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ABSTRACT 

OBJECTIVES: Barrett’s esophagus (BE) surveillance with white-light endoscopy and quadrantic 

biopsies (Seattle protocol) is resource intensive and limited by sampling error. Previous work 

suggests that autofluorescence imaging (AFI) in combination with a molecular panel might reduce 

the number of biopsies, but this was not sufficiently sensitive for low grade dysplasia, which is now a 

point for endoscopic intervention.  Here we used AFI to direct narrow-field imaging tools for real-

time optical assessment of dysplasia and biopsies for a biomarker panel.  We compared the new 

diagnostic algorithm with the current standard  

METHODS: 55 patients with BE were recruited at a single tertiary referral center. Patients underwent 

high-resolution endoscopy followed by autofluorescence imaging (AFI). AFI-targeted areas (n=194) 

were examined in turn by narrow-band imaging with magnification (NBIz) and probe-based confocal 

laser endomicroscopy (pCLE). Biopsies were taken from AFI-targeted areas and tested using an 

established molecular panel comprising aneuploidy plus Cyclin A and p53 immunohistochemistry.  

RESULTS: In the per-patient analysis the overall sensitivity and specificity of AFI-targeted pCLE were 

100% and 53.6% for high grade dysplasia/intramucosal cancer and 96.4% and 74.1% for any grade of 

dysplasia, respectively. NBIz had equal specificity for dysplasia detection (74.1%), but significantly 

lower sensitivity (57.1%) than pCLE. The time required to perform AFI-targeted pCLE was shorter 

that that taken by the Seattle protocol (p=0.0004). We found enrichment of molecular abnormalities 

in areas with optical dysplasia by pCLE (p<0.001), regardless of histologic dysplasia. The addition of 

the 3-biomarker panel reduced the false positive rate of pCLE by 50%, leading to sensitivity and 

specificity for any grade of dysplasia of 89.2% and 88.9%, respectively.  

CONCLUSION: The combination of pCLE on AFI-targeted areas and a 3-biomarker panel identifies 

patients with dysplasia.  
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STUDY HIGHLIGHTS 

1. WHAT IS CURRENT KNOWLEDGE 

 Endoscopic surveillance for Barrett’s esophagus (BE) is problematic due to sampling error by 

random biopsies. 

 Based on the current evidence, advanced imaging cannot replace random biopsies 

 We showed previously that a 3-biomarker panel directed by autofluorescence imaging (AFI) can 

accurately diagnose high grade dysplasia, but sensitivity for low-grade dysplasia was low.  

2. WHAT IS NEW HERE 

 Probe-based confocal laser endomicroscopy (pCLE) directed by AFI has high sensitivity for both 

high-grade and low-grade dysplasia in BE  

 Optical dysplasia by pCLE correlates with the field of molecular change regardless of histologic 

dysplasia 

 The addition to AFI-directed pCLE of a 3-biomarker panel on minimal biopsy sampling further 

improves the overall diagnostic accuracy for any grade of dysplasia 
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INTRODUCTION 

Barrett’s esophagus (BE) is the only known precursor to esophageal adenocarcinoma (EA), with a 

conversion rate to cancer estimated to be around 0.3% per year [1, 2] . All major gastroenterology 

and endoscopy societies recommend endoscopic surveillance with a protocol entailing 4 random 

biopsies every 2 centimetres in addition to targeted sampling of visible lesions to optimise detection 

of dysplasia (Seattle protocol)[3-5].  The Seattle protocol is limited by sampling error due to the 

heterogeneous and frequent inconspicuous nature of dysplasia. In addition, inter-observer 

agreement for a pathological diagnosis of dysplasia is poor [6, 7].  

In order to improve detection of dysplasia, several enhanced imaging modalities have been 

investigated, which include both conventional dye and electronic (virtual) chromoendoscopic 

techniques [8]. Autofluorescence imaging (AFI) is a red-flag endoscopic technique, which exploits the 

intrinsic fluorescent properties of the gastro-intestinal (GI) mucosa [9]. Architectural tissue changes 

associated with dysplasia and early cancer can cause loss of autofluorescence and can be detected in 

AFI mode as purple-red signal within green background. Despite high sensitivity for intra-epithelial 

neoplasia, AFI suffers from a high false positive rate (up to 80%) [10]. To obviate to this, AFI has been 

incorporated into trimodal endoscopes with high resolution endoscopy (HRE) and narrow band 

imaging with magnification (NBIz). However, two cross-over studies showed that this technology 

lacks sufficient accuracy to replace the Seattle protocol since 7 to 21% of patients with HGD can be 

missed if relying on targeted biopsies only [11, 12]. Possible explanations for this are: i. low 

sensitivity of NBIz for focal HGD and LGD; ii. sampling error by single biopsies within large areas of  

