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Abstract 15 

The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes. 16 
In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess 17 
effluents that are entering the aquatic environment. Here we describe a metagenomic 18 
assessment for two types of effluent entering a river catchment. We investigated the diversity 19 
and abundance of resistance genes, mobile genetic elements and pathogenic bacteria. Findings 20 
were normalised to a background sample of river source water. Our results show that effluent 21 
contributed an array of genes to the river catchment, the most abundant being tetracycline 22 
resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 23 
from wastewater treatment plant effluents. In nine separate samples taken across three years 24 
we found 53 different genes conferring resistance to 7 classes of antimicrobial. Compared to 25 
the background sample taken up river from effluent entry, the average abundance of genes 26 
was three times greater in the farm effluent and two times greater in the wastewater treatment 27 
plant effluent. We conclude that effluents disperse antimicrobial resistance genes, mobile 28 
genetic elements and pathogenic bacteria within a river catchment, thereby contributing to 29 
environmental reservoirs of antimicrobial resistance genes. 30 
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Introduction 34 

Antimicrobial resistance remains a significant and growing concern for both human and 35 
veterinary clinical practice (Levy and Marshall 2004, Davies and Davies 2010), with 36 
infections that were once readily treated now being resilient to antimicrobial therapy (WHO 37 
2012). The use of antimicrobial compounds exerts selection pressures on bacteria, leading to 38 
the fixation of gene mutations, selection of resistant precursors and the up-regulation and 39 
lateral transfer of antimicrobial resistance genes (ARGs) within prokaryotic communities 40 
(Gillings 2013). The maintenance and transfer of ARGs is responsible in part for the rising 41 
threat of antimicrobial resistance (Laxminarayan et al. 2013). 42 
The collective pool of ARGs in a given environment is termed the resistome (D'Costa et al. 43 
2006, Wright 2007). Although a proportion of these ARGs are genes that have evolved to 44 
utilise antimicrobial compounds for functions other than defence, such as signalling 45 
molecules or constituents of metabolic pathways (Linares et al. 2006, Dantas et al. 2008), the 46 
resistome may also serve as a reservoir for ARGs that can be transferred to clinically 47 
significant pathogens (Forsberg et al. 2012, Wellington et al. 2013). Indeed, ARGs are 48 
commonly associated with Mobile Genetic Elements (MGEs) that facilitate the transfer of 49 
ARGs between bacteria and enable their entry into the accessory genome of pathogenic 50 
bacteria (William et al. 2013). 51 
There is growing evidence showing that aquatic environments harbour ARGs, MGEs and 52 
pathogenic bacteria (Chen et al. 2013, Lu et al. 2015, Devarajan et al. 2015). It is also likely 53 
that these environments may host many uncharacterised and novel ARGs that may be selected 54 
for under sufficient selection pressures (Bengtsson-Palme et al. 2014). Effluents that feed into 55 
the aquatic environment have also been shown to contain ARGs, such as the effluents of 56 
urban residential areas and hospitals (Li et al. 2015), as well as other wastewater and faecal 57 
sources (Li et al. 2012, Pruden et al. 2006, Zhang et al. 2009) but the abundance and diversity 58 
of these genes relative to background samples needs to be clarified. It is therefore crucial to 59 
establish whether effluents entering the aquatic environment are carrying ARGs, along with 60 
MGEs and pathogenic bacteria, thus contributing to the reservoirs of resistance genes that 61 
may be utilised by pathogenic bacteria and subsequently re-enter human and animal 62 
populations (Berendonk et al. 2015). 63 
Previous studies into the presence of ARGs within the aquatic environment have utilised 64 
techniques such as bacterial culture and polymerase chain reaction (Lu et al. 2015, Tao et al. 65 
2010, Zhang and Zhang 2011). These techniques offer the ability to detect phenotypic 66 
resistance (culture), or a panel of ARGs, but they are limited by culturing bias or inadequate 67 
detection panels. Next generation sequencing techniques, such as metagenomics, offer the 68 
ability to circumvent these limitations and identify all known ARGs within a sample (if 69 
suitable reference sequences are available), providing a new approach for the environmental 70 
monitoring of antibiotic resistance (Port et al. 2014). 71 
In this study we have identified two distinct effluents that enter a single river catchment. Both 72 
effluents originate from faecal sources and were sampled several times, immediately prior to 73 
them entering the environment. Using a comparative metagenomic approach, we describe the 74 
ARG content of these effluents, characterise the MGEs and pathogenic bacteria present, and 75 
relate the abundance of these features to a background sample of the river source water, taken 76 
from upstream of the effluent entry points. 77 

