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Summary 

Recently, the steady-state process of convective assembly has emerged as a viable 

production route for colloidal monolayers.  The present study models the regions of 

particle assembly:  Region I comprises convective concentration of a particle suspension 

in a liquid below a meniscus, Region II comprises permeation of fluid through the dense 

particle monolayer, and Region III comprises capillary densification.  For each region, 

the dominant physics and non-dimensional groups are identified and quantitative models 

are derived to describe the evolution of microstructure in terms of the main process 

parameters.  The concentration profile within the assembly zone of Region I is predicted, 

including the role of a concentration-dependent diffusion constant and the shape of the 

meniscus.  The fluid flow through the assembled monolayer is treated in Region II, along 

with a stability calculation to reveal that isolated particle clusters do not survive on top of 

the monolayer.  The physics of capillary crystallization is addressed in Region III, with 

an emphasis on the density of cracks that emerge.  The Peclet number and Capillary 

number both play important roles but in different regions of the assembly process.  
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1.  Introduction 

Convective assembly is an emerging self-assembly technique for thin particle layers of 

dense packing and controlled crystallinity from a dilute dispersion, see Fig. 1.  We 

consider here the steady-state deposition of a single layer on a moving substrate, with 

particle assembly driven by convection, capillarity, and by evaporation of the liquid.  The 

process relies upon a stable colloidal dispersion.  A colloid is a dispersion of small 

particles in a liquid, with the particles small enough to be subjected to Brownian motion1.  

For example, polymer particles (such as PS or PMMA) can exist as a stable suspension in 

water when stabilized by a surface charge.   

 

The technique of convective assembly can be used to coat macroscopic areas with dense, 

homogeneous particle layers without the need for vacuum equipment or elevated 

temperatures.  Applications include thin decorative layers of pigment particles, anti-

reflective layers of refractive particles on transparent substrates, and diffusion barriers 

composed of non-permeable platelets.  Under appropriate processing conditions, the 

coating has a crystalline structure making it suitable for use as an optical grating2,3.  A 

wide range of particle size can be assembled, ranging from a few nanometers for proteins 

to the micron scale for polymer lattices4. 

 

Convective assembly requires the establishment of a stable liquid meniscus to guide the 

flow of the suspension onto a substrate.  Existing wet coating equipment can be adopted 

for this task.  Industrial slot-die coaters, doctor blades, dip coaters and similar machinery 

are available for substrate widths of several meters, for liquid film thicknesses down to 

the micron range and for a wide range of substrate velocities up to meters per second5.  

The main objectives of the present study are to (i) develop the underlying theoretical 

basis for the convective assembly technique, (ii) give a unified treatment of all stages of 

deposition, and (iii) predict the required process parameters that yield high-quality 

particle coatings.  The main contribution is to identify the essential physics dominating 

each stage of steady-state convective assembly by evaluating the magnitude of non-

dimensional groups that combine the relevant physical variables.  Models are formulated 

and predictions are made on the basis of the dominant physics. 
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1.1  Previous work  

Drying regimes maps have been constructed for particulate coatings, see for example, 

Cardinal et al6.  They solve a convection-diffusion equation for the transient problem of a 

drying film in one dimension and explore the significance of gravity by introducing a 

sedimentation term.  Two non-dimensional groups control the distribution of particles 

within the film: a Peclet number Pe and a sedimentation number NG.  The particles are 

driven upwards to the free surface by solvent evaporation provided Pe >>1 and NG <<1.  

Sedimentation drives the particles downwards when Pe >>1 and NG >>1.  Diffusion 

maintains a uniform concentration of particles for Pe <<1 regardless of the magnitude of 

NG. 

 

The assembly mechanisms analysed below assume that the assembly process is in steady-

state.  This is in contrast to the transient processes of sedimentation6, filtration7-9 and spin 

coating10,11.  We limit the remainder of our review of the literature to steady-state particle 

assembly processes for which surface tension dictates the geometry of flow and for which 

gravity plays a negligible role.   

 

Many of the underlying principles of colloidal assembly are summarized in the seminal 

monograph of Russel et al1.  Based on an earlier study by Batchelor12, they emphasise the 

role of colloidal interactions in the diffusion of particles and provide a generalized 

Stokes-Einstein diffusion equation (page 430, equation 13.1.2) for a non-dilute 

suspension.  The model presented herein builds upon this treatment.  Russel and Routh 

have, in a long and fruitful collaboration and separately, analyzed many aspects of layer 

formation from colloidal dispersions involving diffusion, convection and sedimentation.  

For example, they have considered the evolution of particle distribution during solvent 

evaporation from films using a diffusion-convection equation13.  Russel, Routh and co-

workers have not analysed the present problem of convective assembly in steady-state.  

 

Brewer et al14 have generated regime maps for convective assembly in steady state by a 

detailed experimental study.  They varied the solid concentration and the substrate 

velocity over a wide range and observed a set of morphologies in the as-deposited state.  

For example, they found that a continuous monolayer gave way to an incomplete 

monolayer when the forced convection of a drying gas (nitrogen) was switched off or the 

solids contribution was reduced.  The present study is complementary to their approach:  
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whilst Brewer and co-workers revealed the regimes of dominance experimentally in 

terms of a capillary number and initial particle concentration we shall analyse in some 

depth the process of monolayer deposition. 

