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ABSTRACT
Scientific software is more difficult to test than many other
software products, but scientists are not usually trained in
software engineering techniques. Considering how often soft-
ware is used to produce scientific results, how can we be
sure the predictions made from these results are correct?
Software engineering techniques should be useful for com-
putational scientists. The problem is they find it difficult to
know how to apply domain-independent techniques to the
specific problems they face in their work. Nevertheless, we
have discovered scientists use their own intuition to reinvent
techniques surprisingly similar to those in software engineer-
ing. This seems like a good place to start our training.

CCS Concepts
•Software and its engineering → Software creation
and management; Software testing and debugging;
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1. INTRODUCTION
In a recent survey [7], over 70% of biological, mathematical
and physical science researchers said they develop software
as part of their job and 80% claimed it would not be possible
to conduct their work without such software. Since scientific
software is used and developed to answer important research
questions, it is crucial that it performs correctly. Yet, only
a third of scientists think training in software development
is important and more than half admit they do not have a
good understanding of software testing [11].
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Scientific software is particularly hard to test because it is
not always clear what the correct outputs should be [5]. Re-
searchers’ perceptions change as their hypotheses are tested
and redefined through a process of scientific exploration. In
addition to programming mistakes, there are also likely to
be errors due to the way in which experimental data are col-
lected and the choice of numerical approximation [5]. Re-
cently, the Software Carpentry Foundation decided to with-
draw software testing from its lesson plan because it was
difficult to identify suitable tolerances in the values being
tested [13]. Programming mistakes can lead to subtle errors
that are difficult to detect, as the results are believable.

Sadly, some scientists have found out the importance of soft-
ware testing the hard way. One research group retracted five
papers from top level journals, including Science, because its
software had a fault which inverted the protein crystal struc-
tures they were investigating [11]. Similarly, nine packages
for seismic data processing were found to produce signifi-
cantly different results due to problems such as off-by-one
errors [6]. Other researchers report wasting time trying to
improve their models or develop better algorithms, when the
real issue was that their software contained faults [4].

It would be tempting to conclude scientists are unwilling to
learn the techniques required. However, this paper presents
a more positive story. We found that even though scientists
are not aware of many testing techniques, they sometimes
apply common sense to arrive at similar solutions. It takes
considerable time for scientists to learn software testing tech-
niques because they do not have the necessary background in
software engineering. We argue that by starting from things
scientists already do to ensure their software is correct, we
can teach software testing in way that is more accessible.

The contributions of this paper are as follows:

1. We show how researchers use their intuition to find
techniques similar to those in software engineering -
this could be an effective starting place for education.

2. We explore how to move from scientists’ intuitive man-
ual testing towards more systematic automated tests.

3. We use past experiences to seek out ways in which
problems with legacy code can be avoided in the future.
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2. CASE STUDY
The Epidemiology and Modelling group at the University
of Cambridge develops and applies models for the optimi-
sation of disease control. Members of the group are typi-
cally trained in mathematics, statistics, biology and physics
rather than software engineering. However, it is vital that
their results and the predictions made from their models are
correct, as they are used to inform policy for government
organisations, such as DEFRA and the USDA, as well as
multi-government responses to disease outbreaks in Africa.

Figure 1 describes some of the challenges faced in testing
software developed by the group to model the stochastic be-
haviour of complex biological systems: habitat, disease and
meteorological data is used over a range of spatiotemporal
scales; stochastic interactions occur between species and the
models frequently involve highly nonlinear dynamics. We
need to separate the unavoidable error in data and mathe-
matical assumptions from any programming mistakes.

Figure 1: Some Challenges in Testing the Software

Big data causes difficulties for testing because the results
depend on large quantities of spatial and temporal infor-
mation that has a high potential for error, even before we
start using it. Spatially explicit simulation tools have been
developed within the group to model the spread of disease
using a compartmental modelling framework [10]. The time
at which hosts move from one compartment to another de-
pends on their proximity to infected hosts. It is challenging
to test software that relies on complex spatiotemporal data.

