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Abstract 17 

Artificial neural networks have been widely applied in bioprocess simulation and control due 18 

to their advantageous properties. However, their feasibility in long-term photo-fermentation 19 

process modelling and prediction as well as their efficiency on process optimisation have not 20 

been well studied so far. In the current study, an artificial neural network was constructed to 21 

simulate a 15-day fed-batch process for cyanobacterial C-phycocyanin production, which to 22 

the best of our knowledge has never been conducted. To guarantee the accuracy of artificial 23 

neural network, two strategies were implemented. The first strategy is to generate artificial 24 

data sets by adding random noise to the original data set, and the second is to choose the 25 

change of state variables as training data output. In addition, the first strategy showed the 26 

distinctive advantage of reducing the experimental effort in generating training data. By 27 

comparing with current experimental results, it is concluded that both strategies give the 28 

network great modelling and predictive power to estimate the entire fed-batch process 29 

performance, even when few original experimental data are supplied. Furthermore, by 30 

optimising the operating conditions of a 12-day fed-batch process, a significant increase of 31 

85.6% on C-phycocyanin production was achieved compared to previous work, which 32 

suggests the high efficiency of artificial neural network on process optimisation.  33 

 34 

Keywords: artificial neural network; dynamic simulation; C-phycocyanin production; 35 

process optimisation; bioprocess design; fed-batch operation. 36 

 37 

 38 
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1. Introduction 39 

Sustainable production of renewable energy and high-value products from microalgae have 40 

been extensively investigated due to their outstanding advantages [1]. For example, the 41 

carbon and energy sources for bioproducts synthesis and microorganism growth are CO2 and 42 

solar energy, respectively, which are low investment cost and always plentiful [2]. Bioenergy 43 

including biodiesel, bioethanol and biohydrogen can be used as an environmentally friendly 44 

resource to replace conversional diesel, gasoline and transport fuel [1], [3]. Meanwhile, 45 

high-value bioproducts such as C-phycocyanin and astaxanthin have been widely applied in 46 

the food, pharmaceutical, and cosmetic industries due to their unique antioxidant and 47 

anti-inflammatory properties [4], [5]. Furthermore, microalgae and cyanobacteria have also 48 

been utilised as healthy food in China and Mexico since antiquity [6], and are currently being 49 

cultivated as nutrient products in the United States and Thailand [7]. 50 

 51 

To facilitate the industrialisation of both high-value bioproducts and bioenergy production as 52 

well as high density biomass cultivation, a variety of long-term bioprocesses have been 53 

designed in recent studies. Different operation modes such as batch, fed-batch and continuous 54 

operations have been implemented for both high density biomass cultivation and biofuel as 55 

well as high-value bioproduct production [8]–[12].  However, recent studies have proved 56 

that the low productivity of both biomass and bioproducts in long-term operations 57 

significantly prevents the further scale-up of these processes. For example, in industrial 58 

processes final biomass concentration can barely go up to 1.0 g L
-1

 [14]. High-value 59 

bioproduct content such as C-phycocyanin and astaxanthin in long-term processes is even 60 
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less than half of their maximum content observed in short-term experiments. In order to solve 61 

this challenge, process optimisation has to be executed to maximise bioprocess productivity 62 

and efficiency.  63 

 64 

Two methodologies have been predominantly used for bioprocess optimisation [19], namely 65 

response surface methodology (RSM) and dynamic simulation. RSM is a statistical technique 66 

which estimates the relationship between decision variables (e.g. temperature) and response 67 

variables (e.g. biomass concentration) [20]. Experimental data are in general utilised to fit a 68 

quadratic expression used for further process optimisation [21]. Because RSM does not 69 

require biochemical kinetics, it greatly simplifies the procedure of process optimisation. 70 

However, the main weakness of this methodology is that it needs substantial amount of data 71 

sets to guarantee the accuracy of the quadratic function [22]. In addition, without the support 72 

of biochemical kinetics, its optimisation result cannot be applied to other processes whose 73 

operation mode and duration are different from the design experiments [19]. 74 

 75 

On the contrary, dynamic models are constructed based on biochemical mechanisms and do 76 

not require a large amount of experiments [23]. The latter character of dynamic simulation 77 

significantly promotes its application in photo-fermentation processes which are in general 78 

time-consuming since each experiment usually has to undergo two to three weeks [8], [9], 79 