 

Our strategy is to construct an overall model for convective assembly based upon a 

sequence of 3 regions as shown in Fig. 1: (I) convective accumulation of particles 

submerged in a liquid, (II) permeation of fluid through the dense particle layer, and (III) 

capillary densification.  Previous studies on convective assembly have not broken the 

process into discrete regions, each with their own distinctive set of physical phenomena.  

For example, Dimitrov and Nagayama15 developed an expression for the growth velocity 

of the layer based on a continuity statement.  Norris et al.16 considered the fluid 

mechanics of the assembly step, particle-by-particle, and emphasized the crystallinity of 

the deposited layer.  Nagayama17 addressed particle assembly by a combination of 

convection and capillarity but neglected the role of diffusion.  In contrast, an effective-

medium approach is adopted in the present study, with due attention paid to diffusion and 

non-dilute particle interactions.  

 

2.  Overview of the 3 Regions of Flow 

We identify 3 main regions of flow, I to III as sketched in Fig. 1, consistent with the 

observations of Born et al18.  Region I involves convective accumulation of particles, 

Region II is dominated by the permeation of fluid through the dense layer, and capillary 

densification occurs in the final Region III.  In addition, a pre-cursor region 0 of 

convective assembly exists between the doctor blade and substrate, and comprises a 

suspension of uniform height hin . Each Region is analysed in terms of a limited set of 

dimensionless groups, and these are used to identify the operating window of convective 

assembly.  We begin by listing representative values of the main physical parameters that 

characterize the problem. 

 

2.1  Typical Process Parameters  

Colloidal convective assembly can occur over a range of process parameters.  However, 

for illustration, it is instructive to give a typical set of parameters, similar to those in Born 

et al18.  A colloidal suspension of spherical particles, of volume fraction φin ≈ 10
−3  and 

diameter d≈ 0.5 µm, is supplied from an upstream reservoir of height hin ≈  1 mm, 
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supported by a moving substrate, see Fig. 1.  The density, viscosity and surface tension of 

the dilute suspension are close to those of water, ρ ≈  1000 kg m-3, η ≈  10-3 Pa s and γ ≈  

0.1 N m-1, respectively.  The diffusion constant D for the particles in the liquid is 

described in the dilute limit by the Stokes-Einstein relation 
  
D = kT / 3πηd( ) ≈  8.6 x 10-13 

m2 s-1 where k=1.38 x 10-23 J K-1  is Boltzmann’s constant and T is absolute temperature, 

see for example Batchelor19.   

 

In Region I, the colloidal particles are transported within a converging meniscus by 

combined convection and diffusion.  The height 
 
h x( )  of the meniscus reduces from hin  

to 
   
h ℓ I( ) ≈ d  over its length   ℓ I ≈  1 mm.  The meniscus ends with vanishing contact 

angle and sits on top of a fully wetted monolayer of particles.  

 

At the end of Region I, the particle concentration attains a value φd  (on the order of 

dense packing), and the particle velocity equals that of the substrate, vsub ≈  1 µm s-1.  

The liquid permeates the dense particle layer in the ensuing Region II.  Continuity 

dictates that the velocity of the liquid is significantly greater than vsub .  Evaporation of 

the liquid from the surface of the layer occurs at a rate   !q ≈  40 nm s-1 that depends upon 

the ambient temperature and humidity.  Consequently, the liquid slows down in this so-

called Region II of length   ℓ II ≈  1mm.  At the end of Region II, the liquid level drops 

below the top surface of the particles, and capillary forces then pull the particles together 

and hold them to the substrate.  This Region III of capillary densification is of length 

  ℓ III ≈  10 µm, and drying cracks may develop within it. 

 

2.2  Dimensional Analysis 

It is instructive to re-express the above physical variables in non-dimensional form in 

order to reduce the number of independent parameters, and to identify the dominant 

phenomena.  The list for Region I is as follows (see for example page 371 of Russel et 

al1): 
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(i)  The Reynolds Number of the fluid   Re ≡ ρvsubd /η  gives the ratio of inertial forces on 

the fluid to viscous forces, and is on the order of 10-6.  Hence, inertial effects of the fluid 

(material acceleration and turbulence) can be neglected, and flow is laminar.   

(ii)  The Stokes Number of the particles 
   
St ≡ ρpd / ρℓ( )Re  gives the ratio of inertial 

forces on the particles to viscous forces by the fluid, where 
 
ρp  is the density of particles 

and  ℓ  is a characteristic length such as the length   ℓ I  of Region I.  Typically, the Stokes 

number  St  is on the order of 10-9, implying that the inertia of particles is negligible.  

(iii)  The Peclet Number   Pe = dvsub / D  gives the ratio of convection to diffusive 

transport, and is of order unity, implying that particle transport is by a combination of 

convection and diffusion.   

(iv)  The Froude Number   Fr ≡ vsub / gd  gives the ratio of inertial forces to gravitational 

forces (as described by the acceleration due to gravity, g).  We find that Fr ≈ 10-3 

implying that the flow is stable: hydraulic jumps and shallow water waves are absent. 