AFI positivity; iii. true occurrence of AFI-negative dysplasia. More recently, confocal laser 

endomicroscopy (CLE) has allowed real-time microscopic analysis of the GI mucosa to detect 

histologic dysplasia [13]. Two CLE systems are currently available, i.e. the probe-based CLE (pCLE) 

and the endoscopy-integrated one (eCLE). In a cross-sectional study on 101 patients, Sharma and 

colleagues found that the combination of pCLE and HRE had a sensitivity and a specificity for 
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HGD/IMC of 93.5 and 67.1% respectively [14]. In a more recent study, patients were randomized to 

have either HRE (n=98) or HRE + eCLE (n=94) [15]. The addition of eCLE reduced the total number of 

biopsies and led to a 2.7-fold higher diagnostic yield for HGD/IMC in the per-patient analysis with an 

overall 95% sensitivity for BE neoplasia. A disadvantage of CLE is the narrow field of view that can 

lead to sampling error despite multiple optical biopsies, similar to random sampling for conventional 

histology. However, pCLE is compatible with all commercially available endoscopes, hence it can be 

used in combination with other a red-flag imaging techniques to reduce the number of locations 

required for assessment of optical dysplasia. The accuracy of pCLE for diagnosing dysplasia has never 

been compared to that of other magnified imaging techniques, such as NBIz, particularly when used 

in combination with a red-flag technique such as AFI. Furthermore, these magnified endoscopic tools 

have not been investigated for the detection of low grade dysplasia (LGD).  

The advent of endoscopic therapy and the evidence of cancer prevention by radiofrequency ablation 

(RFA) in patients with a consensus diagnosis of LGD have reinforced the importance of improving 

dysplasia detection during BE surveillance [16, 17]. Hence, the issues of poor inter-observer 

agreement for a pathological diagnosis of LGD and lack of validation of advanced imaging techniques 

for detection of this stage of disease need urgent consideration to improve patient management. 

Tissue biomarkers offer the advantage of measuring molecular changes that correlate with dysplasia 

as well as disease progression [18, 19] and could be used as adjunct to guide patient management.  

In a recent multi-center study, we tested a large panel of 9 molecular biomarkers in combination 

with AFI. We found that AFI positive [AFI(+)] areas had enrichment of biomarkers and we showed 

that 3 of these biomarkers (aneuploidy, cyclin A and p53 immunohistochemistry) outperformed the 

others in their association with prevalent dysplasia. This 3-biomarker panel assessed on biopsies 

directed by AFI had a very high per-patient diagnostic accuracy for HGD and IMC (96% sensitivity and 

89% specificity). However, the sensitivity for any grade of dysplasia was lower (75%) [20].   
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Having established previously the role of AFI in enhancing detection of molecular changes in BE, in 

the present study we took a step further and used AFI to guide the use of pCLE for a real-time optical 

diagnosis of dysplasia without the need for histology. We thus compared the diagnostic accuracy of 

AFI-targeted pCLE with that of NBIz, which has previously been investigated in combination with AFI 

[11, 12]. We then hypothesized that a 3-biomarker panel on biopsies form the same AFI-targeted 

areas could further refine patient prognostication. The primary objectives were: i. the diagnostic 

accuracy for HGD/IMC of AFI-targeted optical dysplasia by NBIz or pCLE compared to the current 

gold standard Seattle protocol; and ii. the added value of molecular biomarkers to optical dysplasia 

to diagnose any grade of dysplasia. The secondary aims were: i. the direct comparison of pCLE and 

NBIz for the prediction of targeted histology; ii. the overall diagnostic accuracy for any grade 

dysplasia of AFI-targeted NBIz or pCLE compared to the Seattle protocol; iii. the interobserver 

agreement for optical dysplasia by pCLE.  

METHODS 

Patients and setting 

The study was approved by the Cambridgeshire 2 Research Ethics Committee (09/H0308/118). 

Patients were recruited prospectively between March 2012 and April 2014 at a single tertiary 

referral center for BE. Inclusion criteria were: age >18 years, known BE with minimum length of C 

≥2cm or M ≥4cm (if C<2) according to the Prague classification [21], referral for evaluation of 

dysplastic BE or follow-up post endoscopic resection for HGD/IMC. Short segments of BE were 

excluded due to the excess of AFI false positivity at the gastro-esophageal junction and since 

sampling error and time taken to perform biopsies is not such an issue for these cases [22]. Exclusion 

criteria were: esophagitis (Los Angeles grade ≥B); previous upper-GI surgery (with exception of 

Nissen fundoplication) or known upper-GI tract abnormality (e.g. pharyngeal pouch); known allergy 

to fluorescein; severe or uncontrolled asthma, which increases the risk of adverse reactions to 
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fluorescein; coagulopathy or anticoagulant/antiplatelet therapy for high risk conditions; active or 

severe cardiopulmonary disease or liver disease; dysphagia; special communication needs. 