[12]. For instance, it has been applied to optimise the operating conditions for the production 80 

of biohydrogen [19], [24], biolipid [25], [26], C-phycocyanin [16], [27] and biomass [24], 81 

[28]. However, because of the complexity of microorganism metabolic mechanisms, 82 
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constructing a dynamic model is always a difficult task especially if the bioproduct synthesis 83 

mechanisms have not been well identified. As a result, dynamic simulation has not been well 84 

applied in many cases such as bioproduct synthesis in biofilm and algae-bacteria consortium 85 

wastewater treatment. 86 

 87 

To complement the deficiency of dynamic model, artificial neural networks (ANNs) have 88 

been recently applied to simulate and control dynamic bioprocesses [29]–[31]. ANN is a 89 

mathematical approximation of biological neural network [32]. It is capable of estimating the 90 

complex relation between system input and output without detailed kinetic knowledge of the 91 

system [31]. A typical ANN contains one or two hidden layers where neurons are allocated to 92 

formulate the relation between system input and output [30], [33], [34]. The most commonly 93 

used functions inside of neurons are sigmoid and linear functions [29], [30]. These functions 94 

take in the system inputs to the neurons and produce the outputs. The inputs are changed by 95 

multiplication with weights and addition of biases in neurons, both of which are tuned when 96 

the model is trained by experimental data (training data) [35].  97 

 98 

Compared to the dynamic simulation methodology, ANNs have the advantage of treating the 99 

bioprocess as a black box so that biochemical kinetics is not necessary for model construction. 100 

Meanwhile, it is able to depict the dynamic performance of a bioprocess, which is an 101 

outstanding improvement compared to RSM. As a result, it shows great potential in 102 

bioprocess simulation and optimisation. Despite of its advantages, it also requires a great 103 

amount of training data for model construction, and efficient optimisation algorithm for 104 
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ANNs based process optimisation has not been developed [36]. As a result, little research has 105 

focused on using ANNs to simulate and design long-term bioprocesses. Therefore, the current 106 

work aims to explore the feasibility of ANNs on long-term photo-fermentation process 107 

simulation and prediction when only limited training data are available. The efficiency of 108 

ANNs on process optimisation will also be explored in the current study.  109 

 110 

In particular, C-phycocyanin production from cyanobacterium Arthrospira platensis was 111 

selected as the photo-fermentation process in the present study. C-phycocyanin is a blue 112 

antenna pigment used to enhance the photosynthetic efficiency of red algae and cyanobacteria 113 

[12], [37]. It is currently considered as a promising high-value bioproduct because of its wide 114 

applications in different industries [4]. For example, it is currently used as a natural 115 

alternative to conventional toxic synthetic pigments in cosmetic and food production [38]. In 116 

addition, it has a great potential to be applied in pharmaceutical industry due to its 117 

outstanding anti-oxidant, anti-inflammatory and neuroprotective properties [16]. Therefore, 118 

implementing process optimisation in this bioprocess becomes an indispensable step to 119 

complete the transition of C-phycocyanin production from laboratory scale to industrial scale. 120 

 121 

2. Theory of methodology 122 

2.1 Experiment setup 123 

2.1.1 Computational experiment setup 124 

In the current study, computational experiments (CEs) were executed to develop the ANN 125 

modelling and optimisation strategies as they are more time-efficient compared to real 126 
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experiments. A dynamic model capable of accurately simulating both biomass growth and 127 

C-phycocyanin accumulation has been proposed in our previous study [16] and was shown in 128 

Equations 1 to 6. The model is valid for the simulation of both batch process and fed-batch 129 

process in which dense nutrient culture is pulsed into the reactor. As a result, the present 130 

computational experiment results will be generated by this model. The detailed dynamic 131 

model construction can be found in the previous research [16], and model parameter values 132 

are listed in Table 1. However, it is notable that computational experiments are purely 133 

selected in the current study due to their high time-efficiency, and can be completely replaced 134 

by real experiments in future work. Thus, this dynamic model is not necessary for ANN 135 

model construction in the current study. 136 

 137 

  

  
    

 

    
                                                                                                    

  

  
          