(v)  The Sedimentation Number 
  
NG ≡ d2Δρg / µvsub( )   is a function of the density 

difference Δρ  between particles and liquid, and gives the ratio of sedimentation velocity 

to the substrate velocity.  It is of order 10-2, confirming that sedimentation due to gravity 

is negligible. 

(vi)  The Capillary Number   Ca ≡ηvsub / γ  gives the ratio of viscous forces to surface 

tension.  It is of order 10-8, implying that surface tension sets the meniscus shape. 

 

We conclude from the above values of non-dimensional groups that convection and 

diffusion dominate particle transport within the curved meniscus of Region I.  The effects 

of particle sedimentation and inertia are negligible.  This motivates the convection-

diffusion analysis of the following section. 

 

In Region II, the particles are submerged just below the flat meniscus, and the curvature 

of the liquid is negligible.  Since the Capillary Number   Ca ≡ηvsub / γ  has the same small 

value as in Region I, we conclude that the flow of liquid within Region II exerts 

negligible viscous forces on the meniscus so that it remains flat throughout.  
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In contrast, the particles are partially submerged in Region III, and the small value of 

Capillary Number implies that capillary forces drive the densification of particles, with a 

negligible role played by viscosity and diffusion. 

 

3.  Region I:  convective assembly 

A dilute suspension of particles, of diameter d, forms a meniscus of profile 
 
h x( )  above a 

substrate moving at vsub , recall Fig. 1.  The meniscus is of parabolic shape and of length 

  ℓ I  approximately equal to the capillary length  

       κ
−1 = γ / ρg      (3.1) 

see for example section 2.3 of de Gennes et al.20.  Particles assemble into a layer of height 

d by convection, but assembly is impeded by diffusion.  Region I ends where the particles 

have attained the velocity vsub ; in the ensuing Region II the meniscus is of height  h = d  

and the liquid moves at a velocity vl >> vsub .  We shall simplify the analysis within 

Regions I and II by assuming that the velocity of particles and liquid do not vary over the 

height of the layer.  

 

3.1 Continuity 

We now identify a further stage of convection-diffusion to the left of Region I.  This 

region is of uniform thickness between the substrate and the doctor blade, and is termed 

Region 0. At the inlet to Region 0 the liquid suspension has a height hin  and a volume 

fraction of particles φin .  At this location, the particles and liquid share the velocity vin , 

and the particle flux over the height hin  is   Js = φinvinhin .  Similarly, the liquid flux at 

entry to Region 0 is Jl = 1−φin( )vinhin .  Within Regions 0 and I the particles exhibit 

Brownian motion with an ensemble average velocity 
  

vs x( )  due to convection and 

diffusion and the particle flux times the height is given by Js = φ vs h .  Likewise, the 

fluid has an ensemble average velocity 
  

vl x( ) , giving rise to a fluid flux 

  
Jl = 1−φ( ) vl h .  Volume conservation in Regions 0 and I requires 

     
  
Js = φ vs h = φinvinhin      (3.2a) 
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and 

    
  
Jl = 1−φ( ) vl h = 1−φin( )vinhin    (3.2b) 

Addition of these two fluxes gives 

      J = Js + Jl = vavh = vinhin     (3.3) 

where the average velocity of the suspension at any location x is 

    
  
vav = φ vs + 1−φ( ) vl     (3.4) 

 

In Region 0 the film height and average velocity are both uniform.  As flow proceeds in 

the direction of increasing x in Region I, the height of the film thickness h(x) drops while 

the average suspension velocity increases.  The volume fraction φ x( )  of particles rises to 

a value φd  at the end of Region I.  It is convenient to locate the origin of the co-ordinate 

x at the end of Region I, as shown in Fig. 1.   

 

 

3.2 Convection-diffusion model 

The flux of particles   Js  across any representative section of height h(x) is driven in the 

forward x-direction by convection and driven backwards by diffusion down the 

concentration gradient   ∂φ / ∂x  such that 

   
  
Js = φvavh−D ∂φ

∂x
h = φinvinhin      (3.5) 

This can be rearranged to non-dimensional form by making use of (3.3) to read 

   
  

φ
φin

−
1

Pein

D
Din

h
hin

∂ φ / φin( )
∂ x / d( )

=1    (3.6a) 

where the inlet Peclet number  Pein  is defined by  

    
  
Pein =

dvin
Din

       (3.6b) 

At exit from Region I, the particles form a layer of height d and attain the substrate 

velocity   vsub , such that   Js = φdvsubd .  Upon equating this flux to the inlet value (as 

stated on the r.h.s. of (3.5)) we obtain an expression for the Peclet number in terms of 

  vsub  rather than in terms of   vin : 
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Pein =

φdvsubd2

φinhinDin
     (3.7) 

We shall argue below that the exit value φd  at x = 0 is a function of the Peclet number, 

and its value provides the required boundary condition for the solution of the convection-

diffusion equation (3.6). However, the precise relation between φd  and Pe awaits 

experimental determination;  a first attempt at a theoretical model is given in section (3.4) 

below. 