Stochastic processes also cause problems because it is not
possible to specify any one correct output. Instead, there
is a distribution of potential outputs with varying proba-
bilities. For example, model parameters are determined by
statistical inference of historical data, using techniques such
as MCMC (Markov Chain Monte Carlo) and ABC (Approx-
imate Bayesian Computation). It is difficult to test whether
software is correct when outputs are probabilistic.

Finally, the mathematical assumptions made in models have
a significant impact on predictions for the spread of an epi-
demic. For example, a decision must be made whether to
model individuals or to take a mean-field approach [12]. Al-
though these techniques might be expected to give similar
results, the details will differ depending on the biological
system. Software testing is challenging as we do not know
what effect the assumptions made will have on the results.

3. RESULTS
We gave 12 members of the group a survey to find out about
the practices they are currently using to ensure the soft-
ware they develop is correct. We asked them to indicate
whether they knew about 10 commonly used software engi-
neering techniques and if they did, whether they used them.
For each technique, an explanation was given using non-
technical terms, in case the researcher did not know the
specific terminology. The aim of this study is to identify
areas in which additional training in software engineering
techniques might be helpful for a diverse group of modellers
with varying backgrounds, working on a range of fundamen-
tal and applied problems in epidemiology. It is hoped that
by sharing these findings, other researchers developing sci-
entific software might be able to gain from our experiences.

Previous studies have asked questions about scientific soft-
ware engineering [5][7], but we thought it would be helpful to
find out which languages the group members use, as develop-
ing and testing scripts is likely to be different from compiled
software. Half of the group program in C++, for reasons of
efficiency (see Figure 2). However, MATLAB and R are just
as popular because they are easy to program and have use-
ful libraries for mathematical modelling. Linux shell scripts
are also used, since they allow members to send tasks to the
group’s computing cluster. The large number of languages
used within the group, the wide variety of tasks they are
applied to and the diverse range of programming abilities
all pose challenges to ensuring software is correct.

Figure 3 shows the software engineering techniques members
of the group have heard of and use. The results are repre-
sentative of researchers with a wide range of backgrounds,
from experienced programmers through to people just start-
ing to learn. Some of the techniques were used by all the
researchers (e.g. manual testing) and some were used by
none (e.g. coverage metrics). The techniques cover topics
in black box testing, white box testing and code clarity. We
interviewed group members individually after the survey to
learn more about the reasons for these results.

By far the most popular method of making sure software is
correct was manual testing. By this, researchers meant they
run code with particular inputs and then look to see whether
the outputs appear to be correct. This is typically achieved
using an intuitive understanding of what the results should
be, or by comparison with previous results. In one way or
another, everyone in the group uses this technique to help
ensure the correctness of their programming code. Code
clarity techniques, such as modularisation are also widely
used, though as we will see later not all the time.

By contrast, more sophisticated techniques such as auto-
mated unit tests, coverage metrics and boundary/partition
testing are seldom used. Many respondents claim to be using
assertions, but interviews later revealed they have a differ-
ent interpretation of this technique from established litera-
ture. Systematic techniques require specialist software en-
gineering knowledge and formal representations of the test-
ing problem, which are typically not available for scientific
research. We need to close the gap between software engi-
neering research and scientific computing. That means both
sides need to learn more about what the other does.
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Figure 2: Programming languages used by 12 members of the Epidemiology and Modelling group
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Figure 3: Software Engineering techniques used by 12 members of the Epidemiology and Modelling group



3.1 Trying not to reinvent the wheel
It was clear from the survey that members of the group
were less familiar with the more sophisticated techniques.
Fewer than knew what boundary testing or partition testing
were and less than a quarter actually uses them. No-one in
the group is applying coverage metrics to evaluate their test
cases. Furthermore, it was later discovered one respondent
who claimed to use boundary testing was actually confused
about the difference between this and interaction testing.
These results are consistent with a lack of education on soft-
ware engineering in the wider scientific community [5].