 

    
                                                                                                

      

  
     

        

     
                                                                                                

                                                                                                                

   
  

  
  

 

  
     

        
    
 

  

   

 
  

   
  

 
  

   
  

    

 
  

   
  

 

  

 
    

        
    
 

  
 

  
  

   

     

  
  

  
  

 

  
     

         
    
 

   

 

   
  

   
  

 
  

   
  

     

 
  

   
  

 

   

 
    

         
    
 

   
 

  
  

   

       

where   is biomass concentration,    is cell specific growth rate,   is nitrate 138 

concentration,    is nitrate half-velocity coefficient,     is nitrate half-velocity coefficient 139 
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for phycocyanin consumption,    is cell specific decay rate,      is nitrate yield 140 

coefficient,    is phycocyanin content in cells,   is phycocyanin production constant and 141 

   is phycocyanin consumption constant.    is the maximum specific growth rate,   is 142 

light intensity,    is light saturation term and    is light inhibition term.    is the 143 

maximum phycocyanin accumulation constant,     is light saturation term for phycocyanin 144 

synthesis and     is light inhibition term for phycocyanin synthesis.    represents incident 145 

light intensity,   is cell absorption coefficient,    is bubble reflection coefficient,   is the 146 

distance from light source and   is the width of the PBR. 147 

 148 

Table 1: Parameters in the Monod model. Parameters in this model were fitted by the 149 

experimental data measured in our previous research [16]. 150 

Parameter Value Parameter Value 

   [h
-1

] 0.0923    [μmol m
-2

 s
-1

] 178.85 

   [h
-1

] 0.0    [μmol m
-2

 s
-1

] 447.12 

   [mg L
-1

] 393.10     [μmol m
-2

 s
-1

] 23.51 

     [mg g
-1

] 504.49     [μmol m
-2

 s
-1

] 800.0 

   [mg g
-1

 h
-1

] 2.544   [m
2
 g

-1
] 0.0520 

   [h
-1

] 0.281    [m
-1

] 0.0 

    [mg L
-1

] 16.89   

 151 

The dynamic model in this work was solved numerically using the Python programming 152 

language along with numpy [39] and scipy [40], [41] packages. 153 



9 
 

 154 

2.1.2 Real experiment setup 155 

In order to verify the predictability of current ANN model, two real fed-batch experiments 156 

(RE1 and RE2) which were conducted in our recent study [12] were used in the current study. 157 

The experimental fed-batch processes were implemented such that dense nitrate solution was 158 

fed into the reactor to maintain the culture nitrate concentration at 5 mM and 10 mM, 159 

respectively. The detailed experimental fed-batch process setup can be found in [12]. In 160 

addition, another real experiment (RE3) was carried out in the current study to validate the 161 

simulation results of the current ANN regarding to the optimised 12-day fed-batch process 162 

which will be introduced in Section 2.4. All of the three real experiments were replicated 163 

three times to guarantee the accuracy of the experimental results. The photobioreactor used in 164 

the current study is a 1 L (15.5 cm in length and 9.5 cm in diameter) tank reactor where 165 

illumination is provided from both sides of the reactor [16]. 2.5% CO2 with 0.2 vvm was 166 

constantly pumped into the reactor to provide carbon source and an agitation rate of 400 rpm 167 

was chosen to guarantee the well mix of the current culture [12]. 168 

 169 

2.2 Principle of training experiment design 170 

In general, a large amount of training data is necessary to train ANNs. However specific to a 171 

bioprocess where the process duration is two to three weeks, obtaining enough data sets is a 172 

very time-consuming task since the data sets must cover a wide range of values for each input 173 

variable. In order to construct a highly accurate model and save experimental time effort, an 174 

experiment design strategy particular for ANN construction becomes vital in the present 175 
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research.  176 

 177 

To achieve the aforementioned goal, a framework was proposed where only three 178 

experiments are designed to generate training data and reduce experimental time cost. To 179 

guarantee the large domain of training data sets, all of the computational training experiments 180 