Endoscopic procedure 

Prior to the procedure patients received either local anaesthesia with lignocaine spray or conscious 

sedation with Midazolam +/- Fentanyl. Patients were endoscoped with FQ260Z endoscopes 

(Olympus inc, Tokyo, Japan) as previously described.[11] Two endoscopists performed the 

procedures without randomization. Both endoscopists had extensive experience in AFI and NBIz, 

with more than 100 procedures each. Prior to patient recruitment, the endoscopists underwent 

online pCLE training (www.cellvizio.net) until they reached at least 90% correct scoring in 5 

consecutive sets of 10 videos. The esophagus was first inspected by white light, high resolution 

endoscopy (HRE) to detect visible lesions (Figure 1). Then, imaging was switched to the AFI mode, 

and AFI was used as a wide-field detector to identify and carefully map AFI(+) areas (red-purple in 

colour). For each patient, a control AFI negative [AFI(-)] area (green colour) was randomly chosen. 

Only these AFI-targeted areas [AFI(+) and one AFI(-) control] were further studied with the narrow-

field optical techniques (NBIz and pCLE) and with biomarkers on biopsies. Up to a maximum of four 

AFI(+) areas were permitted in the research protocol, however small AFI(+) areas within 1 cm from 

the gastro-oesophageal junction were excluded, due to the well-known false positivity in close 

proximity to the gastric folds [23]. First, the mucosal pit pattern and the vascular pattern of AFI-

targeted areas were evaluated by NBIz and classified as regular and irregular as previously described 

[24]. In the absence of clear endoscopic landmarks to help locate AFI-targeted areas on HRE or NBI, 

these were marked with APC (ERBE, VIO200, 2.0 litres, 35W), as fluorescein injection required for 

the confocal examination causes loss of AFI positivity (Figure 1). Second, pCLE was performed on AFI-

targeted areas after injection of fluorescein (2.5ml of 10% solution). pCLE sequences were generated 

and recorded. pCLE patterns were classified in “live-mode” as dysplastic and non-dysplastic based on 

previously published criteria [13]. Immediately after the end of the procedure, the recorded pCLE 

http://www.cellvizio.net/
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videos were reviewed “off-line” by the endoscopist. The post-procedure assessment was recorded 

as the final outcome of the optical biopsy and was matched with the histological outcome.    

Biopsy and histology 

Each AFI(+) area and one AFI(-) area were biopsied for histopathology and biomarker analysis. 

Where possible, depending on the size of the AFI(+) area, two biopsies were taken in the following 

order of priority: one formalin-fixed and paraffin-embedded (FFPE) and one snap frozen in 10% 

dimethysulfoxide (DMSO). For AFI(+) positive areas larger than 1 cm two or more biopsies were 

taken for histology to minimize sampling error. Histopathological assessment of each AFI-targeted 

area relied on the FFPE biopsies. Random biopsies were then taken according to the Seattle protocol 

for histopathological analysis only, including any visible lesions, which had not been flagged by AFI. 

The histology on AFI-targeted and random biopsies was assessed by one of the hospital GI 

pathologists according to the Vienna classification [25]. All dysplastic cases, including indefinite for 

dysplasia (ID), were then reviewed by a second GI pathologist (MOD), who has extensive expertise in 

BE and satisfactory level of inter-observer agreement with external pathologists in previous studies 

[18, 20]. For the purpose of the data analysis, cases with ID were regarded as non-dysplastic, as they 

lacked definite dysplasia. In accordance with the Vienna classification cases of HGD, carcinoma in 

situ and intramucosal adenocarcinoma (IMC) were grouped together (HGD/IMC), as they represent a 

common endpoint for endoscopic therapeutic intervention [4, 26]. For the purpose of the biomarker 

analysis, all biopsies taken using the AFI mode were regarded as AFI-targeted [AFI(+) and AFI(-)]. 

With regards to the overall per-patient histopathological diagnosis, we considered diagnoses made 

using: a) the current clinical standard (Seattle protocol, i.e., biopsies on areas visible on HRE + 

quadrantic random biopsies); and b) the overall histology (criterion a + histology on AFI targeted 

biopsies), which for the purpose of the analyses was regarded as the gold standard.  

Procedure time  
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pCLE time was defined as the time between i.v. injection of fluorescein and the end of the last pCLE 

sequence recorded. Seattle protocol time was defined as the time taken to perform the Seattle 

protocol including biopsies of visible lesions.  

Biomarker analyses 

The biomarker panel included cyclin A, p53 and aneuploidy selected on the basis of previously 

published data [20]. Cyclin A and p53 expression were assessed by immunohistochemistry (IHC) with 

automated staining (BOND™ System, Leica Microsystems, Ltd, Milton Keynes, UK). Surface cyclin A 

was scored as previously described by a single investigator (MdP). Cases with a percentage of 

positive surface cells ≥1% were regarded as positive [27]; dubious cases were reviewed by an 

independent investigator (PL-S) and consensus reached. P53 expression was scored by a single 

investigator (MOD); staining was reported positive in the presence of areas of strong staining or 

complete loss of staining, compared to the background levels, as previously described [28]. 