However, even though members of the group tend to ap-
proach software testing intuitively rather than methodically,
their intuition sometimes leads to techniques similar to those
used in software engineering. Consider for example the chal-
lenge of determining whether test outputs are correct. In
software engineering this is known as the oracle problem [1].
It is particularly difficult for scientific software developed to
find out the answer to a research question; such programs
are known as ‘non-testable’ [14], because the oracle is just as
hard to write as the software. In line with software engineer-
ing, group members have addressed this by seeking various
forms of partial and pseudo oracle to evaluate their outputs.

One option is to start by building functionality that already
exists and has results that have been published in the lit-
erature. It is then possible to check whether the outputs
are similar to those indicated by published graphs or tables,
before extending the code with new functionality. Another
option is to use a toy data set for which the expected be-
haviour can be produced using a simpler methodology. For
example, the model implemented by a spatial simulator can
be tested against the output of a non-spatial simulation if the
spatial landscape is reduced to a single grid square. In some
cases, an analytical solution may be used to check whether
the stochastic simulation is correct, as it should give approx-
imately the same result. In each case, the goal is to take a
difficult testing problem and collapse it down to a simple
case for which the expected output is easily obtainable.

For situations in which it is not possible to identify an appro-
priate pseudo-oracle, researchers are often able to describe
how the output is expected to change when the input is ad-
justed. For example, if the average distance spores can travel
is increased, we would expect to see the pattern of disease
to become more dispersed. This type of approach is known
in software testing research as a metamorphic relation [1].
Another strategy is to look for strange and unexpected re-
sults. For example, some group members identify thresholds
above or below which output values would seem suspicious
and then check whether or not these conditions occur. In
other cases, it may be possible to identify outputs that are
internally inconsistent, such as when a set of frequencies do
not add up to one. It is interesting to note that even though
the researchers who were interviewed did not realise it at
the time, this is a form of boundary testing [8].

The fact that scientific researchers are already using some
of the techniques advocated for software testing (albeit with
a lesser degree of rigour), provides a natural route for edu-
cating them about software engineering. We can build upon
the tactics researchers already know and are using to teach

them how they relate to established techniques. For ex-
ample, partition testing [8] is an effective way to cover the
input domain thoroughly, whilst at the same time reducing
the number of test cases that have to be evaluated. Mem-
bers of the group seemed reluctant to apply partition testing
in their work, as they could not envision how it could be ap-
plied. In particular, they were unclear as to how to identify
suitable partitions for a continuous input domain.

There are, however, instances in which researchers already
use partitions without realising it. For example, the basic
reproduction number (R0) is used in epidemiology to de-
termine whether or not a pathogen will be able to spread
through the population [3]. Researchers know that if R0 is
greater than one, they should expect the pathogen and hence
the disease to spread, whereas if R0 is less than one the dis-
ease will die out. They look intuitively for these differences
in output behaviour when performing manual testing, but do
this in an ad hoc way without regard to the established prac-
tices for partition testing. Similarly, the case where R0 = 1
provides a natural starting point for teaching about bound-
ary testing, as it lies directly between these two partitions.
Of course, it is worth considering whether these testing tech-
niques will be effective for the application domain. Not every
technique is appropriate in every situation.

3.2 From manual tests to unit tests
Although half of the group had heard of automated unit
tests, less than a quarter actually use them. Many see au-
tomated tests as too much effort, without being sufficiently
helpful for their work. By contrast, one of the key moti-
vations for automated unit testing is that, after the initial
outlay of effort to set up the tests, it can provide a significant
reduction in human effort compared with manual testing [2].
Rather than checking the output values by hand, or stepping
through the program to see whether it behaves as expected,
unit tests can be made to check automatically whether the
output or intermediate variables meet certain criteria.

The main difficulty in creating unit tests is in specifying
what the software is expected to do. Scientists are able to
test software manually by checking the output, but they find
it difficult to describe these tests in a more formal way. It
is often not possible to know what the results will be before
the software is run, but scientists are intuitively able to spot
results that seem incorrect. Manual testing will always be an
important part of scientific software engineering, especially
early in the development process. However, if we can record
this intuition in automated unit tests, this will enable more
rigorous and systematic testing of established code.

