteins. Together with this fundamental assumption, the three 
transitions (dimerisation, cyclisation, and subunit addition) all lead to symmetric protein 
complexes with even subunit stoichiometry. This is because we can view subunit addition as the 
formation of a larger multi-protein ‘subunit’, or protomer, which means that we can extend the 
homomeric definitions of dimerisation and cyclisation to homomers formed of these multi-protein 
subunits, leading to equal multiples of each type of protein (see Fig. 3).  

Every homomeric complex (of single-protein or multi-protein subunits) can have at most two 
isologous or heterologous interfaces, as each new homomeric interface imposes a new axis of 
rotational symmetry. In other words, symmetry constrains the number of homomeric interface 
types to a maximum of two. One or two interfaces of two possible types  give us five scenarios: 
a) one isologous, b) one heterologous, c) two isologous, d) two heterologous, and e) one 
isologous and one heterologous.  

In order to elucidate all possible heteromeric topologies that can arise under these constraints, 
we start by enumerating all topologies of s distinct subunits (see Fig. 3). For this enumeration, 
we represent heteromeric topologies as trees rather than all possible graphs, because we wish 
to distinguish between essential and circumstantial interfaces in the complex. We do this by 
removing all interfaces that do not break apart the complex in order of size (see next section 
and Methods for details). For each of the five scenarios described as a) to e) above, we then 
consider all topologically distinct ways (that is, distinct under symmetry operations on the tree) 
in which the interfaces can be distributed across the set of subunits and pairs of subunits of the 
tree. The final step is to construct the topologies of the complexes from these distributions of 



 6 

interfaces across the tree. Some of these are isomorphic (taking into account interface types 
and subunit identities), which reduces the overall number of topologies. 

An important difference between our idealised model and real protein complexes is that real 
complexes can have more interfaces. However, we can directly relate real protein topologies to 
the above idealised forms, if we consider some of the weaker intersubunit contacts as 
circumstantial. In other words, stronger interfaces - one could call them ‘essential’ - exist that 
bind the complex together by themselves. We can distinguish between the essential and 
circumstantial interfaces by successively cutting away as many interfaces as possible in 
increasing order of size without giving rise to disconnected components of the complex (see 
Methods for details), leading to the simplest possible graph representation of a quaternary 
structure topology. This contrasts with the previous approach used in 3D Complex (9), where all 
intersubunit interfaces are considered. Thus this representation effectively sits above the more 
detailed classification of 3D Complex: a single, simplified topology used here can correspond to 
multiple 3D Complex topologies. 

The vast majority of real protein complexes are compatible with our model: 92.5% of homomers 
and 91.7% of heteromers have topologies identified in our exhaustive enumeration (Fig. 4). In 
these complexes, structurally identical proteins inhabit the same topological environment, 
meaning the same local environment in terms of the interfaces they form with other subunits in a 
complex. We therefore define as bijective complexes those having a one-to-one (i.e. bijective) 
correspondence between their polypeptide sequence and their topological environment. 

By contrast, all of the real protein complexes not compatible with our enumeration are non-
bijective, i.e. sequence-identical subunits exist in non-equivalent topological environments (Fig. 
4). The difference between bijective and non-bijective complexes is further illustrated in Fig. S1. 

In contrast to our simple enumeration model that requires only three types of assembly steps, 
non-bijective complexes would require other asymmetric fractional transition and non-
stoichiometric transition assembly steps. To explore this, we performed an exhaustive 
enumeration of all possible bijective and non-bijective topologies for complexes with specific 
stoichiometries. We find that for complexes with 2:2 stoichiometry, there are two possible 
bijective topologies compared to seven possible non-bijective topologies (Fig. S2). For 
complexes with 3:3 stoichiometry, there are also two possible bijective topologies, while the 
number of possible non-bijective topologies explodes to 250 (Fig. S3). This illustrates a major 
benefit of our approach: by limiting our model to only three simple assembly steps, we are able 
to cover the vast majority of observed protein complexes with a much smaller set of possible 
quaternary structure topologies. 

