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Using two-dimensional direct numerical simulations, we investigate the flow in a fluid of
kinematic viscosity ν and density ρ around elliptical foils of density ρs with major axis
c and minor axis b for three different aspect ratios: AR = b/c = 1 (a circle); AR = 0.5;
and AR = 0.1. The vertical location of these foils ys(t) = A sin(2πf0t) oscillates with
amplitude A and frequency f0 in two distinct ways: ‘pure’ oscillation, where the foils
are constrained to remain in place; and ‘flying’ oscillation, where horizontal motion is
allowed. We simulate the flow for a range of the two appropriate control parameters, the
nondimensional amplitude or Keulegan-Carpenter number KC = 2πA/c and the nondi-
mensional frequency or Stokes number β = f0c

2/ν. We observe three distinct patterns
of asymmetry, labelled ‘S-type’ for synchronous asymmetry, ‘QPH-type’ and ‘QPL-type’
for quasi-periodic asymmetry at sufficiently high and sufficiently low (i.e. AR = 0.1)
aspect ratios respectively. These patterns are separated at the critical locus in KC − β
space by a ‘freezing point’ where the two incommensurate frequencies of the QP-type
flows combine, and we show that this freezing point tends to occur at smaller values
of KC as AR decreases. We find for the smallest aspect ratio case (AR = 0.1) that
the transition to asymmetry, for all values of KC, occurs for a critical value of an ‘am-
plitude’ Stokes number βA = β(KC)2 = 4π2f0A

2/ν ≃ 3. The QPL-type asymmetry
for AR = 0.1 is qualitatively different in physical and mathematical structure from the
QPH-type asymmetry at higher aspect ratio. The flow at the two ends of the ellipse
become essentially decoupled from each other for the QPL-type asymmetry, the two fre-
quencies in the horizontal force signature being close to the primary frequency, rather
than twice the primary frequency as in the QPH-type asymmetry. Furthermore, the asso-
ciated coefficients arising from a Floquet stability analysis close to the critical threshold
are profoundly different for low aspect ratio foils. Freedom to move slightly suppresses
the transition to S-type asymmetry, and for certain parameters, if a purely oscillating
foil subject to S-type asymmetry is released to move, flow symmetry is rapidly recovered
due to the negative feedback of small horizontal foil motion. Conversely, for the ‘higher’
aspect ratios, the transition to QPH-type asymmetry is encouraged when the foil is al-
lowed to move, with strong positive feedback occurring between the shed vortices from
successive oscillation cycles. For AR = 0.1, freedom to move significantly encourages
the onset of asymmetry, but the newly observed ‘primary’ QPL-type asymmetry found
for pure oscillation no longer occurs when the foil flies, with S-type asymmetry leading
ultimately to locomotion at a constant speed occurring all along the transition boundary
for all values of KC and β.
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1. Introduction

The loss of symmetry as a flow parameter varies is a key phenomenon in fluid dynamics.
A classic, and well-known example is the loss of symmetry in the flow around a cylinder
forced to move in uni-directional simple harmonic motion in an initially quiescent fluid,
or equivalently in a sinusoidally oscillating flow around a stationary cylinder (Honji 1981;
Williamson 1985; Tatsuno & Bearman 1990; Nehari et al. 2004; An et al. 2011). These
flows are of fundamental interest, with potential application to the study of loads on
structures immersed in waves or other oscillatory fluid motions. Here, we refer to this
class of flows as ‘pure’ oscillations, as the location of the cylinder is fixed in the direction
orthogonal to the oscillation direction.
Another distinct class of oscillatory flows known to exhibit symmetry breaking is flap-

ping oscillation, a common strategy for flying or swimming animals (Childress 1981).
Vandenberghe et al. (2004) proposed a specific, idealized model, considering a plate with
an imposed vertical oscillation in a viscous fluid, and free to move horizontally. They
demonstrated that the plate begins to move horizontally as a critical frequency is ex-
ceeded, indicating that a symmetry-breaking bifurcation occurs. Subsequently, there has
been much research activity, investigating the effect of variations in the aspect ratio and
flexibility on the flapping locomotion of a two-dimensional body in a viscous fluid were
investigated numerically (see, for example Alben & Shelley (2005); Lu & Liao (2006);
Zhang et al. (2009); Spagnolie et al. (2010); Zhang et al. (2010)).
The system of a ‘flying’ oscillation is an inherently coupled one, in which the Navier-

Stokes equations govern the surrounding fluid and the horizontal motion is determined by
the fluid force acting on its boundary. This system is not easily represented by a single set
of unified differential equations, and so it is challenging to conduct a conventional linear
stability analysis for the flying oscillation class of flows, unlike the more straightforward
pure oscillation class of flows, where such analyses have proved very instructive (Elston
et al. 2004, 2006). However, Alben & Shelley (2005) found clear evidence of exponential
growth in the horizontal velocity of a foil during the initial transition to flying, suggesting
that an inherent linear instability is associated with the flying transition. Therefore,
in this paper, we investigate whether insights from pure oscillation flows, in particular
the mechanisms by which symmetry is lost, are relevant to flying oscillation flows. An
important aspect which we will consider is the extent to which symmetry breaking is
either promoted or suppressed by allowing horizontal motion of the oscillating body.
There has been much research considering pure oscillations of a circular cylinder, with

less attention being paid to oscillating bodies of different aspect ratios, which are more
relevant for comparison with flying oscillations. For a cylinder of density ρs with diameter
D in a viscous fluid of density ρ and kinematic viscosity ν, subjected to a vertical imposed
pure oscillation of ys = A sin 2πf0t (i.e. with period T0 = 1/f0), two natural parameters
are the nondimensional frequency or Stokes number β and the nondimensional amplitude
or Keulegan-Carpenter number KC = 2πA/D, defined as

β =
f0D

2

ν
, KC =

2πA

D
. (1.1)

Several flow regimes have been found in KC − β space, relating to different types of
symmetry-breaking instabilities, (see for example Tatsuno & Bearman (1990)). Based
on dye-release and free-surface streakline visualization, they produced a KC − β space
map of eight different regimes found for β ∈ [5, 150], KC ∈ [1.6, 15]. We are particularly
interested in the first onset of asymmetry in two-dimensional flow, and so we restrict
attention to a relatively small region of KC − β space where the pure oscillation flows
around cylinders are only two-dimensionally unstable. Effectively, this requires that we
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Figure 1. Boundaries between two-dimensional symmetrical flows and those with broken sym-
metry, established in experiments (Tatsuno & Bearman 1990)(solid line) and two-dimensional
numerical simulation (Elston et al. 2001) around a circular cylinder (AR = 1.0). Parameter val-
ues associated with symmetric flow as obtained by our two-dimensional simulations are marked
by △, while parameter values associated with asymmetric flow are marked by �.

restrict attention to sufficiently small values of β, avoiding regimes susceptible to primary
three-dimensional instabilities.