Methods 78 
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Sample collection and DNA sequencing 79 

Water samples were collected from three sources within the River Cam Catchment, 80 
Cambridge, UK. A pilot collection was made on 21

st
 June 2012 (Rowe et al. 2015). Further 81 

collections were made on the 2
nd

 May 2013 and 4
th

 August 2014. The effluent of the 82 
municipal wastewater treatment plant (WWTP) (latitude: 52.234469, longitude: 0.154614) 83 
was collected annually from the treated effluent discharge pipe that enters the River Cam. The 84 
effluent of the University of Cambridge dairy farm (latitude: 52.22259, longitude: 0.02603) 85 
was collected annually prior to it being applied to the surrounding fields as fertiliser, where it 86 
subsequently enters drainage ditches that drain into the River Cam. The river source water of 87 
the River Cam was collected at Ashwell Spring (latitude: 52.0421, longitude: 0.1497) once on 88 
the 4

th
 August 2014. Samples were collected in 10L sterile polypropylene containers, 89 

transported at 4°C to the laboratory and processed within 2 hours.  90 

Sample filtration, metagenomic DNA extraction and sequencing 91 

Similarly as in Dancer et al. (Dancer et al. 2014), samples were filtered under pressure at 92 
approximately 2 bar using a pressure vessel system (10 L SM 1753, Sartorius). Samples were 93 
first pre-filtered through 3.0 µm membranes (Millipore) at 2 Bar to remove eukaryotic cells 94 
and debris. The filtrate was subsequently filtered through 0.22 µm membranes (Millipore) to 95 
capture the prokaryotic cells, metagenomic DNA was then extracted by washing and 96 
vortexing the membranes in phosphate buffered saline with Tween20 (2%) before enzymatic 97 
lysis (Meta-G-Nome DNA isolation kit; Epicentre). Assessment of DNA quality and 98 
concentration was made by TBE agarose (2%) gel electrophoresis and spectrophotometry 99 
(Nanodrop ND-1000; ThermoScientific). For each sample, 2 µg of DNA was used to generate 100 
Illumina paired-end libraries that were sequenced using an Illumina HiSeq2500. A full 101 
description of the metagenomic samples used in this study is available in the supplemental 102 
material (Table S1.) 103 

Bioinformatic analyses 104 

Identification of ARGs 105 
ARGs were identified using the Search Engine for Antimicrobial Resistance (SEAR) (Rowe 106 
et al. 2015). In brief, the pipeline quality checks and filters metagenomic reads, clusters the 107 
filtered reads to the ARG-annot (Gupta et al. 2014) database of horizontally acquired ARGs 108 
and uses the resulting clusters to map the reads and generate a consensus sequence for each 109 
ARG in the query metagenome. Consensus sequences are then aligned to online databases 110 
(NCBI genbank, RAC, ARDB), annotated and given an abundance value based on the Reads 111 
Per Kilobase per Million (RPKM) value from the read-mapping stage. A full description of 112 
SEAR is available in supplemental methods. 113 

Identification of mobile genetic elements 114 
MGEs were identified by mapping metagenomic reads to a custom MGE database using 115 
BWA-mem (default options) (Li and Durbin 2009). The MGE database was built from the 116 
NCBI Refseq plasmid genomes dataset, combined with the representative sequences 117 
generated from clustering the Integrall dataset (Moura et al. 2009) at 97% identity using 118 
USEARCH (Edgar 2010). MGE mapping results with less than 90% coverage of the 119 
reference sequence were discarded from the analysis. Successfully mapped sequences where 120 
then binned into class I and class II integrons, transposons and mobilisable plasmids. 121 
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Abundance analysis 122 
The ARG and MGE abundance data was normalised to the number of 16S rRNA sequences 123 
as in Bengtsson-Palme et al. (Bengtsson-Palme et al. 2014). In brief, bacterial 16S rRNA 124 
sequences were extracted from each metagenome using Metaxa 2.0 (Bengtsson-Palme et al. 125 
2015) using default settings and then grafted to sequences from the SILVA RNA database 126 
using Megraft (Bengtsson et al. 2012) and subsequently clustered using USEARCH (Edgar 127 
2010). ARG abundance values were normalised to 16S sequences by dividing the number of 128 
extracted 16S sequences by the length of the 16S gene (Bengtsson-Palme et al. 2014). 129 