 

3.3  Non-linear convection-diffusion in a curved meniscus at constant diffusivity 

Equation (3.6) allows for the possibility of a shaped profile 
 
h x( )  and a diffusion 

coefficient that depends upon φ .  For the present problem (both at large and at small Ca), 

the meniscus is a circular arc that can be approximated by a quadratic profile of curvature 

κ  and a minimum height  d  such that 

    
  
h = d + 1

2
κ x2        (3.8) 

where    κ = ρg / γ  from (3.1).  An analytical solution exists for the case where D is 

assumed constant throughout Regions 0 and I. 

 

First consider Region 0.  In this case Eq. (3.6) simplifies to 

         φ
φin

−
1
Pein

∂ φ /φin( )
∂ x / d( )

=1     (3.9a) 

The solution to Eq. (3.9a) is 

   φ x( ) = φin + φ0 −φin( )exp
Pein x+ lI( )

d
#

$
%

&

'
(   (3.9b) 

where φ0 = φ −lI( ) , i.e. the value of φ  where the suspension enters Region I.  

Straightforward integration of (3.6) for Region I then gives 

  

φ x( ) = φin + φd −φin( )exp Pein
hin
d

2
κd

$

%
&

'

(
)
1/2

tan−1 κd
2

$

%
&

'

(
)
1/2

x
d

$

%

&
&

'

(

)
)

$

%

&
&

'

(

)
)   (3.10a) 

 

and thus 
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  φ0 = φin + φd −φin( )exp −Pein
hin
d

2
κd
$

%
&

'

(
)
1/2
tan−1 κd

2
$

%
&

'

(
)
1/2 lI

d

$

%
&
&

'

(
)
)

$

%

&
&

'

(

)
)         (3.10b) 

 

For the limiting case of κ  approaching zero Eq. (3.10) reduces to 

    φ x( ) = φin + φd −φin( )exp Pein
hin
d
x
d

#

$
%

&

'
(   (3.11) 

with hin / d  only slightly greater than unity.  We note from (3.11) that the particle volume 

fraction increases from its initial value  φin  to  φd  over a characteristic length 

  
hinPein( )−1 d2 = hinvin( )−1 Dind .  In reality, this underestimates the characteristic length 

due to particle-particle interactions within the concentrated suspension near the exit of 

Region I.  To address this, a full numerical solution is needed. 

 

3.4  Non-linear convection-diffusion in a curved meniscus and variable diffusivity 

The generalized Stokes-Einstein equation for D is of the form 

    
  
D φ( ) = D0K φ( ) d

dφ
φZ φ( )"
#

$
%      (3.12) 

in terms of a compressibility factor  
Z φ( )  and a sedimentation coefficient  

K φ( ) , as 

discussed by Davis and Russel8 and more recently by Routh and Zimmerman13.  Here, we 

follow Russel et al1 and use a hard-sphere simulation such that  

    
  
Z φ( ) = 1.85

φc −φ
      (3.13) 

where  φc  is a limiting packing density such as 0.64 for dense random packing.  Davis 

and Russel8 performed a curve fit to Buscall’s sedimentation data for polystyrene 

particles21 to obtain  

     
  
K φ( ) = 1−φ( )6.55      (3.14) 

The sedimentation coefficient K corrects for the effect of a concentrated solution upon 

Stokes sedimentation.   

 

Recent experiments by Born et al18 indicate that the packing density  φd  at the end of 

Region I depends upon the Peclet number.  An approximate scaling argument can be used 
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to give additional insight.  Consider the forces on a representative particle at the end of 

Region I:  the particle is subjected to thermal agitation and to viscous drag.  Consider first 

thermal agitation, treat the particles as an ideal gas, and assume that they possess an 

average thermal energy kT.  The ‘gas pressure’ p of the particles is of order  

    p ≈
φdkT

d3
       (3.15) 

Second, assume that this pressure counteracts the viscous force/unit area involved in 

particle assembly,  

    p ≈
η vl − vsub( )

d
       (3.16) 

where vl  is the velocity of the liquid passing between the particles, which move at the 

velocity vsub .  Now make use of the Stokes-Einstein equation 
  
D = kT / 3πηd( ) , and 

assume that vl − vsub( )  scales with vsub .  Upon equating (3.15) and (3.16) we obtain 

   φd =
vl − vsub( )ηd2

kT
≈
vsubd
D

= Pe     (3.17) 

Relation (3.17) suggests that particle packing density φd  is linear in the Peclet number 

but the functional dependence awaits experimental validation:  in broad terms, it is 

expected that a large Peclet number leads to denser packing of the assembled particles, 

with relatively little free volume present for random motion of each particle relative to its 

neighbours.  Born et al18 support this by direct observation of particle motion during 

assembly.  They find that φd  increases with an increase in Pe.  Also, Mittal et al22 

observe that needle-like titania particles align in a film at high Peclet numbers, whereas 

the film is isotropic and the particles are randomly arranged when Brownian motion 

dominates at low Peclet numbers.   