In figure 1, we plot the transition boundaries in KC − β space determined both by
previous experiments (Tatsuno & Bearman 1990) as well as direct numerical simulations
restricted to two-dimensional flows (Elston et al. 2001). We also plot our numerical
calculations using the numerical methods described in the following section, showing
good agreement, and validating our approach. Although this is a single marginal curve
separating symmetric flow below and to the left of the curve from asymmetric flow above
and to the right of the curve, there is a qualitative difference in the character of the form
of the asymmetry either side of the marked ‘freezing point’, as analysed in detail for the
AR = 1.0 case by Elston et al. (2004, 2006). To the left, at higher Stokes numbers β or
equivalently smaller values of KC, the instability develops into a quasi-periodic or ‘QP-
type’ asymmetry, with the horizontal force on the cylinder exhibiting two well-defined
and incommensurate frequencies either side of twice the primary oscillation frequency of
the foil. As presented in these two papers, the results of a linear Floquet stability analysis
show clearly that the QP bifurcation is supercritical, and of Neimark-Sacker type, with
the emergence of a complex-conjugate-pair of Floquet multipliers crossing the unit circle
(thus signifying instability).

Physically, these two frequencies lead to a much lower frequency due to ‘beating’, asso-
ciated with a much longer secondary period in the flow dynamics. As β is reduced moving
rightwards along the transition boundary to larger values ofKC, the two split frequencies
converge on (twice) the primary frequency as the associated beating secondary period
diverges to infinity, (see for example figure 5c of Elston et al. (2006)) the critical complex-
conjugate-pair Floquet multipliers coalesce at µ = +1 (a single real Floquet multiplier)
and the asymmetry ‘freezes’ into a synchronous or ‘S-type’ asymmetry at the ‘freezing
point’, a terminology first proposed by Elston et al. (2006). Although once again Elston
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et al. (2006) established that the bifurcation to S-type asymmetry was supercritical, the
precise location of the freezing point is difficult to determine numerically, as the quasi-
periodicity moves to longer and longer periods, with differing estimates of the freezing
point occurring anywhere in the range βc ≃ 12− 18 (Elston et al. 2004, 2006).
However, as already noted, the onset of asymmetry for purely oscillating bodies with

different aspect ratios is not so well-understood. Since smaller aspect ratios are more
relevant to the flying oscillation class of flows, and we are interested in comparing and
contrasting the onset of asymmetry in these two classes of flows, we simulate the two-
dimensional flow around oscillating elliptical foils for three different aspect ratios, namely
AR = 1.0 (the previously considered circular cylinder) AR = 0.5 and AR = 0.1. After
briefly describing our numerical method in section 2, we identify the transition boundaries
for purely oscillating elliptical foils, and characterise the observed symmetry breaking in
section 3, in particular investigating how varying the aspect ratio modifies the QP-type
and S-type of asymmetry. We show that the QP-type asymmetry for the smallest aspect
ratio is qualitatively different in both physical and mathematical structure from the
previously considered circular cylinder flow. Both the dynamical flow evolution and the
mathematical description in terms of, for example, the calculated coefficients from a
Floquet stability analysis, phase portraits or Poincaré maps generated from the time
evolution of the horizontal force on the foil are qualitatively different for the flow around
a small aspect ratio foil. Physically, there is no discernible interaction between the flow
induced at the two ends of the ellipse as it oscillates vertically, and the primary frequency
f0 splits into two, qualitatively different from the splitting of its first harmonic 2f0 as
in the flows associated with foils of higher aspect ratio. Therefore, we refer to this low
aspect ratio asymmetry as a ‘primary’ QPL-type asymmetry, to distinguish it from the
secondary QPH-type asymmetry, which is the natural generalisation of the previously
identified QP-type asymmetry of oscillating circles with ‘high’ aspect ratio AR = 1.
We demonstrate that reducing the aspect ratio tends to lead to earlier transition to

asymmetry, in the sense of transition occurring for smaller values of β for a given value
of KC, and also that the freezing point tends to move to smaller values of KC as the
aspect ratio decreases. Indeed, we find that the smallest aspect ratio case is once again
qualitatively different, in that for all values of KC which we consider, the transition to
asymmetry occurs close to a fixed value of β(KC)2 = 4π2A2f/ν, showing that in this
limit the actual dimensions of the oscillating foil are not important to leading order, an
observation which is consistent with the lack of interaction observed between the flow at
the two ends of the ellipse for the primary QPL-type asymmetric flow for the AR = 0.1
ellipse.
Armed with this insight, in section 4 we then turn our attention to the class of fly-

ing oscillation flows for foils with these three aspect ratios, identifying when asymmetry
onsets. Significantly, freedom for the foil to move horizontally appears to modify the
transition boundary differently on either side of the freezing point. To the right of the
freezing point, when the asymmetry is synchronous, freedom to move horizontally sup-
presses the onset of asymmetry, in the sense that asymmetry onsets for larger values of
β at a fixed value of KC. Indeed, we demonstrate that there is a range of parameter
values for which a purely oscillating foil induces a strongly asymmetric S-type flow that
nevertheless completely disappears soon after the foil is released to move horizontally. A
very small amplitude horizontal motion of the foil negatively feeds back on the instability
mechanism for the S-type asymmetry, thus ensuring the flow remains symmetric to larger
values of the Stokes number.
Conversely, for intermediate aspect ratios, freedom to move horizontally encourages

the development of QPH-type asymmetry, in the sense that such asymmetry arises at
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smaller values of β for a given value of KC to the right of the freezing point on the
transition boundary. There is a positive feedback mechanism between shed vortices from
the ends of the oscillating foil associated with successive primary oscillation periods, due
to the relatively high frequency of vortex shedding in this region of parameter space.
The behaviour is qualitatively different for the foil with the smallest aspect ratio, in

that once the foil is free to move horizontally, primary QPL-type asymmetry no longer
occurs. Asymmetry still arises at smaller values of β for given KC, but the asymmetry
is now of S-type for all values of KC, with a synchronous signal in the horizontal force
on the foil at twice the frequency of the primary oscillation. We discuss the implications
of these results for the transition to flying locomotion, and briefly draw our conclusions
in section 5.

2. Problem description and numerical method

2.1. Problem description

We consider elliptical foils with major axis c and minor axis b, such that AR = b/c 6

1, with uniform mass density ρs, as shown in figure 2(a). The elliptical foil translates
in the infinite x − y plane through a two-dimensional viscous fluid of density ρ and
kinematic viscosity ν. Although variations in the density ratio ρs/ρ undoubtedly affect
the flow dynamics after symmetry breaking (see e.g. Alben & Shelley (2005)), here we
are exclusively interested in the initial behaviour very close to the transition boundary,
and so for simplicity we keep the density ratio fixed at the single value ρs/ρ = 10.
As noted above, we impose a vertical oscillation of the centre of the foil so that ys(t) =

A sin(2πf0t). We generalise the control parameters defined in (1.1) to elliptical foils by
using c as the characteristic length, i.e.