Taxonomic profiling and pathogen detection 130 
Taxonomic profiling of metagenomes was carried out by mapping sequencing reads to clade-131 
specific marker genes using the Metaphlan package (Segata et al. 2012) (default parameters). 132 
Metaphlan output was then cross-referenced to the PATRIC database of pathogenic bacteria 133 
(Gillespie et al. 2011) to annotate potential human-specific bacterial pathogens. Biomarker 134 
discovery and identification of differentially abundant features between metagenomes from 135 
2012, 2013 and 2014 was performed using LEfSe (Segata et al. 2011). Taxonomic profiling 136 
and pathogen data was then combined and presented using the Graphlan package (Segata 137 
2014). 138 

Results 139 

Metagenome analysis 140 

We generated 29.52 Giga base-pairs of data across all samples, with the number of reads 141 
produced from the total farm effluent samples being approximately double that produced from 142 
the total WWTP effluent samples (Table 1). 143 

Table 1. Summary of the metagenomes generated in the present study. 144 

Sample Read pairs Gbp Total ARG reads % ARGs % 16S 

Farm effluent 2012 44337147 4.4337 7715 0.0087 0.1199 

Farm effluent 2013 33060321 3.3060 2317 0.0035 0.0396 

Farm effluent 2014 92074704 9.2075 13094 0.0071 0.0775 

WWTP effluent 2012 28696239 2.8696 4205 0.0073 0.1086 

WWTP effluent 2013 32980301 3.2980 250 0.0004 0.0366 

WWTP effluent 2014 36636758 3.6637 3767 0.0051 0.0862 

River source water 2014 27399641 2.7400 181 0.0003 0.0201 

Identification of antimicrobial resistance genes 145 

In the effluent from the dairy farm we found an average of 7709 reads (0.007%) matching 146 
ARGs across the three samples. We found an average of 2740 reads (0.004%) matching 147 
ARGs across the three WWTP effluent samples. Only 181 reads (0.0003%) were found to 148 
match ARGs from the river source water. A significant diversity of ARGs was observed 149 
across the samples, with 53 different ARGs found in total, conferring resistance to seven 150 
antimicrobial classes (Figure 1, Table S2). There were 18 ARGs common between the farm 151 
and the WWTP effluent samples. The river source water contained the lowest diversity of 152 
ARGs (five ARGs, conferring resistance to two antimicrobial classes). When normalised to 153 
the number of 16S sequences in each sample, the most abundant ARG across all the samples 154 
was found to be sul2 (sulfonamide resistance) in the WWTP effluent 2014 (0.097 copies per 155 
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16S sequence) and the least abundant ARG was catB4 (phenicol resistance), found in the farm 156 
effluent 2014 (0.0001 copies per 16S sequence). When looking at the effluents individually, 157 
tetracycline resistance genes tetC (farm effluent 2012) and tetW (farm effluent 2013 and 158 
2014) were the most abundant genes within the farm effluent samples. In comparison, the 159 
aminoglycoside resistance genes strA/strB (WWTP effluent 2012) and the sulfonamide 160 
resistance genes sul1/sul2 (WWTP effluent 2013 and 2014) were the most abundant ARGs 161 
within the WWTP effluent samples. On average, the abundance of ARGs in the farm effluents 162 
was three times that of the river source water. Similarly, the average abundance of ARGs in 163 
the WWTP effluents was double that found in the river source water. In terms of the diversity 164 
of ARGs relative to the river source water, the farm effluent had an average of five different 165 
ARGs for each ARG found in the river source water, whereas the WWTP effluent had 166 
different 2 ARGs for each ARG present in the source water. 167 
When comparing samples across the three years that the samples were taken, the abundance 168 
of ARGs was found to decrease year on year in the WWTP effluent for all but sulfonamide 169 
resistance genes, which were found to increase over time (11% average change in abundance 170 
of sulfonamide resistance genes over three years). The largest change over time for the farm 171 
effluent was the 10% increase in the abundance of aminoglycoside resistance genes observed 172 
between 2012-2013. 173 

Figure 1. Abundance of ARGs found in each effluent sample, binned by antimicrobial 174 
class. 175 
Abundance of antimicrobial resistance genes is normalised to the number of 16S sequences 176 
per sample. The MLS class of antimicrobial represents marcolides, lincosamides and 177 
streptogramins. 178 