To further justify our classification into bijective and non-bijective complexes, we utilised the fact 
that the quaternary structure assigned to a protein complex is often incorrect and does not 
represent the quaternary structure in solution or within the cell (15, 16). Using a database of 
manually confirmed quaternary structure assignments (17), complemented by additional manual 
assignments of our own, we compared error rates for bijective and non-bijective homomers and 
heteromers (Fig. 4). Strikingly, we found that, while bijective complexes have a low rate of 
quaternary structure error (~10%), more than half of the non-bijective structures are the result of 
errors. Thus, most non-bijective protein complex structures do not represent genuine examples 



 7 

of biological asymmetry, but instead are due to artefacts or errors in the structure determination 
process. This also suggests that the fact that a protein complex is non-bijective could be very 
useful for identifying likely quaternary structure assignment errors. 

An exception to the above is the non-bijective complexes with uneven stoichiometry, which have 
only a 20% quaternary structure error rate. We recently studied these in detail and elucidated 
several different structural mechanisms by which they can form, which include varying degrees 
of pseudosymmetry, steric occlusion, and subunit flexibility leading to conformational differences 
between identical subunits (18). Notably, we found that those for which a structural mechanism 
for uneven stoichiometry could not be ascertained were mostly the result of quaternary structure 
assignment errors (18). 

A periodic table of protein complexes 
Analysis of the real and enumerated quaternary structure topologies above shows that all 
bijective heteromers can be related to simpler homomeric topologies. Specifically, if the different 
subunit types are grouped together as a protomer, then the interactions between protomers will 
be equivalent to a bijective homomer topology, or to a monomer for cases with no subunit 
repeats. This suggests a natural classification for protein complexes: by their equivalent 
homomeric topologies in one dimension, and by the number of unique subunits in the other. Fig. 
5 illustrates this “Periodic Table of Protein Complexes” for all topologies with ≤ 12 repeats and ≤ 
4 unique subunits. In this classification, complexes related to the equivalent homomers are 
contained in the same column of the table, thus allowing the similarities between different 
heteromeric complexes to be easily recognized.  

Most symmetry groups are associated with a single homomeric topology, except dihedral and 
cubic groups with ≥ 6 subunits, which have two topologies each. While this graph representation 
incorporates similarities between binding surfaces based upon the identities of interacting 
residues, it does not require any non-local geometric information. Our graph model therefore 
inherently includes the symmetry group information of a complex, and is to our knowledge the 
first network representation of complexes that does this. 

Fig. S4 shows the frequencies of each equivalent homomer symmetry group for complexes with 
varying numbers of unique subunits. Interestingly, complexes with different numbers of unique 
subunits show very similar distributions. Thus homomers and heteromers populate the 
horizontal axis of the periodic table in a very similar manner, although complexes with more 
unique subunits do tend to have fewer repeats. 

The regions of the periodic table that correspond to higher numbers of repeats and subunits are 
sparsely populated. This can be attributed to two factors. First, there is a significant bias 
amongst structurally characterised protein complexes towards those with fewer numbers of 
unique subunits, whereas evidence suggests that protein complexes in vivo will tend to have 
more distinct components (19, 20). Second, as can be seen in Fig. S4, there is a clear tendency 
for topologies towards the right of he periodic table to be less common, which suggests that 
cyclic or dihedral complexes with more repeated subunits may be less stable or more difficult to 
evolve. These regions can also be expected to be filled in coming years, at least to a certain 
extent. Fig. 5A shows the rate at which new topologies have been discovered: roughly four per 
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year for the last 20 years with no signs of slowing. In order to illustrate the space of possible 
topologies, the number of discovered topologies versus the number possible determined 
through exhaustive enumeration is shown in each cell of the periodic table (see example in Fig. 
5B). 

We note that this table is not “periodic” in the same sense as the periodic table of the elements, 
as it is in principle open-ended, as opposed to periodic with respect to atomic number. There 
are no theoretical limitations to quaternary structure topology space in either dimension, 
although the vast majority of known structures can be placed on the table in Fig. 5. In Fig. S5, 
we have provided an expanded version of the periodic table, where complexes with up to 14 
unique subunits and 48 subunit repeats can be visualised. Overall, we believe that the analogy 
to the periodic table of the elements is useful, as it provides a means of organising quaternary 
structure topologies and visualising similarities. Furthermore, just as the periodic table of the 
elements has successfully predicted many new chemical elements, our periodic table of 
proteins has considerable predictive power by elucidating the regions of quaternary structure 
space that remain to be populated. 