β =
f0c

2

ν
, KC =

2πA

c
. (2.1)

Henceforth, all lengths are non-dimensionalised with c, all densities with ρ, and all time
scales with the viscous time scale c2/ν, such that the nondimensional period T0 of the
primary oscillation is 1/β, and the nondimensional primary frequency f0 = β.
The Stokes number β may thus be thought of as a Reynolds number, involving as it does

the balance between inertia and viscosity, or equivalently the relative size of the viscous
time scale to the dominant flow time scale, the primary oscillation period of the foil.
However, there are alternative definitions using different combinations of characteristic
velocities and length scales which may be more relevant. For sufficiently large KC, the
flow must depend on the horizontal extent of the ellipse, and so it is natural to define a
Reynolds number using the maximum vertical velocity 2πAf0 as the velocity scale and
the major axis as the length scale,

ReA =
2Acf0
πν

=
βKC

π
, (2.2)

where the factor of π makes this definition equivalent to the ‘flapping’ Reynolds number
of Vandenberghe et al. (2004). Typically, for the flows considered here ReA ∼ O(10−100).
Conversely, for smaller values of KC, it is at least conceivable that the horizontal extent
of the foil does not play a significant dynamical role, and so A should also be used as the
natural length scale of the flow, leading to an ‘amplitude’ Stokes number βA defined as

βA = β(KC)2 =
4π2f0A

2

ν
. (2.3)
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Figure 2. (a) Geometric definition of an elliptical foil with AR = b/c = 0.5; (b)
Representative grid distribution around the foil.

2.2. Numerical method

To simulate the flow around an oscillating foil in a quiescent fluid, we use the open source
code OpenFOAM (Jasak 1996). The time-dependent Navier-Stokes equations are solved
using the finite volume method, assuming incompressibility. The mass and momentum
equations are solved on a moving grid domain using the Arbitrary Lagrangian Eulerian
(ALE) formulation (see Ferziger & Peric (2002)). The integral form of the governing
(conservation) equations defined in an arbitrary moving volume V bounded by a closed
surface S is:

d

dt

∫

V

ρUdV +

∮

S

ds · ρ(U−Ub)U =

∮

S

ds · (−pI+ ρν∇U), (2.4)

where U is the fluid velocity, Ub is the boundary velocity of a finite volume, and p is
the pressure. As the volume V is no longer fixed in space, its motion is captured by the
motion of its bounding surface S at the boundary velocity Ub. For the details of the
discretisation and implementation of boundary conditions, as well as the transformation
of the underlying partial differential equations into corresponding systems of algebraic
equations, see Ferziger & Peric (2002).

The space discretizations are second-order upwind for the convection terms and central
differences for the Laplacian terms, respectively. The time discretization is first-order
implicit Euler. Pressure-velocity coupling is enforced using the PISO scheme (Ferziger
& Peric 2002). The preconditioned conjugate gradient (PCG) method is used to treat
the pressure equation and preconditioned bi-conjugate gradient (PBiCG) method is used
for the velocity equations. Numerical accuracy is set to double-precision and the initial
conditions are chosen to be uniform. We set the boundary condition on the foil to be
moving-wall, with no flux normal to the wall. For the class of ‘flying’ oscillation flows,
for which the foil is free to move horizontally, the motion of the foil is determined by
the horizontal component of the force due to the fluid on the foil, through application of
Newton’s second law:

ms

d2xb

dt2
= Fx(t), (2.5)

where xb is the horizontal location of the foil, ms is the foil mass given by ms = ρsS, with
ρs the foil density and S the foil area. The (in general time-varying) horizontal component
of the force Fx(t) is calculated by integrating the pressure and viscous stresses over the
surface of the foil, and then identifying the component in the horizontal x−direction.
As already noted, we set the density ratio ρs/ρ = 10, for all simulations. This ordinary
differential equation is solved using a fourth order Runge-Kutta algorithm.

To assure time-discretization independence, we require two conditions. The first con-
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dition is that the Courant number of all cells, Co, defined as

Co =
δt|U|
δx

< 1, (2.6)

where δt is the time step, |U| is the magnitude of the velocity through that cell and δx
is the cell width in the direction of the velocity. Note that the maximum Co is usually
determined by the smallest cell size, and we continuously ensure that Co < 1 for all cells.
The second condition is that we ensure that there at least 2000 time steps for each primary
oscillation period T0 = 1/f0 of oscillation, to ensure that any unsteadiness caused by this
oscillation is well-resolved. We have found that requiring these two conditions yields
time-accurate and robust results.
To validate the spatial resolution we use, we have carried out a grid-independence

study on a purely oscillating elliptical foil with aspect ratio AR = 1.0, i.e. a circular
cylinder in two-dimensional space, analogously to the study discussed in detail in Deng
et al. (2014). We find that meshes with approximately 50000 cells provide satisfactory
and consistent accuracy in space. As an example, we plot the grid near an elliptical foil
with AR = 0.5 in figure 2, which shows the gradual increase of the mesh size from the
foil boundary. The domain is defined as a circle with a radius 20c. Pressure and all com-
ponents of the velocity gradient tensor are set to zero on the boundary of the domain.
Further confidence in the fidelity of our simulations is gained by the good agreement
with previous numerical simulations by Elston et al. (2001) of the calculated transition
boundary for flow around an AR = 1.0 foil shown in figure 1, particularly for low β num-
bers. We identify the transition boundary between symmetric and asymmetric flow for
each aspect ratio analogously to the transition boundary shown in figure 1 by conducting
a bisection-like search with different parameter pairs in numerical simulations to identify
close parameter pairs, one of which induces asymmetric flow, (marked with a square in
the figure) while the other (marked with a triangle) maintains symmetric flow over many
oscillation periods of the foil.

3. Symmetry breaking of ‘pure’ oscillations

3.1. Symmetry breaking for AR = 1.0

For ‘elliptical’ foils with AR = 1.0, i.e. circular cylinders, previous researchers have
studied in detail the onset of symmetry breaking for the class of pure vertical oscillation,
where the cylinder is held at a fixed horizontal location. As already noted, through
the use of a Floquet stability analysis restricted to a two-dimensional subspace, Elston
et al. (2006) identified a single marginal stability or transition boundary in KC − β
space, but with two distinct asymmetric flow patterns above this curve, both arising
from supercritical bifurcations depending on whether the critical Floquet multipliers are
real or complex-conjugate pairs. At relatively low values of β, the flows break x-reflection
symmetry, while retaining a spatio-temporal symmetry, which manifests itself in the z-
vorticity component of the flow field as Ω(x, y, t) = −Ω(x,−y, t + T0/2), where T0 is
the period of oscillation. These flows are synchronous with the oscillatory motion of the
cylinder, and hence are labelled S-type. A useful diagnostic is the horizontal force time
history on the cylinder, i.e. the time-variation of the horizontal component of the integral
of the pressure and the viscous stresses over the surface of the cylinder. Due to the fact
that vortices are shed in both the upward and downward stroke of the foil, synchronous
asymmetry is expected to have a periodic structure in the horizontal force dominated by
a frequency f = 2f0 = 2β, i.e. twice the frequency of the primary oscillation of the foil.
At higher values of β > βc, ((KCc, βc) is the location of the freezing point in parameter
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Figure 3. 22 evenly spaced contours of vorticity between −60 (blue) and +60 (red) on the
asymmetrical side of the transition boundary for a circular purely oscillating foil with AR = 1.0
when the centre of the foil is at y = −A, its largest magnitude negative displacement for
flows with a: (a) QP-type asymmetry with KC = 4.89, β = 40; (b) QP-type asymmetry with
KC = 5.65, β = 28; (c) S-type asymmetry with KC = 6.91, β = 16; (d) S-type asymmetry with
KC = 8.16, β = 12.