 

3.5  Numerical solution of the non-linear convection-diffusion equation 

We proceed to solve (3.6) by making use of (3.12)-(3.14).  Introduce the non-dimensional 

groups    !x ≡ x / d ,   
!φ ≡φ / φin ,    

!h = h / hin  and    
!D ≡ D / Din  to obtain 

    
   
!φ −
!D !h

Pein

∂ !φ
∂ !x

=1     (3.18) 
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The end of Region I is located at    !x = 0 , and the boundary condition there reads 

  
!φ = !φd ≡φd / φin .  Rearrangement of (3.18) leads to  

 
 

!D !φ( )
!φ −1!φ

!φd∫ d !φ = Pein
1
!h !x( )!x

0∫ d !x = !P 1+ 1
2
κ !x 2

&

'
(

)

*
+!x

0∫ d !x    (3.19) 

where    
!P ≡ vinhin / Din = Peinhin / d .   

 

Newton iteration and numerical integration gives 
  
!φ !x( )  for selected values of   !P  and   

!φd .  

Results are shown in Fig. 2 for selected values of  φd , for the choice  φin =  0.001, 

 φc = 0.64 , and  κd =  1.6x10-4.  Provided   !P  exceeds a value of about 0.3, the zone of 

convective assembly is short compared to the capillary length  κ−1  and the curvature of 

the meniscus can be neglected.  The results in Fig. 2 are plotted as solid curves for the 

choice   !P =10, with an additional plot (dotted line) given for   !P =0.1 and  φd = 0.639 ;  

there is only a minor change in response when   !P  is decreased from 10 to 0.1 for this 

choice of  φd .  Results for   !P =0.1 and  φd = 0.6 , 0.4 and 0.2 are omitted as the results 

overlap (to the line width) with those for   !P =10.  It is clear that the characteristic length 

over which 
  
!φ !x( )  increases from the inlet to outlet value increases as   

!φd  approaches   
!φc  

consistent with the feature that  D →∞  as  φd →φc . We note that the inlet condition 

 φ = φin  at the entrance to Region I is not satisfied exactly in the numerical results; this 

feature is also present in the special case given in Eq. (3.10). However, Fig. 2 makes it 

clear that the discrepancy is negligible. 

 

It is instructive to give the asymptotic behaviour for 
  
!φ !x( )  near the end of Region I.  

Assume that  φd  is slightly less than  φc  and rewrite φ  as  

      φ = φc −Δφ      (3.20) 

Then, at x=0, we have   Δφd ≡φc −φd .  The expression for D from (3.12)-(3.14) becomes 

     

   

D ≈
A

Δ !φ( )2
D0      (3.21) 
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where 
  
A=1.85 1−φc( )6.55

φc / φin( )2 .  Substitution of (3.20) and (3.21) into (3.6), and re-

expression in non-dimensional form gives to leading order 

    

   

∂Δ !φ
∂ !x

=
Pein 1− !φc( )

A !h Δ !φ( )2
      (3.22) 

with solution 

 

   

Δ !φ( )−1
= Δ !φd( )−1

−
!P 1− !φc( )

A
2
κd

%

&
'

(

)
*
1/2

tan−1 κd
2

%

&
'

(

)
*
1/2
!x

%

&

'
'

(

)

*
*

   (3.23) 

The small final slope of φ  at the end of Region I follows immediately as 

    
   
∂ !φ
∂ !x

= !P
!φc −1( ) Δ !φd( )2

A
    (3.24) 

We conclude from the full solution (3.19) or from the asymptotic result (3.24) that the 

particle concentration builds up over a rather narrow zone of length  d / !P . Recent 

experiments suggest that this prediction could be verified by measuring the particle 

concentration in situ: Goehring and co-workers analyzed the X-ray scattering during 

evaporation and report particle volume fractions, for example Li et al23. 

 

4.  Region II:  fluid permeation through the layer 

In Region II, the particles lie just below the surface of the liquid, and liquid evaporates 

from the surface at a flux rate of  !q  per unit area.  The liquid surface is flat by the 

following qualitative argument.  Recall from section 2 that the Reynolds number and 

Capillary number are both small, implying that inertial forces are much less than viscous 

forces, and in turn viscous forces are much less than capillary forces.  Consequently, a 

change in liquid velocity can occur with negligible pressure gradients arising from 

viscosity or inertia, and the surface of the liquid remains flat.   

 

The above qualitative argument can be made quantitative by assuming that viscous Darcy 

flow though the particle packing is driven by the pressure drop   Δpm  associated with a 

gas/liquid interface of curvature  κm  as discussed by Mason and Mellor24, and Russel25.  

Idealise the Darcy flow as Poiseuille flow through a cylindrical tube of diameter d and 

length  ℓ .  Then, the pressure drop   Δpv  along the tube reads 
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Δpv ≈

ηvlℓ

d2
      (4.1) 

where   vl   is the velocity of the liquid.  Upon equating this to the pressure across a curved 

gas/liquid interface,  

      Δpm ≈ γκm       (4.2) 

we obtain  

    
   
κmd ≈

ηvlℓ
γd

      (4.3) 

Now assume a fast liquid flow with η  =10-3 Pa s,   vl =10 mm s-1,  ℓ  =0.1 mm, d = 0.5 µm, 

and γ  =0.1 Nm-1 to obtain   κmd ≈ 0.02 .  Consequently, the average meniscus curvature 

 κm  is much less than   1/ d .  This result can be re-phrased in terms of Capillary number 

  Ca ≡ηvsub / γ  as follows.  The expression ΔpV << Δpm  gives via the identities (4.2) and 

(4.3), 

    
   
Ca ≪ 5 d

ℓ
vsub
vl

= 2.5×10−3     (4.4) 

and this is fulfilled in any practical deposition process, as noted by Brewer et al14.  In 

summary, inviscid flow occurs through the particle packing and the pressure gradient in 

the forward x-direction is negligible.  Note that the maximum liquid velocities in the 

particle packing far surpass the liquid velocities in the meniscus of Region I. 