We showed above that the majority of non-bijective complexes are the result of quaternary 
structure assignment errors. The exception to this is complexes with uneven stoichiometry, most 
of which do represent genuine cases of biological asymmetry. Therefore, we sought to reconcile 
uneven stoichiometry with our model of the periodic table. Interestingly, we find that if we 
consider the periodic table at the level of local topological environments, rather than at the level 
of subunits, then two sequence-identical subunits can play different roles within the graph 
representing the complex. Examination of the topologies of non-bjiective complexes revealed 
that many of them were equivalent to the same symmetric homomer topologies observed for the 
bijective periodic table. Fig. S6 illustrates this with a periodic table made for non-bijective 
heteromers with 2:1 subunit stoichiometry. For these cases, the 2:1 protomer can be considered 
analogous to a heterotrimer with three unique subunits. The only difference between 2:1 
heteromers here and 1:1:1 heteromers from the main periodic table (i.e. the third row in Fig. 5) 
is that sequence-identical subunits can still sometimes form isologous interfaces, despite 
existing in different local environments. Thus, the results of our quaternary structure 
enumeration can be easily applied to complexes with uneven stoichiometry if the repeated 
subunits from the protomer are simply considered to be different subunit types in our 
enumeration model. 

Predicting likely yet unobserved quaternary structure topologies 
The exhaustive enumeration allows us to determine what quaternary structure topologies are 
possible, but it does not tell us which are most likely or should be most abundant in nature. To 
address this, we adapted our enumeration procedure in order to produce topologies according 
to the observed distribution in the periodic table. Essentially, we know that each cell on the 
periodic table can be defined by a specific set of assembly steps needed to build the topologies 
within that cell. Combining the steps in different ways can produce all the topologies compatible 
with a given cell. Therefore, we sampled cells of the periodic table according to the observed 
distribution in real complexes, each time randomly combining the assembly steps associated 
with each cell. This was repeated 3 x 107 times, with full details provided in the Methods. 
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All of the quaternary structure topologies present on the periodic table were observed at least 
once in our calculations. Furthermore, in addition to the previously observed quaternary 
structure topologies, our model also predicted 579 topologies that were not seen in any of the 
complexes in our dataset. To independently validate this result, we compiled an extended set of 
heteromeric complexes not present in our original dataset because they were published more 
recently, determined with electron microscopy (which we did not initially include), or were 
originally excluded due to structural criteria (see Methods). 

The extended set of heteromers contained 53 different quaternary structure topologies, 14 of 
which were not present in the main dataset. These 14 have a striking tendency to be among the 
most highly predicted topologies in our model. For example, six of them were observed amongst 
the top 20 most likely predicted topologies (Fig. 6), out of a total of 579 predicted (P-value: 2 x 
10-6, Fisher’s exact test). Fig. S7 illustrates how the observed topologies cluster within the most 
highly predicted rankings, thus supporting the predictive utility of our model. 

We also employed a complementary approach for the prediction of the relative abundances of 
topologies within a given cell, which makes fewer assumptions, but also yields less specific 
predictions. We consider the number of distributed interfaces (that is, single interfaces that are 
spread across two subunits), and the number of topological equivalents (marked by red crosses 
in Fig. S8) of a given interface distribution. If we compare topologies pairwise within the cells of 
the periodic table with ≤ 4 unique subunits and ≤ 12 subunit repeats, and count the instances in 
which topology A has fewer distributed interfaces and more or equal topological equivalents 
than topology B, or fewer or equal distributed interfaces and more topological equivalents, then 
we observe that out of the 30 such instances, 21 (70%) times topology A is more abundant that 
topology B. This is because distributed interfaces restrict the order in which evolutionary steps 
can happen, making topologies with more such interfaces rarer. Larger numbers of topological 
equivalents on the other hand make topologies more common as there are more ways in which 
such complexes can evolve. 

Finally, to further validate our predictive model, we compared the predicted frequencies of 
heteromeric quaternary structure topologies to those observed in both the main and extended 
datasets (Fig. S9). Overall, the correlations are very good, with the predictions nicely 
recapitulating the observed frequencies. Although the predictions are partially fit to the 
frequencies of topologies observed in the main dataset, the high correlation with the extended 
dataset provides strong independent validation of our model. 