space) the flow loses this fundamental synchronization with the cylinder’s motion, and a
new secondary, generically incommensurate period arises. Typically, close to the critical
value βc, this secondary period is very long, and so may be thought of as coming in
from infinity as β > βc. These inherently quasi-periodic flows are labelled QP-type, and
Tatsuno & Bearman (1990) observed that large vortices of opposite sign are formed in
succession for equal numbers of oscillation cycles, direct evidence of the secondary period
for such flows.
These two qualitatively different regimes are well reproduced quantitatively by our

numerical simulations, as shown in figure 1. For the QP-type asymmetries, a new longer
secondary period Ts arises in the horizontal force time history, resulting from the beating
between two close frequencies around (twice) the primary oscillation frequency. The syn-
chronous frequency bifurcates into two slightly different frequencies, due to the interac-
tion between successive vortices shedding at relatively high frequency from the oscillating
body. When travelling along the transition boundary to lower Stokes numbers towards
the freezing point location (KCc, βc), the two bifurcated frequencies gradually approach
each other, converging on twice the primary oscillation frequency.
An alternative, and formally equivalent method to determine the location of the freez-

ing point is to consider the ratio of Ts/T0, where T0 is the period of oscillation of the
flapping foil. Elston et al. (2006) derived this ratio from the critical Floquet multipliers,
and showed that as β → β+

c , Ts/T0 → ∞. However, due to the fact that close to the
critical value βc, the secondary period is predicted to be arbitrarily long, it is challenging
to determine the freezing point precisely using numerical simulation. Here, we are not
concerned with determining the precise location (KCc, βc) in parameter space defining
the freezing point, but rather we wish to investigate the physical properties of the QP-
type flows and the S-type flows, and their dependence on aspect ratio for both classes
of pure and flying oscillations. For an AR = 1.0, purely oscillating cylinder, we estimate
that the freezing point lies between 16 < βc < 28.
We consider the flow structures associated with these different types of asymmetric
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Figure 4. Computed positions of massless particles advected from close to a circular cylinder,
i.e. AR = 1.0 in flows with parameters (a) KC = 4.89, β = 40 (QP-type asymmetry) after a
release during the interval [94T0, 126T0]; and (b) KC = 8.16, β = 12 (S-type asymmetry) after
a release during the interval [96T0, 112T0] following the start of pure oscillation with period
T0. Blue particles are released continuously from the right of the equator of the circle, and red
particles are released continuously from the left of the equator of the circle.

flows around an AR = 1.0 cylinder in figure 3, where we show instantaneous vorticity
contours just on the asymmetrical side of the transition boundary when the cylinder is
at its maximum amplitude negative displacement (i.e. at ys = −A). Panels (a) and (b)
show QP-type asymmetry, while panels (c) and (d) show S-type asymmetry. Considering
the S-type asymmetrical flows first, their structure is entirely consistent with the flow
considered, by for example Tatsuno & Bearman (1990). The opposite signed vortices
which roll up on either side of the cylinder develop with slightly different strengths, and
so as the cylinder reverses in direction, the stronger vortex convects across the cylinder
and is shed at an angle relative to the vertical, leading to an induced flow with a broken
left-right symmetry, thus reinforcing the fact that one of vortices is stronger than the
other, and so leading to a synchronous asymmetric flow, which still retains an up-down
symmetry about the equilibrium position of the oscillating cylinder. As is clear from
comparison of the two panels (c) and (d), there is no preference for the direction in
which the stronger vortex propagates. Although not shown, the horizontal force Fx(t)
time history on the cylinder is dominated by an oscillation with twice the frequency of
the primary oscillation frequency of the foil.
Conversely, for flows with QP-type asymmetry, a secondary period also develops in

the flow, distinct from the primary oscillation period, leading to a distinct, at least
for flows with parameters far from the freezing point, as shown in panel (a), dipolar
structure of large vortices in the far field. Due to transient effects, and the fact that as
the freezing point is approached the secondary period can be very long, this structure
can be difficult to detect in a single snapshot, such as that shown in panel (b), but there
is a qualitative difference between the two types of flow. A particularly instructive way
to observe this qualitative difference is to consider the Lagrangian evolution of virtual
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(massless) particles released close to the oscillating body. We release a continuous stream
of particles with velocity 2πAf0/10 at a distance 0.1c from the ‘equator’ of the oscillating
cylinder in a direction ±30◦ from the horizontal. We colour the particles blue if they are
released on the right of the cylinder, and red if they are released on the left.
To avoid any effect due to initial transients, we show the particle distribution released

during the interval [94T0, 126T0] in figure 4(a) for the QP-type flow shown in figure 3(a)
and the particle distribution during the interval [96T0, 112T0] in figure 4(b) for the S-
type flow shown in figure 3(d). For the QP-type flow, the dipolar vortical structures are
clearly apparent. The particles shed from either side of the cylinder are initially aligned
with the direction of oscillation, but after several cycles they roll up to form large dipolar
vortical structures. Large vortices of opposite sign are formed successively during each
oscillation cycle, and the arrangement of these vortices is somewhat similar to that in
a von Karman vortex street behind a cylinder in uniform flow, although the sense of
rotation of the vortices is opposite to that found in a unidirectional flow wake and the
vortices convect themselves orthogonally away from the generating cylinder.
For the S-type flow shown in figure 4(b), the particle distribution is very different,

with symmetry about a horizontal line through the equilibrium position of the oscillating
cylinder, and the multiple small horseshoe structures clearly being synchronous with the
primary oscillation of the cylinder, with no particular larger scale structure apart from
the over-arching curve of the flow asymmetry extending to the right of the cylinder. For
both cases it is also clear (and unsurprising) that there is strong communication between
the fluid flow either side of the cylinder, due to the inevitable interaction of the large scale
vortices which develop, with the blue and red particles being thoroughly inter-mixed. All
these observations accord well with the results presented by Elston et al. (2006).

3.2. Symmetry breaking for AR = 0.5

The general picture of the transition boundary to asymmetry being characterised by two
distinct types of quasi-periodic and synchronous asymmetry for different values of β either
side of the freezing point at (KCc, βc) carries over to flows around elliptical foils with
aspect ratios AR < 1, although reducing the aspect ratio has an effect on the location
of the transition boundary, as shown in figure 5. As for figure 1, the data for which is
reproduced here, we conduct a bisection-like search using numerical simulations with
different parameter pairs. Parameter pairs marked with triangles maintain symmetric
flow over many oscillation periods, while parameter pairs marked with squares induce
asymmetric flow. Generically, for a given value of β, the boundary shifts to smaller values
of KC as the aspect ratio decreases. Similar values of β ∼ 20 are associated with the
freezing zone value of βc where the symmetry breaking structure switches from QP-type
to S-type asymmetry.
Turning our attention to the flow structures, as shown in figure 6, once again when

the foil is at its largest magnitude negative displacement, although there are clearly
differences in detail, the structure for the flows associated with the intermediate aspect
ratio elliptical foil with AR = 0.5 share strong points of similarity with the flows for the
circular cylinder shown in figure 3. There is clear evidence of the characteristic dipolar
vortical street for the QP-type flow shown in figure 6(a), and the sweeping, synchronous
dominant vortex on one side propagating at an angle to the vertical characteristic of
S-type flow is apparent in figure 6(d). As noted in the introduction, we refer to this
asymmetry as QPH-type asymmetry, associated as it is with a sufficiently high-aspect
ratio foil so that the QP-type asymmetry is a simple generalisation of the previously
discussed asymmetry for flow around an AR = 1.0 foil.
This resemblance is further confirmed by the Lagrangian massless particle distribu-
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Figure 5. Location of transition boundaries as a function of Keulegan-Carpenter parameter
KC and Stokes number β as defined in (1.1) for different aspect ratios: AR = 1.0 (solid line);
AR = 0.5 (dashed line); AR = 0.1 (dash-dotted line). The marked freezing zone approximates
the location of transition between QP-type and S-type asymmetries. Parameter values associated
with symmetric flow as obtained by our two-dimensional simulations are marked by △, while
parameter values associated with asymmetric flow are marked by �.