 

To first order (until more detailed experimental data become available), we take  !q  to be 

constant within Region II (and within Region III).  Continuity of liquid volume within 

Region II implies that the liquid decelerates until it attains the average particle velocity 

vsub .  Evaporation of the liquid slows down the liquid until vl = vsub .  Consequently, the 

length of Region II is  

    
 

ℓII
d
≈
1−φd( ) vl − vsub( )

"q
     (4.5) 

Now substitute for typical values from section 2.1 and from Born et al18:    ℓII / d =2000, 

 φd  =0.5,   vl  =150 µm s-1 to obtain   !q  =40 nm s-1. This estimate of evaporation rate is 

plausible, see for example Born et al18.  During this evaporative step, surface tension 
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keeps the monolayer stable in height.  It is instructive to conduct a perturbation analysis 

in order to demonstrate its stability, as follows.  

 

4.1    Stability of layer thickness in Region II 

It is instructive to investigate the stability of the monolayer in Region II.  Consider a 

perturbation in the form of a conical bump on top of the flat monolayer:  the surface 

energy of the cone on the layer exceeds that of the flat layer alone, and this causes the 

cone to flatten by viscous flow within the cone.  We seek a solution to this boundary 

value problem.   

 

Assume that the cone has an initial height   h0  and initial radius   R0 , such that the initial 

apex semi-angle  α0  is given by   tanα0 = R0 / h0 .  At any time t, the height of the cone is 

 hb , its base radius is  Rb  and the apex semi-angle α  evolves to   tanα = Rb / hb , as defined 

in the sketch in Fig. 3.  This is an idealization to the true evolution of shape, but it is 

adequate for our purposes as it captures the progressive flattening of the bump, and 

provides a particularly simple relation between evolution of shape and of strain field, as 

detailed below.  Conservation of mass of the cone dictates that its volume is given by 

    
  
Vb =

π
3

Rb
2hb =

π
3

R0
2h0      (4.6) 

and the area of its curved surface reads 

    
  
Sb =

πRb
2

sinα
      (4.7) 

At any instant, the Helmholtz free energy H of the cone can be written in terms of the 

surface energy  γs  according to 

    
  
H hb( ) = Sb −πRb

2( )γs      (4.8) 

and note that (4.6) – (4.8) allow H  to be stated in terms of the single degree of freedom 

 hb  or equivalently as a function of α .   

 

Now treat the wet particles as a linear viscous medium, endowed with a viscosity 
 
η f , 

such that in uniaxial tension the axial stress σ  is related to the axial strain rate  !ε  
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according to 
   
σ = 3η f !ε .  The dissipation rate per unit volume is 

   
ψ =

3
2
η f !ε

2 .  The 

deformation mode of the cone is one of axial shortening, as follows.  Picture the cone as 

embedded within a circular cylinder and sharing the same base and height.  (The volume 

of the cone is 1/3 that of the circumscribing circular cylinder).  Then, as the cylinder 

shortens in uniaxial compression, so does the cone.  The axial strain rate is    !ε = − !h / h  and 

the radial strain rate equals   − !ε / 2  by incompressibility.  The dissipation potential for the 

cone is the volume integral of the dissipation rate per unit volume ψ  , such that  

    
   
Ψ !hb( ) =Vbψ =

3Vbη f
!hb

2

2hb
2

    (4.9) 

The variational method of Suo26, Cocks27 and Cocks et al28 is used to obtain an 

expression for the evolution of microstructure.  For a given geometry, the rate of 

evolution of microstructure is given by the kinetic rate   
!hb  that minimizes the functional  

    
  
Ω !hb( ) = !H !hb( )+Ψ !hb( )      (4.10) 

such that  δΩ = 0  by taking variations with respect to   
!hb .  Evaluation of 

  
!H !h( )  via (4.6)-

(4.8) gives 

 
   

!H !hb( ) = πγR0
2h0

h2
1.5cos2α + sinα −1

sinα

%

&
'
'

(

)
*
*
!hb    (4.11) 

and evaluation of  δΩ = 0 gives  

   
   
!α =

3
2
γ
ηh0

tanα
tanα0

$

%
&&

'

(
))

2/3
3
2

cos2α + sinα −1
$

%
&

'

(
)cosα    (4.12) 

Numerical quadrature of (4.12) is used to obtain  
α t( )  and thence  

h t( )  via  

     
  

h t( )
h0

=
tanα0
tanα

"

#
$

%

&
'
2/3

     (4.13) 

and the response  
h t( )  is plotted in Fig. 3 for selected values of  α0  and  

  
τ ≡ γ / ηh0( ) .  