Conclusion 
In this study we have shown that the assembly of protein complexes is dominated by three main 
transition types, which in combination can explain most observed quaternary structure 
topologies This also leads to a natural organisation of protein complexes in the form of a 
periodic table, in which heteromeric protein complexes are grouped according to their equivalent 
homomeric quaternary structure topologies. The periodic table illustrates both the variety of 
observed protein complexes as well as the space of possible topologies through exhaustive 
enumeration, analogous to previous strategies investigating network topologies (21, 22). Given 
that new topologies have been discovered at a fairly constant rate of four per year over the past 
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two decades, we can expect new additions to the unfilled or partially filled cells of the periodic 
table in the near future. These unfilled or partially filled cells constrain the total space of 
expected protein complexes, similar to how an upper bound of 10,000 total types of interacting 
domain pairs has been proposed (23). 

A major practical application of the periodic table framework will be in predicting and modelling 
the quaternary structure of protein complexes. Specifically, our results show that bijective 
quaternary structure topologies are far more likely to occur than non-bijective topologies, 
despite the fact that there are far more possible non-bijective topologies. We also provide 
predictions for the relative likelihoods of different bijective topologies. This knowledge can 
inform the interpretation of high-throughput interaction experiments (24), or structure-based 
interaction predictions (25) by highlighting the quaternary structure topologies that are possible 
and most likely to occur. Homology information can aid these quaternary structure predictions, 
and give further insight into the evolution and assembly of complexes, as subcomplexes often 
arise as evolutionary precursors and assembly intermediates (12). Similarly, the periodic table 
can tell us which evolutionary precursor topologies are likely to have given rise to a specific 
complex. The periodic table can also provide constraints for multi-subunit docking or modelling, 
both on the relative arrangements of subunits, and the overall complex symmetry (26–29). This 
could be further integrated into hybrid methods combining different experimental measurements 
(30), such as electrospray (31) or cross-linking (32) mass spectrometry. 

This work could be of significant utility in the bioengineering of protein complexes. The self-
assembly formalism introduced here allows one to specify exactly what essential interfaces 
would need to be engineered to form a protein complex of a given topology. This could facilitate 
de novo engineering of oligomeric assemblies (33–35) and allow for directed modulation of 
existing quaternary structures, stepping either across or down the “periodic table” in an 
incremental manner. 

Despite its strong predictive power, it is important to reiterate that basic periodic table model 
does not account for ~8% of known protein complex structures. More than half of these 
exceptions arise due to quaternary structure assignment errors. Indeed, a benefit of this 
approach is that it highlights likely quaternary structure misassignments, particularly by 
identifying non-bijective complexes with even subunit stoichiometry. However, this still leaves us 
with ~4% of correct structures that are not compatible with the periodic table. 

Although non-bijective complexes are possible, they are rare and so this should be given 
consideration in any protein modelling or engineering attempts. Related to this, it would be 
particularly interesting to see whether chaperones are more frequently involved in the assembly 
of non-bijective complexes, to stabilise the required asymmetric transitions. To model the non-
bijective protein complexes, additional assembly steps involving fractional and non-
stoichiometric transitions are needed. However, as we showed, this would also greatly expand 
the number of possible quaternary structure topologies. Therefore, we consider the periodic 
table in its current implementation to be a reasonable compromise, allowing the vast majority of 
existing quaternary structure topologies to be explained and the most likely unobserved 
topologies to be predicted. 
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Methods 