Figure 6. 22 evenly spaced contours of vorticity between −60 (blue) and +60 (red) on the asym-
metrical side of the transition boundary for an elliptical purely oscillating foil with AR = 0.5
when the centre of the foil is at y = −A, its largest magnitude negative displacement for flows
with a: (a) QP

H
-type asymmetry with KC = 3.01, β = 60; (b) QP

H
-type asymmetry with

KC = 4.39, β = 19; (c) S-type asymmetry with KC = 5.65, β = 11; (d) S-type asymmetry with
KC = 8.16, β = 5.
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Figure 7. Computed positions of massless particles advected from close to the elliptical foil
with AR = 0.5 in flows with parameters (a) KC = 4.89, β = 19 (QP

H
-type asymmetry) after a

release during the interval [130T0, 150T0]; and (b) KC = 8.16, β = 5 (S-type asymmetry) after
a release during the interval [130T0, 170T0] following the start of pure oscillation with period
T0. Blue particles are released continuously from the right of the equator of the circle, and red
particles are released continuously from the left of the equator of the circle.

tions, (for the QPH-type flow shown in figure 6(a) and the S-type flow shown in figure
6(d)) which we present in figure 7. As before, the particles are introduced after any initial
transient effects have passed. The dipolar vortex street for the QPH-type flow for the foil
with AR = 0.5 is really rather similar to the equivalent flow around the circular cylinder
shown in figure 4 and the synchronous S-type flow also exhibits a symmetry about a
horizontal line through the equilibrium position of the foil, with identifiable structures
associated with each of the oscillation periods, although the characteristic curved struc-
ture actually now bends round at the end, indicative of a return flow towards the foil.
The dipolar vortex street arises from interactions between vortices shed from either side
of the foil during both the up-stroke and the down-stroke of the foil, and so we expect
to be able to detect a frequency close to 2f0 = 2β in the horizontal force history on the
foil.
The identification of these flows as being of the generic QPH-type and S-type asym-

metries can be further confirmed by considering the time-dependent properties of the
nondimensional horizontal force histories Fx(t) for these two flows, which we plot in fig-
ure 8(a) for the QPH-type flow with KC = 3.01, β = 60 and in figure 8(b) for the S-type
flow with KC = 8.16, β = 5. The different spectral properties of the two flows are imme-
diately apparent, with the S-type flow being dominated by (twice) the primary frequency
of oscillation of the foil, while there is a clear beating of the force signal for the QPH-type
flow over a much longer period, although there is also a dependence quite close to twice
the primary frequency of oscillation. Unsurprisingly, the magnitude (nondimensionalised
with ν and c) of the force is substantially larger for the QPH-type flow than for the S-type
flow.
These observations can be made quantitative by consideration of the frequency power
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with aspect ratio AR = 0.5 at (a) KC = 3.01, β = 60, representing a typical QP

H
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metry, and (b) KC = 8.16, β = 5, representing a typical S-type asymmetry. Time is scaled with
the period of the primary oscillation T0 = 1/β.
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Figure 9. Horizontal force power spectra for the flow with a purely oscillating elliptical foil
with AR = 0.5 and (a) KC = 3.01, β = 60; (b) KC = 8.16, β = 5. Frequencies are scaled with
the nondimensional frequency of the primary oscillation f0 = β.

spectra obtained by using a fast fourier transform, which we plot in figure 9. It is im-
portant to remember that, because of the up-down symmetry of the primary oscillating
frequency of the foil, the frequency inherent in horizontal force time history for a sym-
metric flow should be precisely double that of the primary oscillation frequency f0 = β
of the foil. We observe that two similar but different frequencies exist for the QPH-type
flow asymmetry corresponding to 1.88f0 and f2 = 2.12f0 respectively. Naturally, there
is also substantial power in another lower frequency f3 = 0.12f0 that is exactly the con-
sequence of beating between the other two frequencies. As expected, the horizontal force
time history for the S-type flow is completely dominated by twice the primary frequency
of oscillation, with a weak contribution of the second harmonic.

3.3. Symmetry breaking for AR = 0.1

The properties of the transition boundary, and indeed the properties of the associated
asymmetric flows, are qualitatively different for pure oscillation of the elliptical foil with
the smallest aspect ratio AR = 0.1, when the foil is, in some sense, long and thin.
Consideration of figure 5 suggests that there is a significant change in the structure of
the transition boundary curve for the smallest value of AR = 0.1. As noted above during
the discussion of the different possible definitions for Reynolds number, it is at least
plausible for such a flow to be dynamically unaffected by the horizontal extent c of the
foil, and so in figure 10, we replot the transition boundaries shown in figure 5 using
βA = β(KC)2 as defined in (2.3) as the y−coordinate to test the hypothesis that c is not
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Figure 10. Location of transition boundaries as a function of Keulegan-Carpenter parameter
KC and amplitude Stokes number βA = β(KC)2 as defined in (2.3) for different aspect ratios,
AR = 1.0 (solid line); AR = 0.5 (dashed line); AR = 0.1 (dash-dotted line). The marked
freezing zone approximates the location of transition between QP-type and S-type asymmetries.
Parameter values associated with symmetric flow as obtained by our two-dimensional simulations
are marked by △, while parameter values associated with asymmetric flow are marked by �.

significant for the foil with aspect ratio AR = 0.1. This hypothesis proves to be correct,
as the transition boundary for the AR = 0.1 case occurs, to a very good approximation at
a fixed value of βA ≃ 3, for all calculated values of KC, suggesting that the dependence
on c is not significant for this case.
Consistent evidence that the small aspect ratio flow is different can also be gained from

consideration of the vorticity contours shown in figure 11 for the flow around the elliptical
foil with AR = 0.1 on the asymmetrical side of the transition boundary for QPL-type
flows, i.e. quasi-periodic asymmetrical flows around sufficiently low aspect ratio foils,
(panels (a) and (b)) and S-type flows (panels (c) and (d)). Considering the S-type flows
first, by comparison with equivalent figures 3 and 6 for the other two foils, the induced
vortices appear not to be as elongated, and more strongly localized in the vicinity of
the oscillating foil. However, the dynamics are still synchronous and the time history of
the horizontal force is still dominated completely by the expected frequency, twice the
primary frequency of the oscillating foil i.e. 2f0 = 2β.
There is a much more marked and qualitative difference in the structure of the QPL-

type asymmetry shown in panels (a) and (b). Rather than a dipolar structure in the
far field, the vorticity structure appears appreciably more complex, with a very marked
asymmetry between the flow either side of the foil, suggesting that the structure of this
QPL-type flow is markedly different for foils with low aspect ratios. The lack of observed
interaction between the two sides suggests that the up and down strokes of the foil may
well play distinct and different roles in the development of asymmetry within this flow,
which would imply that the characteristic close frequencies which lead to the observed
quasi-periodicity should be centred around the primary frequency of oscillation f0 = β
rather than its first harmonic 2f0 as observed for the foils with larger aspect ratio.
This suggestion is confirmed by consideration of the Lagrangian evolution of massless
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Figure 11. 22 evenly spaced contours of vorticity between −100 (blue) and +100 (red) on
the asymmetrical side of the transition boundary for an elliptical purely oscillating foil with
AR = 0.1 when the centre of the foil is at y = −A, its largest magnitude negative displacement
for flows with a: (a) QP