(CE1-CE3) were constructed to be a 15-day fed-batch process in which dense nitrate feed can 181 

be intermittently added into the bioreactor to change the culture nitrate concentration. These 182 

fed-batch processes were operated in such a way that the nitrate culture concentration for 183 

most duration of the experiments was kept low (100~500 mg L
-1

), medium (500~1000 mg L
-1

) 184 

and high (1000~2000 mg L
-1

), respectively, so that biomass concentration, nitrate 185 

concentration and phycocyanin production between each training experiment are sufficiently 186 

different. 187 

 188 

The reason why conducting three experiments with different nitrate concentrations is due to 189 

the complicated effects of nitrate concentration on phycocyanin accumulation. Although it is 190 

known that nitrogen is an essential element for phycocyanin synthesis and cells will consume 191 

phycocyanin in a nitrate-limiting culture, recent study has found that maximum cellular 192 

phycocyanin content can be reduced in a culture with high nitrate concentration [12]. As a 193 

result, to guarantee the high accuracy of current ANN for further process optimisation, it is 194 

necessary to ensure that the model can well simulate cell growth and pigment production in 195 

both nitrate-limiting and nitrate-sufficient conditions. Therefore, the aforementioned 196 

computational experiments were carried out. 197 



11 
 

 198 

Meanwhile, it was assumed that biomass concentration, nitrate concentration and 199 

phycocyanin production can be measured 3 times per day (once every 8 hours), which is 200 

feasible for future real experiment implementations. The current training experiment design 201 

principle can then be directly applied in real experimental research, as all the computational 202 

training experiments are similar with our previous real experiment setups [12]. The detailed 203 

operating conditions for the training experiments are shown in Table 2.  204 

 205 

Table 2: Operating conditions of training experiments. Initial biomass concentration and 206 

initial phycocyanin content are set the same as in our previous study [12], initial nitrate 207 

concentration are different in each training experiment. At the beginning of each pulse day, 208 

dense nitrate feed is pumped into the reactor. The replenished culture nitrate concentration is 209 

listed as pulse concentration. 210 

 CE1 CE2 CE3 

Ini. biomass [g L
-1

] 0.113 0.113 0.113 

Ini. nitrate [mg L
-1

] 100.0 300.0 500.0 

Ini. phycocyanin [mg g
-1

] 1.120 1.120 1.120 

First pulse day 3 4 3 

First pulse con. [mg L
-1

] 200.0 500.0 1500.0 

Second pulse day 6 7 7 

Second pulse con. [mg L
-1

] 400.0 800.0 2000.0 

Third pulse day 8 10 11 
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Third pulse con. [mg L
-1

] 600.0 1000.0 2000.0 

Fourth pulse day 12 14 14 

Fourth pulse con. [mg L
-1

] 500.0 1200.0 2500.0 

Fifth pulse day 14 -- -- 

Fifth pulse con. [mg L
-1

] 600.0 -- -- 

 211 

To further test the accuracy of current ANN, two additional computational fed-batch 212 

processes (CE4 and CE5) were carried out. The operating conditions of both test experiments 213 

are different from those in the training experiments, and are listed in Table 3. Finally, Table 4 214 

summarises all the experiments included in the current study. 215 

 216 

Table 3: Operating conditions of test experiments.  217 

 CE4 CE5 

Ini. biomass [g L
-1

] 0.192 0.111 

Ini. nitrate [mg L
-1

] 300.0 500.0 

Ini. phycocyanin [[mg g
-1

] 3.081 1.102 

First pulse day 3 3 

First pulse con. [mg L
-1

] 500.0 1500.0 

Second pulse day 7 6 

Second pulse con. [mg L
-1

] 800.0 2100.0 

Third pulse day 11 11 

Third pulse con. [mg L
-1

] 1700.0 1900.0 
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Fourth pulse day -- 14 

Fourth pulse con. [mg L
-1

] -- 2300.0 

 218 

Table 4: Summary of current experiments. 219 

 Classification Aim 

CE1 Computational experiment Training experiment for ANN model 

construction 

CE2 Computational experiment Training experiment for ANN model 

construction 

CE3 Computational experiment Training experiment for ANN model 

construction 

CE4 Computational experiment Verify ANN model accuracy 

CE5 Computational experiment Verify ANN model accuracy 

RE1 Real experiment Verify ANN model predictability 

RE2 Real experiment Verify ANN model predictability 

RE3 Real experiment Validate ANN model process optimisation 

result 

 220 

2.3 Artificial neural network model construction 221 

In most recent dynamic applications [42], [43], ANNs are designed such that by feeding it 222 

past states it can predict future ones. As previously mentioned in the current work, three 223 

computational 15-day experimental runs have been carried out. One for which nitrate 224 
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concentration was in general high, another where it was low and the third one where it was in 225 

between (medium). As the states (biomass concentration, nitrate concentration and 226 

phycocyanin production) were measured once every eight hours, an original data set 227 

containing 135 points from all three experimental runs was generated.  228 

 229 

However, to train an accurate ANN, a significantly larger amount of data should be provided 230 