nESI-MS experiments 
The complexes were kindly donated as follows: Saccharomyces cerevisiae SAGA 
deubiquitinating module (Protein Data Bank [PDB] ID: 3MHH; C. Wolberger, John Hopkins 
University School of Medicine, Baltimore); Thermus thermophilus MglA/MglB complex (PDB ID: 
3T1Q; A. Wittinghofer, Max Planck Institute for Molecular Physiology, Dortmund); Geobacillus 
stearothermophilus PDH E1 subunit (PDB ID: 3DVA; B. Luisi, University of Cambridge); 
Streptococcus pyogenes toxin-antitoxin complex (PDB ID: 3Q8X; A. Meinhart, Max Planck 
Institute for Medical Research, Heidelberg); Saccharomyces cerevisiae phosphofructokinase 
(PDB ID: 3O8O; T. Schöneberg, University of Leipzig); Ruegeria pomeroyi propionyl-CoA 
carboxylase (PDB ID: 3N6R; L. Tong, Columbia University, New York); Homo sapiens MSL1-
MSL2 complex (PDB ID: 4B7Y; J. Kadlec, European Molecular Biology Laboratory, Grenoble); 
Synechococcus elongatus acetylglutamate kinase / PII complex (PDB ID: 2V5H; V.Rubio, 
Instituto de Biomedicina de Valencia, Valencia); Pseudomonas aeruginosa 3-methylcrotonyl-
CoA carboxylase (PDB ID: 3U9T, 3U9S; L. Tong, Columbia University, New York). 

The nESI-MS experiments on complex disassembly and reassembly were performed as 
previously described using QToF2 mass spectrometers modified for high m/z operation (11). A 
list of all (sub)complexes observed under various experimental conditions is provided in Table 
S1. 

Protein complex datasets 
The full set of protein X-ray crystal structures was taken from the Protein Data Bank (PDB) on 
2012-08-08. Only polypeptide chains with at least 30 residues were considered. Backbone only 
models were ignored, as well as structures containing nucleic acids, or > 10% non-water 
heteroatoms. Heteromeric protein complexes formed by polypeptide cleavage were also 
ignored. This procedure also has the effect of removing complexes with protein chains that lack 
unique db_id sequence identifiers. Complexes with > 59 subunits or split over multiple PDB 
entries were excluded. In total, the final dataset contained 30469 monomers, 28935 homomers 
and 5543 heteromers. Manual quaternary structure assignments came from PiQSi, and include 
those with errors assigned as “probably yes/no” (17) and from additional manual searching of 
the literature. 

The size of the interface between each pair of subunits from all protein complexes were 
calculated with AREAIMOL (36). For each complex, all interfaces of the same type were 
identified by calculating the correlation between atom-specific buried surface areas for each pair 
of interfaces. Only interfaces > 200 Å2 were considered. Two interfaces were considered to be 
of the same type if the Pearson correlation between the buried surface areas in terms of 
equivalent amino acids is > 0.7. Interface sizes were averaged over all interfaces of the same 
type. Similarly, homomeric interfaces were classified as isologous if the correlation between the 
residue-specific buried surface area for each subunit is > 0.7. 

The extended set of quaternary structure topologies, used to validate our predictive model, was 
taken from a more recent set of protein complex structures from the PDB on 2014-12-16. In 



 12 

addition to the crystal structures used in the main set, electron microscopy structures were also 
considered here. Furthermore, the constraints on the main dataset were loosened, so that 
complexes formed via cleavage, as well as complexes containing nucleic acids or other 
heteroatoms were also included (although only protein chains were considered). In total, this 
extended set possessed 4214 bijective heteromers (with ≤ 4 unique subunits and ≤ 12 subunit 
repeats) not present in the main dataset. Within this set, there were 53 different quaternary 
structure topologies, 14 of which are new. 

For certain analyses, we used non-redundant subsets of the full and extended datasets. 
Proteins were filtered for redundancy at the 50% sequence identity level, essentially as was 
done previously (18, 20). The non-redundant sets were used for the histogram in Fig. S4, the 
comparison between observed and predicted in Fig. S9, and for fitting the expected periodic 
table quaternary structure distribution in our model. 

Both the main set and the extended set of quaternary structure topologies used in this study are 
provided in Table S2, in the form of pairwise interfaces formed between subunits. 

Determination of assembly pathways 
All of the mass spectrometry and literature-identified (dis)assembly pathways involved protein 
complexes of known structure where the subunit composition of at least one subcomplex 
intermediate could be identified. To complement this, we also performed a structural analysis 
where we identified similar protein complexes with different quaternary structures. Starting from 
the full set of homomeric and heteromeric complexes in our main dataset, we searched for 
complexes where another complex could be considered as a subset of the full complex. For 
example, a homodimer was considered to be a subset of a homotetramer if the subunits shared 
> 90% sequence identity. All these subset complexes were considered to be similar to the 
experimentally identified subcomplexes for the purpose of defining assembly transitions. All of 
the experimentally identified subcomplexes and structural subsets are provided in Table S3. 