Identification of mobile genetic elements 179 

In conjunction with determining the abundance and diversity of ARGs, the effluents were also 180 
interrogated for MGEs (Figure 2, Table S3).  No MGEs were found to be present in the river 181 
source water. Mobilisable plasmids were the most abundant class of MGE found out of the 182 
combined metagenomic datasets, although no mobilisable plasmids were identified in the 183 
WWTP effluent 2012 or farm effluent 2014 samples. Class I and class II integrons, as well as 184 
transposon sequences, were found in all effluent samples. Class I integrons were more 185 
abundant in the collective farm effluent samples, compared to class II integrons that were 186 
more abundant in the collective WWTP effluent samples. 187 

Figure 2. Abundance of MGEs found in each effluent sample, binned by MGE type. 188 
Plasmids were binned as mobilisation plasmids if they contained conjugation genes (tra, mob 189 
etc.) and integrons were binned as class I or II depending on the Integrall annotation. 190 
Relative abundance of MGEs is normalised to the number of 16S sequences per sample. 191 

Taxonomic profiling and pathogen detection 192 

Finally, the effluent metagenomes were subjected to taxonomic profiling. At genus level, the 193 
most abundant prokaryotes in the farm samples were Pseudomonas  (farm effluent 2012) and 194 
Butyrivibrio (farm effluent 2013 and 2014). The most abundant prokaryotes at genus level in 195 
the WWTP samples were Acinetobacter (WWTP effluent 2012), Thiomonas (WWTP effluent 196 
2013) and Proteus (WWTP effluent 2014). For the river source water, the most abundant 197 
prokaryotic genus was Sphingobium. After cross-referencing the identified species level, 198 
clade-specific marker genes for all the metagenomes to the PATRIC pathogen database, a 199 
total of 35 species of potential bacterial pathogens were identified (Figure 3, Table S4). The 200 
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most commonly identified species were Escherichia coli, Arcobacter butzleri, Eubacterium 201 
rectale, Ruminococcus bromii and Salmonella enterica. The WWTP effluent 2014 contained 202 
the greatest diversity of potential bacterial pathogens, whereas the river source water and the 203 
WWTP effluent 2012 were found to contain the lowest diversity. 204 

Figure 3. Metagenomic phylogenetic analysis and annotation of potential bacterial 205 
pathogens. 206 
The phylogenetic tree was built using Graphlan from the merged Metaphlan and LEfSe output 207 
for the effluent metagenomes. The PATRIC pathogens are highlighted as red stars and the 208 
external rings denote species prevalence in each metagenome. 209 