[36]. This can be a major issue since it is very time consuming to obtain enough data sets in 231 

the underlying bioprocess. To overcome this challenge, two strategies were employed in the 232 

present work. The first one is to replicate the available experimental data, by adding a 3% 233 

normally distributed random noise to generate 100 additional artificial sets of data. This 234 

would enable the ANN to be trained with more information which would be infeasible to 235 

obtain in practice. The second strategy in the current study is to predict the rate of change for 236 

each state by given their past information, rather than directly predicting future states based 237 

on past ones. These combined strategies, as will be further discussed in Section 3.2, give the 238 

network great modelling and predictive power, even when very few original experimental 239 

data are actually supplied. 240 

 241 

In the current study, the inputs of ANN include biomass concentration, nitrate concentration 242 

and phycocyanin production, and the outputs are change of biomass and nitrate 243 

concentrations as well as change of phycocyanin production. Different backpropagation 244 

structures for the ANNs were explored in this work, all of them using a sigmoid function for 245 

each neuron, and the results were presented in Section 3.1. When predicting the dynamic 246 



15 
 

performance of current test and real fed-batch experiments, only the initial conditions and the 247 

times and magnitudes of nitrate pulses were supplied to the ANN. The neural network then 248 

predicts the state profiles solely based on these inputs. The ANN construction was 249 

implemented through PyBrain [44], a package in Python. All computational experiments 250 

were run in an Intel Core i5, 4 GB RAM 2.53 GHz computer. 251 

 252 

2.4 Operation search for process development 253 

To explore the feasibility and efficiency of current ANN on process optimisation, a 12-day 254 

fed-batch was then designed in the present study to find the optimal strategy for 255 

C-phycocyanin production. Four different nitrate pulses were added along the time course of 256 

operation, the first input is initially assumed to take place on day 3, the second on day 6, the 257 

third on day 9 and the fourth on day 12. The culture nitrate concentration after replenishment 258 

at each time can vary from 500-2500 mg L
-1

. To find a high quality solution for the present 259 

optimisation problem, the current study takes 100 step intervals for the added nitrate 260 

concentration and allows the possibility of inputs to be implemented one day earlier or later 261 

than that specified above. Thus, in total 2.510
5
 runs of computational experiments were 262 

carried out to search the best operating conditions for phycocyanin production. This 263 

procedure enables the current work to search for the optimal operating conditions given 3 264 

inputs in 12 days with a 50 mg L
-1

 tolerance in the refreshed culture nitrate concentration. 265 

 266 

3. Results and discussion 267 

3.1 Result of model construction and validity 268 
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A feedforward ANN (3,6,6,3) including a three neuron input layer, two six neuron hidden 269 

layers, and three neuron output layer is eventually selected due to its higher accuracy than 270 

other ANNs constructed in the current study. The resulting ANN is shown in Fig. 1(a), and in 271 

Fig. 1(b) a neuron with   inputs is also represented. 272 

273 

Figure 1: (a) A schematic representation of the feedforward three neuron input layer, two six 274 

neuron hidden layers, and three neuron output layer artificial neural network designed in this 275 

work. (b): A schematic representation of the neurons with   inputs, where the function      276 

corresponds to a sigmoid function for the current work. 277 

 278 

Fig. 2 shows the ANN model simulation result and the training data (CE1-CE3). From Fig. 279 

2(a) to 2(c), it is found that the current model can well represent the entire dynamic 280 

performance of all the three training experiments where significant changes on the values of 281 

biomass density and nitrate concentrations are included, which indicates the high accuracy of 282 

the training procedure and current model. 283 

 284 
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 285 

 286 

Figure 2: Comparison of ANN simulation result with training data. Open squares: simulation 287 

results of CE1, open triangles: simulation results of CE2, open circles: simulation results of 288 