Although we can observe the subcomplexes formed during (dis)assembly, we do not directly 
observe the assembly or disassembly steps that occur in solution. However, we can infer these 
from the subcomplexes identified. For every subcomplex and full complex, we identify the 
largest subcomplex that can be considered to be a subset of that (sub)complex. If no 
subcomplex is observed, then (dis)assembly is assumed to occur via free monomers. We then 
assign the transition between the two states into one of the five categories from Fig. 2. All 
(dis)assembly transitions are provided in Table S4. 

Interface cutting procedure 
In order to distinguish subunit interfaces that are circumstantial from those that are essential to 
the self-assembly process, we remove interfaces from the weighted subunit contact graph of a 
given complex, in increasing order of interface size. We skip interfaces if cutting them would 
result in the complex becoming disconnected, and stop when no further interfaces can be cut.  

This procedure will not necessarily result in a tree-like graph, as the same interface may appear 
several times in the same complex. For example, a cyclic ring will not be cut further, as one 
would have to cut all interfaces, which are of the same size, at once. 
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The advantages of this approach are: a) it vastly simplifies the number of possible topologies, 
and unifies clearly similar topologies that would be treated differently if all interfaces were taken 
into account; (b) it is less arbitrary than conventional thresholds of interface size, and therefore 
is a more fundamental description of a complex; and (c) symmetry emerges directly from the 
graph topology through the number of distinct interfaces of a subunit. 

Topological enumeration procedure 
First let us consider what combinations of different interface types can be present in a 
homomeric structure. These are: 

• one symmetric interface (C2 symmetry) 
• one asymmetric interface (cyclic symmetry with more than two subunits) 
• one symmetric and one asymmetric interface (dihedral or tetrahedral symmetry) 
• two symmetric interfaces (dihedral symmetry) 
• two asymmetric interfaces (only in tetrahedral symmetry) 

Larger numbers of interface types are not possible in homomers, due to the constraints placed 
on the symmetry of the complex by these interface types.  

As explained above, any heteromer that is formed using a combination of cyclisation, 
dimerisation and subunit addition can be represented as a homomer of multiple copies of the 
same heteromeric module, in which each subunit type appears exactly once. We can therefore 
enumerate all possible heteromeric topologies that can arise by carrying out the following 
procedure (illustrated in Fig. S8):  

1. Enumerate all trees of s distinct subunits. These are the heteromeric modules, 
multiple copies of which will be joined together into ‘homomers’. The reason for 
restricting ourselves to trees instead of all possible graphs is because we aim to only 
consider the most important interfaces in the original complexes, by using the interface 
cutting procedure outlined in the previous section. This will always lead to tree-like 
structures as the repeated heteromeric modules.  

2. For each of the five possible combinations of interface types in homomers 
discussed at the beginning of this section, consider all topologically distinct ways 
in which the interfaces can be distributed across the set of subunits and pairs of 
subunits of the tree. Topologically distinct here means that we cannot convert two 
distributions of interfaces into each other by only using symmetry operations of the tree.  

3. Construct the topologies of the complexes from these distributions of interfaces 
across the tree. For this we also need to consider the possible number of repetitions for 
each cyclic interface (see for example the ring-like complexes of varying size in the 
periodic table). In complexes with 12 or more subunits we can have more than one pair 
of divisors with at least one even divisor (e.g. in the case of 12, three & four, and two & 
six), which leads to several possible topologies for the same total number of subunits 
(see the D6 and T examples in the r=12 column of the s=1 row of the periodic table).  

4. Distinguish isomorphic topologies. In some cases different distributions of 
interfaces in the enumeration procedure will lead to isomorphic topologies. These 
can be easily identified using an isomorphism check, giving us the final enumeration of 
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topologies.  

The numbers in the bottom right of each cell in the periodic table (Fig. 5) give the observed and 
total numbers of different topologies for that particular symmetry group and number of subunits 
s. 