Aneuploidy was assessed by flow-cytometry on cell isolated from frozen biopsies. The cell cycle 

histogram was analyzed using ModFit LT (Verity Software House, Topsham, ME, USA) by a single 

investigator (MdP), who was blind to the histological outcome; dubious cases were reviewed by an 

independent investigator (CR-I) and consensus was reached. When combined into a panel, we used a 

cut-off of 2 biomarkers positive out of 3 for a diagnosis of HGD/IMC and 1 out of three for a 

diagnosis of any grade of dysplasia.  

Sample size calculation 

The study was powered to address the first primary objective (diagnostic accuracy for HGD/IMC) 

with particular reference to AFI-targeted pCLE which represented the novel imaging approach. From 

previous studies we expected that the combination of AFI and pCLE would have a sensitivity and a 

specificity of at least 90% and 80%, respectively [13, 14]. With this level of diagnostic accuracy we 

calculated that we would have needed at least 14 patients with HGD/IMC and 31 with a lower stage 
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of disease to show a sensitivity of at least 0.70 or better and a specificity of at least 0.65 or better at 

a significance level of 0.05. 

Statistical analysis 

For the purpose of the per-location analysis, each AFI-targeted area was classified as follows: i. NBI 

status (NBI irregular or NBI regular); ii. pCLE status (pCLE irregular or pCLE regular); iii. binary 

outcome of the 3 biomarkers; iv. histological diagnosis. For the purpose of the per-patient analysis, 

we considered the overall outcome of the NBIz and pCLE (irregular if at least 1 area was NBIz or pCLE 

irregular) and the pathological outcome from the biopsies taken according to the Seattle protocol, 

and compared these with the overall histology. Chi-square tests were used to compare differences 

between groups. A p-value <0.05 was considered statistically significant. Intra-observer agreement 

was assessed by κ–statistics on all good quality sequences (n=292) between the “live mode” 

diagnosis made during the procedure and the “off-line” diagnosis made at the end of the procedure. 

Inter-observer agreement for pCLE pattern recognition was assessed by κ–statistics on 120 randomly 

selected sequences after exclusion of 15 with sub-optimal quality. The agreement was assessed 

between the off-line post-procedure diagnosis by MdP or EB-L and a third independent endoscopist 

with extensive expertise in pCLE (HB). According to previously published criteria [13], the 

endoscopist defined each sequence as non-dysplastic or dysplastic, and were allowed to use a call 

“dubious for dysplasia” if undecided (n=10). Agreement was expressed as a weighted κ-value. The 

“dubious for dysplasia” category was allowed since these sequences were randomly selected for off-

line evaluation, whereas when performing pCLE live the endoscopist had the possibility to perform 

additional sequences on the same location if in doubt.  
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RESULTS 

Fifty-five patients with BE were recruited and underwent trimodal imaging (HRE+AFI+NBIz) followed 

by AFI-targeted pCLE. The demographics are shown in Table 1. Overall, in this enriched population 

51% of patients had definite dysplasia, with an equal prevalence of LGD and HGD/IMC cases. In total 

194 AFI-targeted locations were identified at endoscopy [AFI(+):AFI(-) 138:56] with the following 

distribution of histological diagnoses: NDBE n=122, ID n=20; LGD n=24, HGD n=21 and IMC n=7. 

These endoscopic areas were subjected to optical analysis by NBIz and pCLE in turn and finally  to 

biopsies for histology and biomarkers. Patients had a median number of 3 AFI(+) areas analyzed 

(range 0-5), in addition to one AFI(-) area. In two patients an AFI(-) area could not be selected due to 

diffuse low intensity AFI(+) signal and two additional patients had more than 1 AFI(-) area biopsied 

due to AFI(-) lesions visible on HRE. The majority of AFI(+) locations (81%) were inconspicuous at 

HRE, and on histopathology 17% of them contained HGD or IMC and 36% corresponded to BE with 

any degree of dysplasia (LGD + HGD/IMC) (Table 1). We first examined the diagnostic accuracy of the 

AFI-targeted biopsies for dysplasia, in comparison with the Seattle protocol. Conventional 

histopathology on AFI-targeted biopsies correctly staged all the patients with HGD/IMC and 

identified 2 additional patients with focal and inconspicuous HGD, who would have been missed if 

only Seattle protocol biopsies had been taken. However, AFI-targeted histology missed 7 patients 

found to have LGD elsewhere on random biopsies. Hence, histology on AFI-targeted biopsies had a 

sensitivity of 100% for HGD/IMC and 75% for any grade of dysplasia, whereas the Seattle protocol 

had a sensitivity of 85.7% for HGD/IMC and 92.8% for any grade of dysplasia (Table 1).  