How can we determine which differences in behaviour we
need to be aware of in the unit tests and how can we make
sure the software is able to answer the research questions
correctly (both now and in the future)? We need an iterative
way to improve the tests as we find out more about the
system we are researching. Initially we can create tests of
basic functionality, but then refine those tests to include
more sophisticated measures of correctness. We would be
building a set of unit tests that can be run regularly, much
in the same way as regression testing [2], except rather than
just using some criteria to ensure behaviour does not change,
we would assess whether those criteria should be improved.



Assertions are a convenient way to check the behaviour of
software at various points in its execution. Although some
group members have started to use assertions with auto-
mated test frameworks, the majority use ‘if’ statements to
check for errors, then output a warning to the screen. The
problem with this approach is that the error messages can
be missed amongst the other text produced. To combat
this problem, researchers manually introduce the ‘if’ state-
ments during development to check whether particular parts
of the code are working correctly, but then remove them once
testing is complete. Such checks are helpful, but they are
difficult to automate and information is lost when they are
removed. It would be better to integrate the assertions into
unit tests, so we can have a record of the errors that occurred
and the tests that found them. Not only will this help us
to find faults more quickly in the future, but it serves as a
starting point for the iterative refinement of our tests.

An issue arises over knowing whether we have tested the
software sufficiently. Structural coverage metrics [2] assess
the quality and robustness of unit tests to potential sources
of failure. However, considering very few people have writ-
ten automated tests, it is not surprising they are yet to use
coverage metrics. One respondent did not think coverage
metrics are useful, because even if all the code is covered,
the tests might still be useless. Although it is true coverage
is only useful if there is a suitable oracle for each test, metrics
are a practical way to encourage developers to write more
effective tests. Beyond simple control coverage, we might
consider more sophisticated metrics, such as data flow or
mutation analysis [2]. It may also be possible to devise new
metrics for scientific research, that consider how thoroughly
we have tested our answers to the research questions.

3.3 Avoiding the perils of legacy code
The Epidemiology and Modelling group has had problems
with legacy code. When researchers leave the group, the
people taking over their work describe the code as being
difficult to understand because it contains arbitrary con-
stants and the purpose of each function/variable is not al-
ways clear. It can take a long time to reproduce the results
of the previous research before even starting to extend its
work. Researchers should be encouraged to improve the clar-
ity of their code as it benefits other people in the group and
makes it possible for their software to be reused.

It can also be difficult to be confident that software which
contains legacy code is correct. Even if advanced testing
techniques are used to identify errors in the output, this does
not mean the developer will be able to identify the faults
correctly. If legacy code is being used the developer does not
understand, there is a danger he or she will respond to errors
and failing test cases by fixing the symptom of the problem
rather than the cause. It is important the programming
code is clear and easy to read, as this makes it more likely
for mistakes to be spotted and corrected appropriately.

One characteristic of programming code that has a signifi-
cant impact on its clarity is the way in which it is divided
into modules. Group members typically start writing code
as a single large module, then extract sections of it into
functions if it represents a clear independent feature, or is
used repeatedly by the program. There is a danger this

produces some large complex modules. Practitioners rec-
ommend modules should be small and should only do one
thing [9]. This simplicity at the module level makes it easy
to see what the code is doing. However, it does require plan-
ning. One group member used to develop code into packages
for R, so it can be easily reused, but no longer does this as he
finds it takes too long. Similarly, some researchers admitted
using copy and paste for reasons of speed. We need to find
a trade-off between actions that take less time in the short
term, but may cause longer term problems in maintenance.

On the whole, there is no consistent naming system within
the group. Researchers use a combination of CamelCase
and underscores, sometimes within the same program. It
surprised me to find that a couple of researchers were using
a form of Hungarian notation, as most people consider this
to be old-fashioned and unhelpful [9]. Yet, the particular
naming system being used is probably not as important as
the names themselves being meaningful. Many of the re-
searchers interviewed said that they try to use meaningful
names, but few were able to give a clear description of what
it means for a name to be meaningful. Two key points are
that names should be intention revealing (it should be im-
mediately clear why the variable exists, what it does and
how it is used) and avoid disinformation (taking care with
entrenched meanings and making sure the names are not too
similar to tell apart) [9]. It should not be necessary to use
a comment to reveal the purpose of a variable or module.