L
-type asymmetry with KC = 1.51, β = 60; (b) QP

L
-type asymmetry

with KC = 1.88, β = 34; (c) S-type asymmetry with KC = 3.14, β = 14; (d) S-type asymmetry
with KC = 4.39, β = 8.

particles for the flows shown in figures 11(a) and (d). we plot in figures 12(a) and (b) the
particle distributions after release once the flow is in quasi-steady state during the time
intervals [540T0, 640T0] and [60T0, 88T0] respectively, Both these patterns are markedly
different from the equivalent patterns for the larger aspect ratio foils shown in figures 4
and 7. The S-type pattern is still synchronous, but is, as expected much more localized
in the vicinity of the foil, and strongly asymmetric between the two ends of the elliptical
foil. The distribution of particles is also much wider, indicative of the different aspect
ratios of the dominant vortices which develop around the flapping foil.
The difference for the QPL-type asymmetry is once again more marked, and the flow is

so different that we believe that this is a distinct new type of quasi-periodic asymmetry.
There is much less evidence of a dipolar vortex street developing away from the oscillating
foil, but even more noticeable is the marked left-right asymmetry. Unlike all the other
cases considered, there is virtually no communication between the fluid in the vicinity
of either side of the equator of the flapping foil. Virtually all the blue massless particles
released to the right of the foil remain there, and only the red particles released on the left
of the foil are propagated any significant distance away from the oscillating foil, though
at a substantially shallower angle than the (essentially vertical) propagation observed for
the flows induced by the other two aspect ratio foils.
The different physical response is also evident in the normalised integrated pressure

distribution over the surface of the foils plotted in figure 13 for the QPL-type flow with
KC = 1.51, β = 60 (solid line) and the S-type flow with KC = 4.39, β = 8 (dashed line)
at the same time-instants as shown in figure 11. The pressure distribution is both more
closely (though not completely) symmetric and substantially higher amplitude for the
QPL-type asymmetry flow. Interestingly, and perhaps counter-intuitively, this relatively
symmetric and strong pressure distribution suppresses the communication between the
induced vortices at either tip of the foil, thus leading to the marked separation between
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Figure 12. Computed positions of massless particles advected from close to the elliptical foil
with AR = 0.1 in flows with parameters (a) KC = 1.51, β = 60 (QP

L
-type asymmetry) after a

release during the interval [540T0, 640T0]; and (b) KC = 4.39, β = 8 (S-type asymmetry) after
a release during the interval [130T0, 170T0] following the start of pure oscillation with period
T0. Blue particles are released continuously from the right of the equator of the circle, and red
particles are released continuously from the left of the equator of the circle.
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Figure 13. Pressure profiles over the foil surface at the time-instant corresponding respectively
to the QP

L
-type flow shown in figure 11(a) (solid line, normalised by its maximum value 2.272),

and the S-type flow shown in figure 11(d) (dashed line, normalised by its maximum value 0.138).
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Figure 14. Time dependence of the horizontal force on the purely oscillating elliptical foil with
aspect ratio AR = 0.1 at (a) KC = 1.51, β = 60, representing QP-type asymmetry. Time is
scaled with the period of the primary oscillation T0 = 1/β.

the evolving dynamics at either tip, as is particularly evident in the massless particle
distributions shown in figure 12(a). Since there is virtually no coupling between the
vortices at either tip, the symmetry breaking leads to one set of massless particles (those
on the left) being advected away from the foil due to the broken symmetry. Conversely,
the small in magnitude, yet highly asymmetric pressure distribution evident for the
flow with S-type asymmetry leads to the curling over the foil of the slightly stronger
(negative) vortex shed from the left tip of the foil apparent in figure 11(d), which interacts
strongly with the positive vortex at the right tip of the foil, thus leading to the distinctive
intermingled particle distribution curving over the foil shown in figure 12(b).
The qualitatively different, and yet still inherently quasi-periodic character of the QPL-

type asymmetric flow is confirmed by consideration of the spectral properties of the time
history of the horizontal force on the foil. For the flow shown in figure 11(a), we plot the
time history of the horizontal force on the foil in figure 14. The time history shows an
extremely long transient behaviour, although quasi-periodic beating is apparent from very
early on in the flow evolution. Eventually, a clear, yet long secondary period Ts ≃ 23T
emerges. We analyse the spectral properties of the horizontal force once this periodic
oscillation saturates, and the flow reaches a quasi-steady state, calculating the power
spectrum for the horizontal force time history over the interval [600T0, 900T0] as plotted
in figure 15.
The power spectrum is qualitatively different from the power spectrum for the QPH-

type asymmetric flow for an elliptical foil with AR = 0.5, as plotted in figure 9(a). There
still remains an (unsplit) component at twice the primary oscillation frequency 2f0, but
quasi-periodicity is here due to two closely separated frequencies either side of the pri-
mary oscillation frequency itself, i.e. either side of f0 = β. This is consistent with the
lack of communication between the two ends of the foil seen in the vortical contours and
the Lagrangian massless particle distributions. The fact that vortex interaction leading
to quasi-periodicity appears to occur only on one side implies that the dominant quasi-
periodic frequencies will be close to the primary oscillation frequency f0 not its harmonic
2f0 (which would be characteristic of tip-tip interaction), exactly as observed. There-
fore, as already mentioned in the introduction, we refer to this type of asymmetry as a
‘primary’ QPL-type asymmetry.