In keeping with previously published data, although highly sensitive, in this study AFI alone had a 

high false positive rate for HGD/IMC (82.7%) and any grade of dysplasia (69.5%) (Table 2). To assess 

whether additional advanced imaging modalities could predict histologic dysplasia with higher 

specificity, we used NBIz and pCLE to study areas flagged by AFI in more detail. In the per-location 

analysis, pCLE had significantly better sensitivity than NBIz for all grades of dysplasia (Table 2). pCLE 

reduced the false positive rate of AFI for HGD/IMC and any grade of dysplasia to 69.7% and 48.7% 
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respectively. Similarly NBIz decreased the false positive rate of AFI for HGD/IMC and any grade of 

dysplasia to 53.5% and 39.3%, respectively. The intra-observer agreement on optical histology 

assessed by pCLE between live-mode and off-line diagnosis was ‘good’ with a κ-value of 0.751 

(standard error 0.04).  The pCLE agreement with an independent endoscopist was ‘moderate’ with a 

weighted κ-value of 0.575 (standard error 0.079), which is not dissimilar from that reported by 

Sharma and colleagues in a previous multicenter study [14]. 

We next performed a per-patient analysis to assess the accuracy of pCLE or NBIz in predicting the 

overall pathological outcome based on the imaging patterns only. The basis for this is that the 

presence of optical dysplasia can not only reflect dysplasia in any given location but also be 

informative about the overall status of the patient. pCLE correctly identified all the patients with 

HGD/IMC, while NBIz missed 2 patients with HGD (Table 1), however the differences in sensitivity 

and specificity for HGD/IMC between the two modalities did not reach statistical significance (Table 

3). When we looked at diagnosis of any degree of dysplasia within the BE segment by optical biopsy, 

pCLE had significantly better sensitivity than NBIz (96.4% vs 57.1%), with equal specificity (74.1%) 

(Table 3). Real time histology by pCLE down-graded 1 patient with LGD, whereas it overestimated 3 

patients with non-dysplastic BE. As a result, AFI-targeted pCLE had equal sensitivity for any grade of 

dysplasia when compared to the Seattle protocol (96.4% vs 92.8%, respectively) (Table 3). However, 

AFI-targeted pCLE relied on an average of 3.5 optical biopsies, which compared favourably with 12.9 

histological biopsies per patient required by the Seattle protocol. We compared the time taken to 

perform AFI-targeted pCLE and the multiple biopsies according to the Seattle protocol and found 

that the optical biopsies required significantly shorter time (p=0.0004) (Figure 2).  

Despite high diagnostic accuracy for any grade of dysplasia, pCLE was affected by a 49% false 

positive rate in the per-location analysis when matched with histology within the corresponding 

area.  It is possible that this discrepancy could be explained by sampling error for focal dysplasia, 

which was detected by detailed examination of AFI(+) areas by pCLE, but missed by a single targeted 
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biopsy for histology. Hence, this would explain why AFI-targeted pCLE had better sensitivity for any 

grade of dysplasia than AFI-targeted histology (96.4% vs 75%). In particular, if this was true, one 

would expect a correlation between optical dysplasia by pCLE and the field of molecular change, 

which normally has a larger spatial distribution than histological dysplasia [29]. To test this 

hypothesis we looked at the correlation between pCLE patterns and molecular biomarkers. We 

concentrated on a 3-biomaker panel (aneuploidy + IHC for p53 and cyclin A) that was shown in a 

recent phase IV prospective cross-sectional study to have a high degree of association with prevalent 

dysplasia [20]. As shown in Figure 3a, we found a significant correlation between the number of 

positive biomarkers and the presence of optical dysplasia within the corresponding targeted area. As 

this could be biased by the high enrichment of dysplasia in our cohort of patients, we repeated this 

analysis after exclusion of areas with neoplasia visible on HRE (Figure 3b) or all areas with any degree 

of dysplasia (Figure 3c). The significant correlation between positive biomarkers and pCLE 

irregularity was retained in both analyses, suggesting optical dysplasia associates with molecular 

changes regardless of histologic dysplasia found on the biopsy sample. We then looked at the 

correlation between molecular biomarkers and histologic dysplasia (figure 3d). As expected the areas with 

HGD/IMC were highly molecularly abnormal. Interestingly there was a striking difference between ID and LGD, 

in that all the areas with ID, except one, had no positive biomarkers as opposed to 85% of LGD areas having at 

least 1 positive biomarker. The correlation between molecular biomarkers and histologic dysplasia 

occurred regardless of the presence of  optical dysplasia in the corresponding area (Figure 3e and 3f, 

respectively). 

In this study pCLE yielded a high diagnostic accuracy for any degree of dysplasia, however by using 

the published criteria we could not distinguish between different grades of dysplasia. In particular, 4 

out of 5 patients with indefinite for dysplasia (ID) had at least one area with optical dysplasia on 

pCLE, suggesting that inflammatory changes often underlying this pathological diagnosis could 

confound the optical assessment.  Therefore, we looked at whether the biomarkers could be used to 

integrate the information obtained with real-time pCLE to allow more accurate patient stratification. 
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As showed in Figure 4, all the patients with HGD/IMC had optical dysplasia as well as at least 2 

abnormal biomarkers, but a cut-off of 2 positive biomarkers was too stringent for a diagnosis of LGD. 