CE3, lines: experimental results. (a): biomass concentration; (b): nitrate concentration; (c): 289 

C-phycocyanin production. The sharp change of nitrate concentration in Fig. 2(b) is due to 290 

the addition of nitrate feed. 291 

 292 

3.2 Effect of data error on model accuracy 293 

In the current work, artificial experimental data sets were generated by adding errors to the 294 

original data set. One hundred artificial data sets are computed by adding a 3% normally 295 

distributed error to the original data. This, as can be seen from the computational results in 296 

Section 3.1, is an essential strategy for ANN training. In order to further explore the effect of 297 

the amount of noise added on the accuracy of current ANN, two other ANN training schemes 298 
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were implemented, one where the normal distributed error has a 5% magnitude, whilst 299 

another ANN is trained without data replication. Their performance is next analysed.  300 

 301 

Fig. 3 shows the modelling results of the two test fed-batch processes (CE4 and CE5) based 302 

on the model with a 3% data error. From Fig. 3, it can be seen that this model succeeds in 303 

accurately predicting both experiment performances where biomass densities increase rapidly 304 

and nitrate concentrations change dramatically, which suggests that adding an error of 3% for 305 

the augmentation of training data is highly feasible in practice and does not compromise the 306 

model efficiency. 307 

 308 

 309 

 310 
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 311 

Figure 3: Comparison of ANN simulation results and test fed-batch processes experimental 312 

data. (a)-(c): biomass concentration, nitrate concentration and C-phycocyanin (PC) 313 

production in CE4; (d)-(e): biomass concentration, nitrate concentration and C-phycocyanin 314 

(PC) production in CE5. Solid lines: experimental results; points: simulation results. The 315 

sharp change of nitrate concentration in Fig. 3(b) and 3(e) is due to the addition of nitrate 316 

feed. 317 

 318 

However, large errors are computed when the training informatio without data replication and 319 

with a 5% error are used to construct an ANN. For example, Fig. 4 compares the simulation 320 

results of both models with the second test experiment data. From Fig. 4, it can be seen that 321 

both of the models fail to predict the test experiment performance.  322 

 323 

 324 
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 325 

Figure 4: Comparison of the second test experiment data (CE5) with the simulation results 326 

from different models. Solid line: simulation results of the model with a 5% error; dashed line: 327 

simulation results of the model without data replication; points: second test experiment data. 328 

(a): biomass concentration; (b): nitrate concentration; (c): C-phycocyanin production. The 329 

sharp change of nitrate concentration in Fig. 3(b) is due to the addition of nitrate feed. 330 

 331 

It can be then concluded that in order to construct a reliable ANN, a sufficient amount of 332 

training data is indispensable, and the model without data replication clearly does not satisfy 333 

this prerequisite. It is also demonstrated that selecting the magnitude of error is a crucial issue 334 

for ANN construction, as large error can directly mislead the model predictions. However, if 335 

the error is too small (e.g. 1%), the present study also found that the ANN is not able to well 336 

represent the dynamic performance of the current bioprocess, since the artificially generated 337 

data sets are very close to the original data set and the ANN recognises them as the same 338 

during its training procedure. On the contrary, if the errors induced are too large (e.g. 5%) the 339 

ANN is misguided and the actual dynamics of the process are hidden in the randomness 340 

induced. The threshold for the induced randomness in the error should be particular to each 341 

system. As a result, the model with an error of 3% in training data is selected in the current 342 

study. 343 
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 344 

3.3 Model predictability 345 

The ANN model is then used to simulate the performance of two real experimental results 346 