3.4. Mathematical analysis of QPH-type and QPL-type asymmetric flows

Further evidence that there are two distinct types of quasi-periodic asymmetries depend-
ing on the aspect ratio of the foil can be gained by considering quantitatively the Floquet
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Figure 15. Horizontal force power spectrum for the flow with a purely oscillating elliptical
foil with AR = 0.1 and (a) KC = 1.51, β = 60 with QP
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-type asymmetry for the time in-

terval [600T0, 900T0]. Frequencies are scaled with the nondimensional frequency of the primary
oscillation f0 = β = 1/T0.

stability of the oscillating base (symmetric) flows. Floquet stability analysis examines the
behaviour of a perturbation, u′, to a T -periodic (limit cycle) base flow, U , to determine
whether the perturbation grows or decays from cycle to cycle. The evolution equations
for the perturbation flow are the Navier-Stokes equations linearised about the base, (in
this case symmetric) flow around the foil. Perturbation solutions can be written as a sum
of components ũ(t0)e

σ(t−t0) where ũ(t0) is a T -periodic Floquet eigenfunction, evaluated
at arbitrary phase t0, and σ is a Floquet exponent. In general, a Floquet multiplier is
defined by µ = eσT where T is the period of the base periodic flow. The exponents σ
and the multipliers µ can either be real, or occur in complex-conjugate pairs. Instability
occurs when a multiplier leaves the unit circle, |µ| > 1, or equivalently when the real
part of a Floquet exponent becomes positive.
The technique we use for Floquet stability analysis is a Krylov subspace method that

examines the stability of the linearised Poincaré map for the perturbation flow, and is
detailed in (Elston et al. 2004, 2006), who, as already mentioned, considered the Floquet
stability of the flow around a circle with AR = 1. The reflection symmetry of the base
flow is enforced by solving in a half domain (see figure 2), with symmetry boundary
conditions along the x = 0 boundary. The base flow is integrated in time for 30 cycles
when it reaches a periodic state. It is then projected onto the full domain, and stored
for Fourier time interpolation. We store 64 time slices, equi-spaced in time over the
base flow period T for reconstruction of the base flow. It should be noted that for two-
dimensional Floquet analysis in the current problem there is difficulty resolving stable
modes, |µ| < 1, while unstable modes are resolved without difficulty, and the location of
marginal stability can be estimated by extrapolation to |µ| = 1 (Elston et al. 2004).
As pointed out by Elston et al. (2004) for an oscillating circular cylinder at sufficiently

high β where the symmetry breaking is observed to be of QP-type, the first multipliers to
cross the unit circle occur in complex-conjugate pairs, i.e. µ = e±iθ, so the (supercritical)
bifurcation is of Neimark-Sacker type. We plot the Floquet results at β = 60 for AR = 1.0,
AR = 0.5 and AR = 0.1 in figures 16, 17 and 18 respectively. In (Elston et al. 2004)
they showed by comparison to two-dimensional direct numerical simulation results that
the simple relationship Ts/T ≃ 2π/θ held very close to transition for the specific value
of β = 44.2. As is apparent from careful consideration of figures 3 and 9 of Elston et al.

(2004), that particular choice of β shows excellent agreement between the results of
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Figure 16. Floquet results at β = 60 for AR = 1.0. (a) The variation of |µ| with KC: solid
circles represent multipliers for the mode of marginal stability, while open circles show mag-
nitude for a complex-conjugate pair of multipliers that cross the unit circle at KC = 4.114.
(b) The phase angle for the complex-conjugate pair of multipliers. (c) The secondary peri-
ods computed from Ts = 2πT/θ, with a dashed line showing inverse square-root behaviour
(Ts/T = 1.633 + 3.362/

√
4.319 −KC).

the numerical simulations and Floquet analysis, whereas there is some relatively small
quantitative difference between the Floquet analysis and the numerical simulations at
β = 60. We observe a similar slight numerical mismatch, with the critical value of KC
predicted by Floquet analysis for AR = 1 being KCc = 4.114, compared to the numerical
simulation indicating that KCc ∈ [4.27, 4.39], and for AR = 0.5 being KCc = 2.751,
compared to the numerical simulation indicating that KCc ∈ [2.89, 3.01].
Figures 16(c) and 17(c) show the ratios Ts/T derived from the assumed correspondence

(as presented by Elston et al. (2004) and Elston et al. (2006)) with the Floquet multipliers
calculated for AR = 1.0 and AR = 0.5 respectively. For both flows, as KC → KC∞,
(KC∞ = 4.319 for AR = 1 and KC∞ = 3.121 for AR = 0.5) Ts/T ∼

√
KC∞ −KC →

∞. Such a square-root scaling is indicative of a ‘saddle node on an invariant circle’
or ‘SNIC’ bifurcation (see e.g. Lopez et al. (2006); Rubio et al. (2008) for a detailed
discussion) although care must be taken in drawing any conclusions from the inherently
linear and two-dimensional Floquet stability analysis for values of KC far, in some sense
from the transition boundary to asymmetry. However, it is at least plausible that, as β
is reduced along the transition boundary with KC increasing towards the freezing zone
where the QPH-type asymmetry disappears as Ts → ∞, this divergence in the secondary
period will also be consistent with a SNIC bifurcation.
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Figure 17. Floquet results at β = 60 for AR = 0.5. (a) The variation of |µ| with KC: solid
circles represent multipliers for the mode of marginal stability, while open circles show mag-
nitude for a complex-conjugate pair of multipliers that cross the unit circle at KC = 2.751.
(b) The phase angle for the complex-conjugate pair of multipliers. (c) The secondary peri-
ods computed from Ts ≃ 2πT/θ, with a dashed line showing inverse square-root behaviour
(Ts/T = 4.546 + 4.245/
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Figure 18. Floquet results at β = 60 for AR = 0.1. Note that all calculated Floquet
multipliers are real.

Irrespective of this speculation, the Floquet stability results forAR = 0.1 show a totally
different behaviour compared to the higher aspect ratio counterparts, i.e. AR = 1.0 and
AR = 0.5. As shown in figure 18, the first Floquet multiplier to cross the unit circle
occurs with a single real value. Though we have clearly shown in figures 12 and 14 that
a secondary period emerges for AR = 0.1 in the higher β region, it appears that this



Symmetry breaking and flapping flight 21

quasi-periodic behavior for low aspect ratios cannot be predicted by a conventional linear
Floquet stability analysis.
Furthermore, consideration of phase portraits and appropriate Poincaré maps based

around iterates of the horizontal force and its derivatives demonstrate qualitative differ-
ences between the QPH-type asymmetry and the QPL-type asymmetry. In figures 19(a)
and (c) respectively, we plot a phase portrait of the dynamics during time intervals when
the flow has settled into quasi-periodic behaviour, showing the variation of dFx/dt against
Fx for the QPH-type asymmetry in the flow with AR = 0.5, KC = 3.01, β = 60 and
the QPL-type asymmetry in the flow with AR = 0.1, KC = 1.51, β = 60. The QPH-
type asymmetry in figure 19(a) shows a relatively simple quasi-periodicity involving two
similar loops, with relatively slow rate of change of Fx occuring when Fx ≃ ±(1 − 1.5),
interspersed with much faster variation away from these points. This picture is reinforced
by the Poincaré map shown in figure 19(b). Once per primary period we plot Fx against
its value five primary periods earlier, and there is a collection of points in the vicinity
of Fx ≃ ±(1− 1.5), reinforcing the slow-fast character of this quasi-periodic asymmetry,
and its connection to a SNIC bifurcation (cf. figure 11 of Rubio et al. (2008)).
On the other hand, the phase portrait and Poincaré map shown in figures 19(b) and

(d) for the flow with AR = 0.1, KC = 1.51, β = 60 exhibiting QPL-type asymmetry is
qualitatively different, and much more complex. Both figures show that the horizontal
force wanders over phase space, with a more significant lower frequency component than
the flow exhibiting QPH-type asymmetry, and in particular there is no real evidence of
any slow-fast dynamics.
In conclusion, we have identified what we believe to be a new ‘primary’ QPL-type of

quasi-periodic asymmetric flow for small aspect ratio foils undergoing ‘pure’ oscillation,
which is associated with the primary frequency of oscillation in the horizontal force time
history. It is clear that an extensive parametric study would be needed to clarify all
aspects of the transition to this QPL-type of asymmetry from the previously identified
QPH-type asymmetry, a simple generalisation of the QP-type asymmetry for circular
cylinders to moderate aspect ratios, associated with twice the primary frequency of os-
cillation in the horizontal force time history. Such a study is beyond the scope of this
paper, where we now turn our attention to consideration of how the transition boundary
properties are modified for the class of flying oscillations, where the foil is free to move
horizontally. We are particularly interested in investigating whether these two different
QP-type asymmetries occur for foils which are allowed to move horizontally, as it is not
clear whether the quasi-periodicity growth mechanisms rely inherently on the foil being
fixed horizontally.