Enumeration of all possible bijective and non-bijective topologies 

We enumerate all possible bijective and non-bijective topologies with 2:2 stoichiometry, and all 
possible bijective and non-bijective topologies with 3:3 stoichiometry and up to six interfaces. 
We do this by considering all possible four-node graphs with three to six edges (2:2), shown in 
Fig. S2, and all six-node graphs with five or six edges (3:3), shown in Fig. S3. On these we 
consider all distributions of equal numbers of two node colours (corresponding to the two protein 
species). Furthermore, for all edges between nodes of the same colour we consider two 
possibilities, corresponding to isologous and heterologous interfaces. Edges can thus have 
three colourings (heteromeric, homomeric isologous, homomeric heterologous). Finally we also 
consider different interface sizes by considering all possible relative size ranks (including equal 
ranks) of the different edges and subsequent interface cutting according to the same procedure 
followed in the periodic table. An isomorphism check (which includes the colourings of nodes 
and edges) is then used to identify unique topologies in this enumeration. Two additional 
constraints are that an equal interface size can appear more than once only for one type of 
subunit pair, and that the same interface size can only appear once on each subunit for 
homomeric isologous and heteromeric interfaces, and once or twice for homomeric 
heterologous interfaces. 

Prediction of expected frequencies of quaternary structure topologies 
To predict the expected frequencies of quaternary structure topologies, we employed an 
approach whereby we attempt to recapitulate the observed distribution of complexes within cells 
on the periodic table, considering complexes with up to 12 subunit repeats and 4 unique 
subunits. This prediction procedure can be divided into three parts: 

1. Selecting a cell from the periodic table. To do this, we first randomly select a structure 
from the non-redundant set of complexes and monomers. The row of the periodic table (i.e. the 
number of unique subunits) is directly taken from this randomly selected structure. However, the 
column of the periodic table is not taken directly from this structure. This is because the 
sampling of cells on the periodic table is sparse for the lower rows, and thus we would miss 
cells with no current structures. Instead, each structure can be classified into one of three 
groups: first column (i.e. monomeric or no repeated subunits), cyclic (including C2), or 
dihedral/tetrahedral. Then, another structure is randomly selected out of all of those from the 
first row of the table (i.e. a monomer or homomer) that belong to the same group. This structure 
is used to define the column of the periodic table. Thus the distribution of homomers defines the 
distribution of predicted heteromers in the horizontal axis, with a correction for the fact that 
complexes with more subunit repeats tend to be less likely to have cyclic or dihedral subunit 
repeats. 
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2. Defining the assembly steps. Each cell of the periodic table is associated with a specific set 
of subunit addition, dimerisation and/or cylicsation assembly steps required to get there from a 
monomer. Therefore, to generate a random quaternary structure topology compatible with a 
given cell, we first randomise the order of the assembly steps. There are two exceptions to this: 
i) for Dn (n > 2) topologies where the homomer has all isologous interfaces (e.g. trimer of dimers 
rather than dimer of trimers), the dimerisation step must occur before the cyclisation step; and ii) 
for tetrahedral complexes, the cyclic trimerisation must occur before the tetramerisation. 

3. Constructing a quaternary structure topology. Given a defined set of assembly steps, we 
can construct a quaternary structure topology. A new interface is added to the quaternary 
structure topology for each assembly step. When the subcomplex is heteromeric, there are 
multiple ways an interface could be formed. In these cases, the subunit(s) to be involved are 
randomly selected. For example, if a dimerisation step was applied to an A-B subcomplex, then 
a new isologous interface could be formed between two A subunits or two B subunits, or a pair 
of identical heteromeric interfaces could be formed between each pair of A and B subunits. In 
the latter case, the isologous interface is “distributed” across two subunits. In Fig. S10, we 
illustrate the random quaternary structure topology construction process for a single cell of the 
periodic table. 

All predicted quaternary structure topologies are provided in Table S5. 