Note that the relaxation time τ  of the imperfection back to a flat profile is of order  

 100τ ≈ 10-6 s upon assuming the values of parameters cited in section (2.1).  We 

conclude that the monolayer is highly stable against perturbations in thickness in Region 

II.  The above analysis explains the observation that single layers and multi-layers form 

in a stable manner, whereas isolated clusters of particles are unstable during deposition.  
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However, the above stability analysis does not predict why a monolayer forms in 

preference to multilayers.  The recent experiments by Brewer et al14  reveal that multi-

layers form at high values of initial particle volume fraction and at high Capillary 

number.  The onset of multilayer formation requires a refinement of the modeling as 

given in the current study.		 

 

5.  Region III:  capillary densification 

Continued evaporation causes the level of liquid to fall below d.  A straightforward 

estimate can be made for the length   ℓ III  of Region III by equating the total flux of 

evaporated liquid  !qℓIII  to the incoming flux of liquid 1−φd( )vsubd  at entry to Region 

III, giving 

  
 

ℓIII
d

≈
1−φd( )vsub
"q

     (5.1) 

Upon substituting typical values from section 2.1 we obtain   ℓIII / d ≈ 10 .  We conclude 

that this Region Is much shorter than the preceding ones. 

 

Within Region III, the gas-liquid interface drapes around the top of the particles.  Denkov 

et al29,30 observed that the transition from a disordered to ordered (crystalline) state 

appears suddenly when the particle tops protrude from the liquid film.  Any non-

uniformity of particle packing induces attractive forces between the particles and leads to 

capillary densification, as discussed by Kralchevsky and Nagayama31,32 and by 

Kralchevsky and Denkov33.  As evaporation continues, the particle contacts evolve into 

isolated capillary bridges, and the particles are again pulled together.  The justification for 

this perspective is as follows. 

 

Kralchevsky and co-workers31,34,35 have extensively explored capillary interactions 

between particles at gas-liquid interfaces, including the case where particles rest on a 

solid substrate and are partially immersed by a liquid.  A non-uniform distribution of 

particles leads to the generation of immersion forces, driven by wetting.  The immersion 

forces much exceed the Brownian forces associated with kT, see for example Fig. 2 of 

Kralchevsky and Nagayama31.  Consequently, diffusion can be neglected in Region III.  
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 But what sets the cluster size?  Consider a cracked film, formed from an initial state of 

mobile particles of packing density  φc .  Crystalline clusters of uniform packing density 

 
φ f  form, and the clusters are separated by cracks of width on the order of the particle 

diameter d.  Consider a representative circular cluster of radius  Rc .  Conservation of 

mass of solid implies that  

    
  
π Rc +

d
2

"

#
$

%

&
'
2
φc = πRc

2φ f      (5.2) 

and consequently 

     
   

2Rc
d

=
!φ + !φ
1− !φ

     (5.3) 

where  
   
!φ = φc / φ f ≤1 .   For example, if   φc = 0.5  and 

  
φ f = 0.8  then we obtain 

  2Rc / d = 4 .  This is comparable to the values observed by Born et al18. Note that cluster 

sizes are very sensitive to the final packing, and that local perturbations may exist that we 

do not consider here.  A full treatment would consider distributions of particle spacing 

but is out of our scope here. 

 

An alternative view of the condensation processes in Region III is to assume that that 

phase separation occurs into a dense clusters (one phase) and voids (second phase).  The 

pattern of clusters is reminiscent of spinodal decomposition, for which models such as the 

Cahn-Hilliard theory are commonly invoked, Cahn and Hilliard36.  However, the 

underlying physics do not support this modeling approach for the following reasons: 

(i) Cahn-Hilliard assumes an effective medium of continuous phases, with a 

continuous spatial distribution of solute (particle) concentration.  Here, the 

packing density jumps over the length scale of the outermost particle of the 

cluster.   

(ii) As demonstrated by Kralchevsky and Nagayama32, the capillary forces 

dominate Brownian forces, and consequently particles are rearranged by 

capillary action and not diffusion. 

 

6. Concluding discussion 
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In the present study, the concentration profile within the assembly zone of Region I is 

predicted, including the role of a concentration-dependent diffusion constant and the 

shape of the meniscus.  The fluid flow through the assembled monolayer is treated in 

Region II, along with a stability calculation to reveal the propensity for formation of 

isolated particle clusters on top of the monolayer.  And, the physics of capillary 

crystallization is addressed in Region III, with an emphasis on the density of cracks that 

emerge.  

 

The present study is a first step in the generation of a process map for convective 

assembly:  suitable axes might be the Peclet number and    !q / vsub .  For example, the 

magnitude of    !q / vsub  sets the length of regions II and III, and whether a monolayer or 

multi-layers form14.  Such a map will include the limits of operation of the above 

mechanisms of convective assembly.  The non-dimensional groups defined in section 2.2 

indicate several physical limits to the map. 