By lowering the biomarker threshold, we found that 79% of patients with LGD presented with optical 

dysplasia and at least one positive biomarker. On the other hand, 86% of patients with NDBE had no 

optical dysplasia and half of them had no biomarker positivity and no optical dysplasia. Conversely, 

among the 5 patients with ID as overall diagnosis, 4 had optical dysplasia but only 2 had at most 1 

positive biomarker.  Therefore, using a cut-off of 1 biomarker or more for the diagnosis of any grade 

of dysplasia in combination with optical dysplasia by pCLE, the panel improved the specificity from 

74.1% to 88.9%, with a minimal drop in the sensitivity, compared to AFI-targeted pCLE alone (Table 

3). Of note, the group of patients with LGD was almost equally split between patients having ≥2  and <2 

positive biomarkers. We looked at the correlation between clinical factors (age, length of the BE, spatial 

distribution of dysplasia) and the molecular outcome and found that in patients with LGD the presence of ≥2 

positive biomarkers was associated with multifocal dysplasia (p=0.03). Overall, these results indicate that 

for long BE segments the combination of AFI-targeted pCLE and a small biomarker panel has high 

diagnostic accuracy for dysplasia in BE and that biomarkers help provide an objective measure of the 

dysplasia status of the patient in a more time-efficient manner than the Seattle protocol. 

DISCUSSION 

This study has two main novel findings: i. Real-time assessment by pCLE performed on AFI-targeted 

locations has a good diagnostic accuracy for any grade of dysplasia in BE (sensitivity 96.4% and 

specificity 74.1%); ii. the integration of pCLE and molecular biomarkers further improves specificity 

by reducing the false positive rate and has the potential for further patient stratification compared 

to the standard clinical protocol.  

Recently two large multicenter studies have evaluated the accuracy of CLE to diagnose neoplasia in 

BE based on assessment of random as well as HRE-targeted locations. Even though the diagnostic 

accuracy for HGD/IMC reported by these studies is similar to ours, these trials relied on a high 
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number of areas assessed by CLE. For example, Sharma and colleagues analysed 8 locations per 

patient in a cohort that had a much shorter average BE length compared to ours (3.6cm vs 7.4cm). 

Our study is the first to use CLE exclusively directed by a flagging imaging technique. Of note, in our 

cohort on average only 3-4 locations per patient were used for the optical biopsies. When analysing 

the time required to perform pCLE, this was significantly shorter than that taken to carry out the 

Seattle protocol. Even though the use of AFI as a flagging technique for pCLE has the drawback of 

requiring mucosal marking due to the loss of AFI positivity after I.V. fluorescein, our results suggest 

that this imaging protocol is unlikely to prolong the procedure, if used as an alternative to the 

Seattle protocol.  

One of the particularly complex diagnostic categories in BE is LGD, since there is a high inter-

observer variability among GI pathologists and increasingly treatment is recommended for this 

patient group. Although pCLE has been validated for the diagnosis of HGD and IMC [13, 30], previous 

studies have not evaluated the accuracy for a diagnosis of LGD. Hence, although the primary 

endpoint of our study was to assess diagnostic accuracy for HGD/IMC we also extended the analysis 

to include LGD. In keeping with previous studies [13, 30], in our cohort of patients the sensitivity of 

pCLE for HGD/IMC in the per-patient analysis was high (100%), but this was accompanied by a low 

specificity (53%). Notably, we found that, extending the analysis to LGD as a histological endpoint, 

the specificity increased considerably (74%), without a significant drop in the sensitivity (96.4%). This 

is interesting since in the per-location analysis we did not find an optimal correspondence between 

pCLE and conventional histopathology, due to a false positive rate of 49%. Explanations for this could 

be that i. focal dysplasia was detected by pCLE by detailed examination of each AFI positive area, but 

it was missed by a single biopsy; ii. pCLE detected as dysplastic inflammatory changes that are often 

associated with a diagnosis of indefinite for dysplasia (ID). If the first hypothesis was true, we would 

expect a correlation between optical dysplasia and the field of molecular change, which is known to 

precede definite dysplasia and extend over larger mucosal surface [19, 27, 29, 31]. Indeed, we found 

that biomarker positivity correlated not only with histologic dysplasia, but also with optical dysplasia, 
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even in the analysis that excluded areas with a pathological evidence of dysplasia (Fig. 3C). This 

indicates that there is a tight relationship between the field of molecular change and dysplasia, 

whether it is detected by conventional histology or optical imaging. Furthermore it suggests that at 

least in a proportion of AFI-targeted areas, regarded as false pCLE positive on the basis negative 

histology, focal dysplasia might have been missed by conventional histology. 