Enumeration-based shorthand notation of protein complex topologies 
The representation of interface distributions across the subunits, as shown in the figures 
describing the enumeration process (Figs. 3 and S9), allows for a natural shorthand notation of 
topologies: The subunits are labelled A, B, C, etc., and cyclic, dihedral, and heteromeric 
interfaces are denoted c, d and h. The location of an interface follows the type, and in the case 
of distributed interfaces both subunits are given. A cyclic homomer therefore is cA, the first 
structure with two subunits in Fig. 3 is cA hAB, and the last structure with three subunits in the 
same figure is dAC hAB hBC.  
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Figures 

 

Figure 1: Mass spectrometry characterisation of heteromer (dis)assembly pathways. For 
each characterised complex, the known three-dimensional structure is shown, as well as 
representative mass spectrum, showing the full complex and subcomplexes formed in a graph 
representation. In all cases the full complex is represented by the rightmost graph 
representation in each mass spectrum. A full list of subcomplexes is provided in Table S1. The 
structures of 3DVA, 3O8O and 4B7Y shown here differ from those in the PDB: 3DVA is missing 
the γ subunit, as it was not present in our sample, and the 4:4 model of 3O8O and 4:2 model of 
4B7Y were built from the unit cell to match the solution data. 
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Figure 2: Types of assembly steps observed in homomeric and heteromeric complexes. 
(A) Illustration of the five possible types of assembly steps. (B-C) Distribution of observed 
assembly steps for homomers and heteromers from mass spectrometry experiments, assembly 
pathways identified in the literature and from complexes with varying quaternary structure in the 
PDB. Error bars represent 68% Clopper-Pearson confidence intervals. 
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Figure 3: Three assembly transitions give rise to the topological space of protein 
complexes. These transitions are cyclisation (blue), dimerisation (green), and subunit addition 
(red). We can enumerate all possible topologies arising from these steps by calculating all ways 
in which a cyclic or dihedral interface can be distributed across a heteromer with 1:1 
stoichiometry. For heterodimers, there are two such ways for both the cyclisation and the 
dimerisation steps. For heterotrimers, there are four such ways for each step. 
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Figure 4: Frequencies of protein complex types and their quaternary structure assignment error 
rates. Among non-bijective heteromers we can further distinguish between those that exhibit 
even stoichiometry and those with uneven stoichiometry. The former are much more like to be 
the result of quaternary structure assignment errors. The latter are more likely to represent 
biologically relevant quaternary structure. In the last column we give alternative error rates in 
brackets that exclude the PiQSi (17) error assignments ‘probably yes’ and ‘probably no’ from the 
analysis. These error rates follow the same pattern for non-bijective heteromers of even versus 
uneven stoichiometries.  
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Figure 5: The Periodic Table of Protein Complexes. All bijective protein complex topologies 
can be arranged according to the number of different subunit types s and the number of times 
these subunits are repeated r. Isologous interfaces between the same subunits (i.e. dihedral 
interfaces), are shown in green, and heterologous interfaces between subunits of the same 
types (cyclic interfaces), are shown in blue. Heteromeric interfaces are shown in red, apart from 
those that correspond to a symmetric dimerisation (yellow), or to higher order cyclisation 
(purple). The topologies in the s=1 row are the equivalent homomers of the heteromeric 
structures in the s>1 rows. To clarify this equivalence, subunits in the heteromers are grouped 
according to the repeated subcomplexes. In addition the yellow and purple interfaces of the 
heteromeric complexes highlight interfaces that are dihedral (green) and cyclic (blue) in the 
equivalent homomers. The ratio in the bottom right of each cell indicates the number of 
topologies that have been observed and the total number of possible topologies of this type. 
The table shown here is an excerpt (s < 5, r < 13) of the full table. An interactive version of this 
table with information on the structures represented by each topology can be found at: 
http://sea31.user.srcf.net/periodictable/ INSET: A) Number of discovered topologies as a 
function of time, which has been steadily increasing at a rate of about four topologies per year 
for the last two decades. B) An illustration of observed topologies versus all possible topologies 
with six repeats and two subunits (r=6, s=2). Three of the possible five topologies have been 
observed thus far. 
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Figure 6: The top 20 most likely quaternary structure topologies from our model not 
observed in the main dataset. Of these, 6 are observed in the extended dataset, validating the 
power of the model (P-value: 2 x 10-6). The remaining 14 topologies are also expected to occur 
relatively frequently in nature, and thus to be observed in experimentally determined structures 
soon. The distribution of all the new topologies observed in the extended dataset compared to 
the expected frequencies of all predicted topologies is shown in Fig. S7. 
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Six of these observed topologies are among the top 20 predicted.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

1y
e9

4k
gg

1lg
h

4a
df

3h
e4

3s
ip