 

The convection-diffusion model for Region I reveals a gap in our current understanding 

of what sets the final packing density at the end of Region I.  In the current study, we 

suggest that this is sensitive to the Peclet number, as supported by the observations of 

Born et al18.  But the precise functional form of 
  
φd Pe( )  is unclear, and demands further 

attention, experimentally or theoretically.  To date, a pragmatic approach has been 

adopted, whereby the diffusivity diverges near close packing by the introduction of a 

compressibility factor based upon a hard sphere equation of state, see for example Davis 

and Russel8.  In reality, repulsive interactions become important at lower packing 

densities than the close packed value, and the final packing density is sensitive to the 

Peclet number. The final packing density 
 
φ f  within each cluster at the end of Region III 

almost attains the crystalline limit, but the average number of particles within each cluster 

depends upon the Peclet number in accordance with relation (5.3).  The theoretical 

treatment of the present study highlights the role of the Peclet and Capillary numbers in 

dictating the final film structure, and allows for an interpretation of recent experimental 

data6,13,14,18.   
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List of symbols 

A	 Diffusion	correction	factor	 -	
Ca	 Capillary	Number	 -	
d	 Particle	diameter	 m	
D	 Particle	diffusion	constant	 m2	s-1	
D0	 Particle	diffusion	constant	at	infinite	dilution	 m2	s-1	
Din	 Particle	diffusion	constant	at	inlet	 m2	s-1	
Fr	 Froude	Number	 -	
g	 Gravitational	acceleration	 m	s-2	
h	 Meniscus	height	at	position	x	 m	
H	 Helmholtz	free	energy	of	cone	 J	
h0	 Initial	height	of	cone	 m	
hb	 Height	of	cone	at	given	time	 m	
hin	 Meniscus	height	at	inlet	 m	
Jl	 Liquid	flux	over	full	height	 m2	s-1	
Js	 Particle	flux	over	full	height	 m2	s-1	
k	 Boltzmann’s	constant	 J	K-1	
K	 Sedimentation	coefficient	 -	
l	 Characteristic	length	 m	
lI	 Length	of	Region	I	 m	
lII	 Length	of	Region	II	 m	
lIII	 Length	of	Region	III	 m	
NG	 Sedimentation	number	 -	
p	 Analogous	pressure	exerted	by	particles	 Pa	
Pe	 Peclet	number	 -	
Pein	 Peclet	Number	at	inlet	 -	
𝑞	 Liquid	evaporation	rate	 m	s-1	
R0	 Initial	radius	of	cone	 m	
Rb	 Radius	of	cone	at	given	time	 m	
Rc	 Typical	particle	cluster	radius	 m	
Re	 Reynolds	Number	 -	
Sb	 Surface	area	of	cone	at	given	time	 m2	
St	 Stokes	Number	 -	
Vb	 Volume	of	cone	at	given	time	 m3	
vin	 Average	velocity	at	inlet	 m	s-1	
vl	 Liquid	velocity	 m	s-1	
vs	 Particle	velocity	 m	s-1	
vsub	 Substrate	velocity	 m	s-1	
x	 Position	on	substrate	 m	
Z	 Compressibility	factor	 -	
α0	 Initial	apex	semi-angle	of	cone	 °	
αb	 Apex	semi-angle	of	cone	at	given	time	 °	
γ	 Liquid	surface	tension	 N	m-1	
γs	 Surface	energy	of	cone	 J	m-2	
δ	 Axial	stress	 Pa	
Δpm	 Liquid	pressure	drop	due	to	capillarity	 Pa	
Δpm	 Liquid	pressure	drop	due	to	friction	in	pipe	flow	 Pa	
Δρ	 Density	difference	between	particle	and	liquid	 kg	m-3	
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ΔΦc	 Difference	to	critical	particle	volume	fraction	 -	
ΔΦd	 Difference	to	dense	particle	volume	fraction	 -	
𝜀	 Axial	strain	rate	 s-1	
η	 Liquid	viscosity	 Pa	s	
ηf	 Equivalent	viscosity	of	wet	particles	 Pa	s	
κ-1	 Capillary	length	 m	
κm	 Curvature	of	gas-liquid	interface	in	Region	II	 m-1	
ρ	 Liquid	density	 kg	m-3	
ρP	 Density	of	particles	 kg	m-3	
Φ	 Particle	volume	fraction	 -	
Φc	 Limiting	particle	volume	fraction	 -	
Φd	 Particle	volume	fraction	at	the	end	of	Region	I	 -	
Φf	 Particle	cluster	packing	density	 -	
Φin	 Particle	volume	fraction	at	inlet	 -	
ψ	 Dissipation	rate	per	unit	volume	 J	m-3	s-1	
Ψ	 Dissipation	rate	 J	s-1	
Ω	 Minimization	functional	 J	s-1	
 

Note: Non-dimensional versions of symbols are marked with a tilde on top of the original 

symbol.  
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Figure Captions 

Fig.  1.   The 4 regions of flow in convective particle assembly. 

 

Fig. 2.  Evolution of concentration within Region I for the choice  φin = 0.001 ,  φc = 0.64 ,  

 κd =  1.6x10-4, and    
!P = vinhin / Din = Peinhin / d =10 .  Selected curves are also shown for 

   !P = 0.10 . 

 

Fig. 3.   Evolution in height of a perturbation in layer thickness within Region II. 
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Fig. 2.  The evolution of concentration within Region I for the choice  φin = 0.001 , 

 φc = 0.64 ,   κd =  1.6x10-4, and    
!P = vinhin / Din = Peinhin / d =10 .  Selected curves are 

also shown for    !P = 0.10 . 
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Fig. 3.   Evolution in height of a perturbation in layer thickness within Region II. 
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