(RE1 and RE2) conducted in our previous study mentioned in Section 2.2. In these two 347 

experiments, both the initial operating conditions (initial biomass concentration, initial nitrate 348 

concentration etc.) and the nitrate pulse locations are different from our computational 349 

experiments CE1-CE5. Fig. 5 then compares the results of real experiments, previous 350 

dynamic model and current ANN model. From Fig. 5, it is found that the current ANN can 351 

well predict the dynamic performance of both real experiments, and its results are also highly 352 

similar with those based on the dynamic model.  353 

 354 

It is notable that during the model training procedure, as the time interval between training 355 

data input and output is 8 hours, in principle the current ANN can only well predict the 356 

process performance within 8 hours, and beyond that the accuracy of prediction results 357 

cannot be guaranteed. Furthermore, when the current ANN is used to predict the two test 358 

fed-batch processes and real experiments, only the initial operating conditions and nitrate 359 

pulses information are supplied to the ANN, and the model has to predict the entire time 360 

course of these processes (312 hours) without additional information. As a result, the 361 

prediction results shown in Fig. 3 and 5 strongly suggest that based on the current model 362 

construction strategies the proposed ANN is characterised by a high predictability for 363 

long-term dynamic bioprocess simulation, which to the best of our knowledge has not been 364 

reported before. 365 
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 366 

The approximate 10%-15% underestimation of phycocyanin production in the ANN is led by 367 

the limit of the previous dynamic model which is used to generate training data for current 368 

ANN construction. As a result, this underestimation may be eliminated in the future if real 369 

experimental data are directly used for ANN training, and the ANN model has the potential to 370 

show higher accuracy compared to the dynamic model due to its high agreement between the 371 

ANN simulation results and current computational experimental data. Therefore, the current 372 

comparison strongly indicates that ANN can be considered as a reliable replacement of 373 

dynamic model for practical applications in future work. 374 

 375 

 376 

 377 
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 378 

Figure 5: Comparison of ANN and dynamic model simulation results with real experiment 379 

data. Solid line: ANN results; dashed line: dynamic model results; point: experimental data. 380 

(a)-(c): biomass concentration, nitrate concentration and phycocyanin production in the 5 mM 381 

fed-batch process (RE1); (d)-(e): biomass concentration, nitrate concentration and 382 

phycocyanin production in the 10 mM fed-batch process (RE2). 383 

 384 

3.4 Fed-batch process optimisation 385 

Given the predictive power of the ANN designed and the high computational speed for which 386 

these structures are known for, it is possible to carry out an optimisation procedure to explore 387 

the control space (replenished culture nitrate concentration) to an acceptable tolerance.  388 

 389 

The current ANN is used to optimise a 12-day fed-batch process with the same incident light 390 

intensity (300 μmol m
-2

 s
-1

), temperature (28 °C), initial biomass concentration (0.40 g L
-1

) 391 

and phycocyanin content (10.5%) in previous real experimental fed-batch processes [12]. The 392 

aim is to identify the feasibility and efficiency of current model on process optimisation.  393 

 394 

Based on the current model and operation search methodology, the optimal operating 395 
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conditions found in the present study and the real experiment results of the 12-day fed-batch 396 

process are listed in Table 5. Compared to the previous experimental work, the optimised 397 

process achieves a higher biomass concentration than that in the 5 mM fed-batch process 398 

(6.96 g L
-1

) and the 10 mM fed-batch process (7.46 g L
-1

). Phycocyanin production in the 399 

current process remarkably increases by 74.9% and 85.6% compared to the 5 mM fed-batch 400 

process and 10 mM fed-batch process, respectively. Final phycocyanin intracellular content 401 

in the current optimised process is also significantly improved to be 17.2%, even higher than 402 

the highest phycocyanin content (16.1%) reported in previous research [12]. As a result, it is 403 

concluded that in future work it is highly feasible and efficient to utilise ANN for dynamic 404 

bioprocess optimisation. 405 

 406 

Table 5: Optimal operating conditions and real experiment (RE3) results of the 12-day 407 

fed-batch process. Pulse day means that the pulse is added at the beginning of that day. 408 

Initial nitrate con. 1300 [mg L
-1

] Third pulse day day 11 

First pulse day day 5 Third addition con. 1100 [mg L
-1

] 

First addition con. 
 