In this study, the combination of optical dysplasia and biomarkers with a cut-off of 1 had 89.2% 

sensitivity and 88.9% specificity for an overall per-patient diagnosis of confirmed dysplasia. Our data 

indicate that the presence of optical dysplasia and at least one molecular biomarker defines a high 

risk group for prevalent dysplasia which should be managed with early endoscopic treatment also in 

absence of visible neoplasia (Figure 4). It was clinically useful to distinguish between patients with 1 

vs 2 positive biomarkers since we found a definite association between a diagnosis of HGD/IMC and 

positivity of two or more markers. Additionally in our cohort, patients with LGD and 2 or more positive 

biomarkers were more likely to have multifocal dysplasia. Previously published studies demonstrated a wide 

variety of cancer progression rates in patients with LGD [7, 32] suggesting that this category embraces a rather 

heterogeneous group of patients, which is in keeping with the findings from our optical/molecular 

stratification model. As there is evidence from previous studies that the cancer risk in BE relates to the 

number of positive biomarkers [18, 19], we feel that this stratification based on our panel is clinically 

relevant. On the other hand the absence of optical dysplasia and molecular changes clearly defines a 

low risk group, suitable for a more prolonged surveillance-interval, whereas an intermediate risk 

group with either optical dysplasia or one positive biomarker could have closer follow-up.  Hence, 

the added value of the novel integrated protocol is that while it correctly diagnosed all the patients 

with HGD/IMC and 11 out of 14 patients with LGD, it also detected a high risk profile in a small 

fraction of patients with ID or non dysplastic BE, which could perhaps benefit from early endoscopic 

treatment.  Larger studies with follow up data are required to confirm these findings. For the 

purpose of the statistical analysis we excluded cases with ID from the dysplastic group. There is 

controversy about the increased cancer risk in this group of patients [32, 33], hence ID is not 
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currently an indication to endoscopic intervention. It was interesting that the small group of patients 

with a diagnosis of ID had a different risk profile from patients with non dysplastic BE, since none of 

the ID patients had a low risk signature (no optical dysplasia and no positive biomarkers). This is in 

keeping with the accepted clinical practice that these patients should have closer follow up. However 

areas with ID had a much lower yield of positive biomarkers than LGD (10% vs 85%, Figure 3d), providing 

molecular support to the distinction between this category and cases with definite dysplasia.   

While the optical diagnosis based on pCLE could allow avoidance of biopsies altogether, the addition 

of biomarkers relied on a small number of AFI targeted biopsies. On average 3 to 4 AFI targeted 

areas per patient were biopsied in this study. Our protocol included 2 biopsies for each AFI targeted 

area, one FFPE and one frozen for aneuploidy by flow cytometry. There is evidence, that image 

cytometry on FFPE samples is comparable to flow cytometry for assessment aneuploidy [34], hence 

the panel can be effectively applied to a single FFPE biopsy. These biomarker assays are 

straightforward and could be performed in a clinical laboratory, with the added advantage that they 

give a more objective result that histopathological analysis of dysplasia. Considering that the Seattle 

protocol in our cohort relied on an average of 12.9 biopsies per patient, the biomarkers would lead 

to a nearly 4-fold reduction in the biopsies required compared to the current standard.  

This study has several limitations. Firstly, this a single-center study performed in a cohort of patients 

that was highly enriched for dysplasia. We chose this design and patient number in order to give an 

early indication concerning whether a larger, multicenter study is warranted. It is possible that in an 

unselected population the specificity may be lower, but it is promising that in this study the vast 

majority of patients with non-dysplastic BE (21 out 22) were correctly classified by the 

optical/molecular algorithm. Secondly, the endoscopists were not blinded to the prior histological 

findings and this could have influenced the optical diagnosis. We have looked at the pathological 

outcome preceding the study endoscopy and found that for 20% of patients histology was not 

available and for another 20% the outcome of the pCLE was discordant from the previous 
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histological findings comparing dysplasia with no dysplasia so this does not seem to have been a 

problem. Furthermore, all the laboratory scoring of biomarkers was done without knowledge of the 

histological diagnosis. Thirdly, the pathological finding of HDG/IMC was associated with visible 

lesions with the exception of two patients with focal HGD, indicating that within this group the 

proportion of patients where pCLE contributed to this diagnosis is small. However, all the patients 

with LGD (n=14) had no macroscopically visible lesions on HRE and 13 of them had optical dysplasia, 

indicating that pCLE can efficiently recognize dysplasia even within inconspicuous segment of BE. 

Fourth, the time taken to perform pCLE in this study is a slight under-estimate since did not take into 

account the selection of the locations by AFI, because it was difficult to extrapolate this time from 

that taken to perform trimodal imaging (HRE+AFI+NBIz).  

In conclusion, this study provides evidence that the integration of multimodal imaging based on real 

time assessment of dysplasia by pCLE and a small panel of molecular biomarker can provide effective 

patient stratification to direct clinical management. Future studies on larger and less-selected 

cohorts of patients are required to confirm our findings.  
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Table 1. Patient demographics  
 

Variables  Patients n=55  

Sex (M:F)   13:1 

Mean age (range)   69.5 (61.7-77.3)  

Length of Barrett’s (mean M value)  7.4 

Histological diagnosis   n (%)  

NDBO   22 (40%)   

Indefinite  5 (9%)  

LGD   14 (25.5%)   

HGD/IMC  14 (25.5%)   

Endoscopic features  
 Number of AFI location (AFI+:AFI-) 138:56 

Median number of AFI+ areas per patient (range) 3 (0-5) 

AFI+ areas visible on HRE  19% 

AFI+ areas with HGD/IMC  17% 

AFI+ areas with any grade of dysplasia 36% 

Dysplastic patients missed HGD/LGD 

Seattle protocol 2/0 

AFI-targeted histology 0/7 

AFI-targeted pCLE (optical biopsy) 0/1 

AFI-targeted NBIz (optical biopsy) 2/10 

 

  



23 
 

Table 2. Diagnostic performance of different imaging modalities in the per-location analysis.  