Discussion 210 

Through the use of a comparative metagenomic approach, we have shown that two types of 211 
effluent entering a shared river catchment contain ARGs and MGEs at higher average 212 
abundances than in a background sample of the river source water. This would suggest that 213 
effluents such as these are likely to serve as sources of ARGs and thus contribute to the 214 
environmental resistome of river catchments and other aquatic environments. It may be 215 
appropriate to routinely monitor such effluents as sources of ARGs, particularly when 216 
considering the current view of ARGs as environmental contaminants (Pruden et al. 2006) 217 
and the call for an environmental framework to tackle antimicrobial resistance (Berendonk et 218 
al. 2015). 219 
One such reason for the high abundance of ARGs in effluents may be the presence of 220 
antimicrobial compounds that could consequently provide a selective pressure for the 221 
maintenance of ARGs. There have been several studies that document the presence of 222 
antimicrobial compounds, from both human and veterinary medicine, in the environment 223 
(Kemper 2008, Hu et al. 2010). Although these compounds are often present at relatively low 224 
concentrations, some studies have shown therapeutic concentrations of antimicrobials being 225 
discharged into the environment, such as the effluent from Indian drug manufacturers 226 
containing therapeutic concentrations of antimicrobial compounds (Larsson et al. 2007). 227 
Subsequent studies by Larsson et al. found a high abundance of ARGs downstream of the 228 
effluent discharge point relative to upstream of the manufacturers and when compared to a 229 
Swedish WWTP (Kristiansson et al. 2011). While the environmental release of antimicrobial 230 
compounds at therapeutic concentrations is largely prevented in the UK, Europe and US 231 
through proper wastewater management and controls, clinically important antimicrobials can 232 
be found in the environment at sub-inhibitory concentrations and it is possible that these very 233 
low antimicrobial concentrations could be enriching for resistant bacteria and promote 234 
increased persistence of ARGs (Gullberg et al. 2011). Thus, it may be pertinent to couple 235 
future environmental ARG monitoring studies and risk assessments with information on 236 
antimicrobial usage and the antimicrobial concentrations in the effluents being investigated. 237 
Interestingly, the average abundance of ARGs was found to be greater in the farm effluents 238 
than in the WWTP effluents (Figure 1). Although these two effluents are from differently 239 
treated faecal sources, one being a treated effluent (sedimentation treatment) from a municipal 240 
WWTP (i.e. predominantly human faecal source) and the other being an untreated effluent 241 
from a farm (predominantly bovine faecal source), this finding does offer some insight into 242 
the debate surrounding the relative impact of human and animal contributions to the 243 
development of antimicrobial resistance (Phillips et al. 2004, Mather et al. 2013). The fact 244 
that WWTP effluent had undergone a form of water treatment prior to being released into the 245 
river catchment, whereas the farm effluent did not, may suggest that some form of water 246 
treatment could reduce the abundance or diversity of ARGs. A comparison of WWTP crude 247 
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influent to the effluent could elaborate on the effectiveness of sedimentation treatment on the 248 
abundance of ARGs. Studies have shown that wastewater treatment processes do not 249 
completely remove ARGs (Wang et al. 2015) and that some WWTP processing can result in 250 
an increase in the proportion of antimicrobial resistant bacteria in WWTP effluents (Harris et 251 
al. 2012). Considering that effluents may also disseminate antimicrobial compounds, it raises 252 
the question as to whether the combination of ARGs and antimicrobial compounds within 253 
effluents is resulting in the expression of ARGs and the occurrence of phenotypic 254 
antimicrobial resistance. This should be addressed in future studies that aim to assess the risk 255 
of ARGs entering the environment. 256 
In terms of the mobility of genes within the effluents, an array of mobilisable plasmids, 257 
integrons and transposons were present in the metagenomes (Figure 2) and many of the ARGs 258 
identified aligned to the Repository of Antibiotic resistance Cassettes (RAC) (Tsafnat et al. 259 
2011). This raises the possibility that the ARGs within the effluents could be readily 260 
mobilised into other bacteria, including both directly into pathogens also discharged into the 261 
environment and environmental bacteria. These environmental bacteria in turn could pose a 262 
risk as potential bacterial intermediaries, harbouring these ARGs in the environment prior to 263 
transferring them into other pathogens.  264 
Based on the observations in this study, it is recommended that future Risk Assessments 265 
should incorporate direct MGE and pathogen detection with metagenomic assessments of 266 
effluents entering river catchments, especially considering the absence of MGEs and the 267 
lower diversity of pathogens found in the river source water. This study also showed that a 268 
large amount of variation can occur between samples from the same sampling site, possibly as 269 
a result of seasonal variation or other environmental factor related to sample collection. It 270 
would be benifical to future environmental risk assessments if the impact of seasonal 271 
variation on ARG abundance could be determined. 272 
We did however find five resistance genes in the river source water conferring resistance to 273 
two classes of antimicrobials. When normalised to 16S sequences the river source water was 274 
found to be accountable for the most abundant phenicol resistance gene and the third most 275 
abundant aminoglycoside resistance genes out of all the metagenome libraries examined. 276 
However, when using the raw SEAR abundance metric, that does not include normalisation to 277 
the 16S sequences within the sample, the relative abundance of ARGs from the river source 278 
water are reduced relative to the other effluent samples. This raises the question as to whether 279 
16S normalisation is the most appropriate approach to metagenomic abundance estimates as 280 
factors such as variation in 16S copy number can skew the data generated as well as 281 
interpretation (Case et al. 2007). An alternative could be to use the RPKM value generated as 282 
part of the SEAR analysis and featured in table S2. 283 
The metagenomic approach used was relatively less sensitive than more direct-targeted 284 
measures of known ARG abundance (e.g. qPCR-based detections (LaPara et al. 2011)). The 285 
lack of sample replication at each time point also made comparisons between effluents less 286 
certain. However the approach had the advantages that it was relatively unbiased and semi-287 
quantitative, giving a good estimation of relative key ARG and MGE abundance and diversity 288 
across bacterial populations. It was also potentially able to detect novel ARGs that would 289 
otherwise not be found using these more targeted approaches.  290 

Conclusion 291 

We have presented a detailed metagenomic analysis of effluents entering a river catchment. 292 
Effluents were found to contain an array of ARGs, MGEs and pathogenic bacteria that, when 293 
compared to a background sample of the river source water, were found to be more diverse 294 
and abundant than in the river source water. This study has shown that the discharge of 295 
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effluents into river catchments contributes to the dissemination of ARGs, MGEs and 296 
pathogenic bacteria, and may play an important role in the propagation of environmental 297 
reservoirs of ARGs. 298 
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