2100 [mg L
-1

] Final biomass con. 7.62 [g L
-1

] 

Second pulse day day 7 Final PC production 1310 [mg L
-1

] 

Second addition con. 1700 [mg L
-1

] Final PC content 17.2% 

 409 

Fig. 6 shows the predictability of the current ANN regarding to the optimised fed-batch 410 

process. From the figure, it is clearly concluded that the current model can well predict the 411 

dynamic performance of the investigated process, especially for biomass growth and nitrate 412 
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consumption. As mentioned before, the underestimation of phycocyanin production in the 413 

current ANN is led by the limitation of recent dynamic model which has been reported to 414 

underestimate phycocyanin production in a fed-batch process where nitrate feed is frequently 415 

pumped into the reactor [16]. This underestimation, however, can be totally eliminated by 416 

directly using the data from future real experiments to construct ANN models. 417 

 418 

In the current optimised fed-batch process, it is found that biomass concentration does not 419 

increase rapidly (Fig. 6(a)) within the first 4 days as there is no nitrate pulse added (Fig. 6(b)). 420 

Previous research declared that a medium biomass density (around 1.5 g L
-1

) can facilitate 421 

C-phycocyanin synthesis [16]. This is because local illumination in the reactor is moderately 422 

reduced due to cyanobacterial light absorption [16], and a lower light intensity is preferable 423 

for phycocyanin accumulation as it is used to help cells to trap solar energy [12]. However, 424 

high biomass concentration (higher than 4.0 g L
-1

) can remarkably aggravate the light 425 

attenuation in the photobioreactor, which leads to the termination of C-phycocyanin 426 

accumulation and biomass growth [16]. Therefore, it is concluded that C-phycocyanin 427 

content in cells mainly increases in the beginning period of the experiment (Fig. 5(d)) when 428 

local illumination is not significantly reduced by biomass absorption. 429 

 430 

As C-phycocyanin production is also dependent on biomass concentration, dense nitrate feed 431 

is intermittently added to facilitate cell growth. Despite that high nitrate concentration can 432 

suppress the consumption of phycocyanin [12], it also leads to a high biomass concentration 433 

which significantly reduces the light intensity in the reactor and accelerates the consumption 434 
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of phycocyanin. As a result, it can be found that the amount of nitrate added in the culture 435 

(Fig. 6(b)) decreases from the first pulse to the third pulse so that the conflicting effects of 436 

nitrate concentration on phycocyanin accumulation can be well balanced. Therefore, total 437 

phycocyanin production can keep increasing (Fig. 6(c)) without compromising the high 438 

phycocyanin content in cells (Fig. 6(d)). 439 

 440 

 441 

 442 

 443 

Figure 6: Performance of the optimised 12-day fed-batch process. (a) biomass concentration; 444 

(b) nitrate concentration; (c) phycocyanin production in the reactor; (d) phycocyanin content 445 

in cells. Lines are simulation results, and points are real experimental results (RE3). 446 

 447 

Conclusion 448 
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In the current study, an ANN was constructed to simulate a 15-day fed-batch process for 449 

C-phycocyanin production. Computational experiments are carried out to develop the 450 

procedure for long-term bioprocess simulation and optimisation by ANN. An experiment 451 

design framework particularly for ANN construction is proposed to save experiment time 452 

effort. To guarantee the high accuracy of current model, two strategies are implemented 453 

during the model construction. It is found that adding random noise to augment the available 454 

training data is highly feasible in practice and does not compromise the model efficiency, 455 

whilst the magnitude of noise has to be cautiously determined.  456 

 457 

By comparing with the result of test processes and real experiments, it is concluded that the 458 

current ANN is highly accurate and characterised by great predictable power. It can be then 459 

considered as an alternative to dynamic model for future process simulation and design. By 460 

searching the optimal operating conditions of a 12-day fed-batch process, it is concluded that 461 

the current model shows high efficiency on process optimisation, since a significant increase 462 

on phycocyanin production is achieved compared to previous research.  463 

 464 

In terms of future work, due to the unique advantages of ANN which does not need the full 465 

knowledge of the investigated process kinetics and high efficiency on process optimisation, 466 

the current proposed ANN optimisation strategy should be applied in both fed-batch and 467 

repeated batch long-term operations for different high-value bioproducts and biofuels 468 

production. The difficulty of obtaining accurate kinetic models for bioprocess design can be 469 

therefore solved. Meanwhile, the amount of experimental data can be significantly reduced 470 
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by using the current strategy compared to that of RSM. Moreover, to further develop the 471 

current optimisation strategy, a stochastic optimisation algorithm particular for this 472 

application should be developed to improve the efficiency of ANN process optimisation.  473 
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