 

HGD/IMC Any grade of dysplasia 

AFI NBIz† pCLE† p value# AFI NBIz† pCLE† p value# 

Sensitivity 92.3% 61.9% 100% 0.001 86% 39.5% 83.3% <0.0001 

Specificity 31.1% 90.5% 67.1% <0.0001 31.9% 92% 72.5% <0.0001 

FP rate 82.7% 53.5% 69.7% 0.12 69.5% 39.3% 48.7% 0.02 

 

FP rate: false positive rate  

†NBIz and pCLE were only performed on AFI-targeted locations 

# comparison between NBIz and pCLE 
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Table 3. Diagnostic performance of different diagnostic modalities in the per-patient analysis 

 

HGD/IMC 

Seattle^ AFI + NBI AFI + pCLE 
AFI + pCLE + 
biomarkers* p value† p value# p value~ 

Sensitivity 86% 84.6% 100% 100% 0.14 0.13 1 

Specificity N/A 70.7% 53.6% 87.8% N/A 0.09 0.0007 

FP rate N/A 52.1% 57.6% 26% N/A 0.69 0.03 

 
LGD + HGD/IMC 

 
Seattle^ AFI + NBI AFI + pCLE 

AFI + pCLE + 
biomarkers* p value† p value# p value~ 

Sensitivity 92.8% 57.1% 96.4% 89.2% 0.89 0.002 0.3 

Specificity N/A 74.1% 74.1% 88.9% N/A 0.78 0.16 

FP rate N/A 30.4% 20.1% 10.7% N/A 0.33 0.29 

 

FP rate: false positive rate  

^ Specificity and FP rate do not apply as false positive cannot be found at histology 

*cut offs: 2 biomarkers positive for HGD/IMC and 1 biomarker positive for LGD+HGD/IMC 

† comparison between histology based on Seattle protocol biopsies and pCLE 

# comparison between NBIz and pCLE 

~ comparison between pCLE and pCLE + biomarkers 
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Figure Legends 

Figure 1 . Endoscopic imaging protocol. A Inconspicuous BE at high-resolution white light 

endoscopy. B Autofluorescence imaging (AFI) reveals an area of positive signal (white arrowheads). C 

NBI with optical magnification shows subtle changes in the mucosal pit (arrowhead) and vascular 

pattern (arrows) of difficult interpretation.  D The AFI positive area is marked with APC. E After I.V. 

injection of 10% fluorescein the AFI positivity is lost due to widespread green fluorescent signal. F 

Analysis of the area by pCLE shows saw-tooth appearance of the glands surface, irregular inter-

glandular space and loss of goblet cells in keeping with dysplasia. Pathological analysis showed low 

grade dysplasia.  

Figure 2. Time taken to perform optical and conventional biopsies. pCLE indicates the time to 

perform endomicroscopic imaging of AFI targeted location. Seattle protocol refers to the time 

needed to take multiple biopsies according to the standard protocol (quadrantic random biopsies 

every 2 cm + targeted on visible lesions). The boxes represent the interquartile ranges with the 

median and the vertical line ranges from minimum to maximum values. 

Figure 3. Association between molecular biomarkers and optical/histologic dysplasia. A-C Graphs 

represent the number of positive molecular biomarkers (x-axis) in endoscopic areas with no optical 

dysplasia (dark gray) and with optical dysplasia (light gray). Only areas with all three biomarkers 

available were included in this analysis. In A all endoscopic areas (n=125) are represented; in  B only 

areas without neoplasia visible at high-resolution endoscopy (n=115) and in C only endoscopic areas 

without histologic dysplasia (n=85). D Percentage distribution of different numbers of positive 

biomarkers (0, 1 and 2/3) in endoscopic areas (n=125) with different histological stage of disease. E-F 

Graphs represent the number of positive molecular biomarkers (x-axis) in endoscopic areas with no 

histologic dysplasia (dark grey) and with histologic dysplasia (light grey). In E only endoscopic areas 

with optical dysplasia (n=56) are represented; in F only endoscopic areas without optical dysplasia 

(n=69) are shown.  
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Figure 4. Integration of optical dysplasia and molecular biomarker to inform patient management. 

Patients are grouped based on their overall histology (NDBE: non-dysplastic Barrett’s esophagus; ID: 

indefinite for dysplasia; LGD: low grade dysplasia; HGD/IMC: high grade dysplasia/intramucosal 

cancer). Groups are colour-coded and based on different combination of optical dysplasia and 

positive molecular biomarkers.  

 