Comments should be used to explain implementation deci-
sions and to inform the reader of concepts underlying the
code [9]. The group members who were interviewed had a
clear understanding of what comments should and should
not be used for. One researcher uses comments to specify
the equation or model and other researchers use comments
to indicate the existence of edge cases. Group members said
they try not to make comments too lengthy or confusing and
avoid including redundant information that is already clear
from the code. However, when we examined the group’s ver-
sion control repository, we found that researchers do not al-
ways follow their own guidelines. Large sections of the code
remained uncommented and comments were often used to
disable old code rather than to provide useful information.

The survey results suggest members of the group know how
to write code that is clear and easy to read. However, in
practice they find this takes too much time. In research envi-
ronments, there is often pressure to spend more time writing
publications than developing software. As long as the code
performs the necessary research task, it is often considered
good enough. How then can we encourage researchers to
write code that is usable by other people? Recommended
techniques include code reviews and pair programming [9].
It can also be helpful to make the code open source. Yet
people are reluctant to take time out of their research to en-
gage in these activities, it may seem daunting for others to
scrutinise their code and they may be worried about owner-
ship. Perhaps the most effective strategy is to focus on the
benefits for using their own code again. Copying and past-
ing large sections of code is error prone and further changes
are not propagated across the various copies. By contrast,
suitable modularisation, commenting and naming systems
help improve research productivity with regards to reuse.



4. THREATS TO VALIDITY
The study presented in this paper was conducted with a
small number of participants (12 members of the Epidemiol-
ogy and Modelling group). More could be learnt by involving
participants from groups in other research areas. The survey
contained a limited number of questions, but the responses
were followed up by interviews. A longer term study could
be used to investigate changes in testing practices over time.

5. CONCLUSIONS
Scientific software is difficult to test because it is not always
clear what the correct outputs should be. There are also
challenges from big data, stochastic processes and mathe-
matical assumptions. Yet it is important the results are cor-
rect, as they are used to inform government policy. Group
members are not trained in software engineering techniques
and they tend not to test programs methodically. Instead,
they determine whether or not their code is working by look-
ing at the output and checking it matches what they expect.

However, we have also found group members use intuition to
discover techniques similar to those in software engineering.
For example, to address the oracle problem, group members
have sought various forms of partial and pseudo oracle. They
also use metamorphic relations to describe how the output is
expected to change when the input is adjusted. We believe
software testing can be taught more effectively if we start
with the techniques scientists are already using.

A key part of this training is to help researchers transform
intuitive tests into systematic tests that can be applied auto-
matically. Yet, since perceptions of correctness change over
time, we need an iterative way to improve the tests. Another
barrier is that people are under pressure to produce results
quickly and they fear this may take too much time. We think
this can be addressed by explaining the techniques in terms
of reusability. If the software is well tested and divided into
appropriate modules, it is much easier for the researcher or
other people to save time by using their code again.

6. FURTHER WORK
The results of our survey suggest further training in software
engineering techniques might be helpful. In many cases, the
group members have not heard of techniques for ensuring
their software is correct. Introducing them to these tech-
niques might encourage more systematic testing. We will
devise experiments to determine when each technique would
be useful. Where no appropriate technique exists, we will
create new techniques to handle specific challenges (big data,
stochastic processes and mathematical assumptions etc.).

Since scientific software recreates events that happen in the
real world, we can use techniques, such as lab and field ex-
periments, not available to most software engineers. In par-
ticular we will investigate how to use them in parallel with
the software development, so as to iteratively improve the
tests. We will also evaluate coverage metrics and devise new
metrics at the level of the experiments and hypotheses. Fi-
nally, we will extend our experiments and repeat this survey
with other research groups within to see if the same trends
hold, or if there are differences between fields.
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