4. Symmetry breaking of ‘flying’ oscillations

In figure 20, we plot the transition boundaries inKC−β space for both pure oscillations
(with a solid line) and flying oscillations (with a dashed line) for flows associated with the
three different aspect ratio oscillating foils which we have considered. For the elliptical
foil with aspect ratio AR = 0.1, we also plot in figure 20(d) the transition boundaries in
KC − βA space, where the amplitude Stokes number βA is as defined in (2.3) showing
how the pure oscillations exhibit a critical value of βA ≃ 3 for all values of KC.
In all cases, the transition boundaries have certain points of similarity. There are two

systematic, though typically slight, differences for the foils with AR = 1 and AR = 0.5,
which occur either side of the freezing point. At low values of β < βc, the transition
boundary for flying oscillations is typically above the transition boundary for pure oscil-
lations, suggesting that the onset of S-type asymmetry is somewhat suppressed if the foil
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Figure 19. Phase portraits plotting the time rate of change dFx/dt of the horizontal force
against Fx for a flow with: (a) AR = 0.5, KC = 3.01, β = 60 as shown in figure 8(a) exhibiting
QP

H
-type asymmetry over the time interval t/T0 = 60− 100; (c) AR = 0.1, KC = 1.51, β = 60

as shown in figure 14 exhibiting QP
L
-type asymmetry over the time interval t/T0 = 400− 540,

covering approximately 6 secondary periods in each case. Panels (b) and (d) are reconstructed
phase portraits using delays of five primary periods, for the flows corresponding to (a) and (c)
respectively. For clarity, a single iterate per primary period is plotted on the Poincaré map.

is free to move horizontally. Conversely, at higher values of β, the transition boundary for
flying oscillations is below the transition boundary for pure oscillations, suggesting that
the onset of QPH-type asymmetry is actually encouraged by allowing the foil to oscillate.
The behaviour is somewhat different for the foil with smallest aspect ratio AR = 0.1, with
the transition to asymmetry being particularly encouraged at high values of β or equiv-
alently small values of KC. This is the part of the transition boundary where the new
primary QPL-type flow occurs for purely oscillating foils, suggesting that allowing the
foil to move horizontally modifies the properties of this type of asymmetry non-trivially.

4.1. Suppression of synchronous asymmetry for flying oscillations

As shown in figure 20(a), for flow round a circular cylinder with KC = 6.91, β = 16,
synchronous S-type asymmetry develops for pure oscillation, while symmetry actually
continues to persist at the same point in parameter space for flying oscillation. The
vorticity contours for the pure oscillation, also shown in figure 3(a) are replotted close
to the cylinder in figure 21(a) for comparison with the vorticity contours from the flying
oscillation shown in figure 21(b), at the same instant in the flow evolution when the
oscillating cylinder is at its greatest (negative) displacement.
There is a marked difference between the two flow structures, which is also consistent

with the difference of the horizontal force on the oscillating cylinder, as shown in figure
22 where the force is three orders of magnitude larger for the pure oscillation flow than
for the flying oscillation flow. Spectral analysis of these time histories, as shown in figure
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Figure 20. Location of transition boundaries as a function of Keulegan-Carpenter parameter
KC and Stokes number β as defined in (1.1) for flows associated with purely oscillating foils
(solid lines) and flying oscillating foils (dashed lines) with: a) aspect ratio AR = 1.0; b) aspect
ratio AR = 0.5; c) aspect ratio AR = 0.1. d) Location of transition boundaries as a function of
Keulegan-Carpenter parameter KC and Stokes number βA as defined in (2.3) for flows associated
with purely oscillating foils (solid lines) and flying oscillating foils (dashed lines) with aspect ratio
AR = 0.1. Parameter values associated with symmetric flow as obtained by our two-dimensional
simulations are marked by small filled squares for pure oscillations and by large open squares
for flying oscillations, while parameter values associated with asymmetric flow are marked by
small filled circles for pure oscillations and by large open circles for flying oscillations.

Figure 21. 22 evenly spaced contours of vorticity between −60 (blue) and +60 (red) for a
circular oscillating foil with parameters AR = 1.0, KC = 6.91 and β = 16 when the centre of
the foil is at y = −A, its largest magnitude negative displacement for flows subject to (a) a pure
oscillation and (b) a flying oscillation.
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Figure 22. Time dependence of the horizontal force on a circular cylinder with parameters
AR = 1.0, KC = 6.91 and β = 16, subject to (a) a pure oscillation and (b) a flying oscillation.
Time is scaled with the period of the primary oscillation T0 = 1/β. Note the relative size of the
vertical axes.
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Figure 23. Horizontal force power spectra for the flow with a circular cylinder with param-
eters AR = 1.0, KC = 6.91 and β = 16 subject to (a) a pure oscillation and (b) a flying
oscillation, corresponding to figure 22(a) and (b) respectively. Frequencies are scaled with the
nondimensional frequency of the primary oscillation f0 = β.

23, shows a very strong synchronous frequency (at twice the primary frequency) for the
flow with pure oscillation, indicative of the strong asymmetry visible in the flow. There
is an appreciably weaker synchronous frequency also apparent in the power spectrum for
the flying oscillation case shown in figure 21(b), and there is some very weak asymmetry
apparent in the vorticity field shown in figure 21(b). Therefore, it seems appropriate to
state that flying oscillations suppress rather than eliminate synchronous asymmetry near
the transition boundary on the S-type asymmetry side of the freezing point.
To gain physical insight into how this suppression occurs, we consider another pair of

flows close to the S-type asymmetry transition boundary, where the purely oscillating foil
is associated with a strong synchronous asymmetric flow, while the flying oscillating foil
is associated with a (very close to) symmetric flow. As shown in figure 20(b), particular
flow parameters with the required properties are those for an elliptical foil with AR = 0.5,
KC = 8.16 and β = 5, and the purely oscillating flow has been discussed in detail in
section 3.2, and aspects of this flow are shown in figures 6(d), 7(b), 8(b) and 9(b). Here, we
impose a pure oscillation so that the foil has a fixed horizontal location until it converges
to an essentially steady state. We assess this convergence by considering the time history
of the horizontal force on the foil, as shown in figure 24. The envelope of the horizontal
force grows, and then saturates, after approximately 70 primary oscillation periods. At
this stage, the synchronous asymmetry in the flow is well-established, and there is a clear
bias towards a negative horizontal force on the elliptical foil. We then release the fixed
horizontal location of the foil, allowing it to ‘fly’ after 80 primary oscillation periods. The
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Figure 24. Time dependence of the horizontal force on an elliptical foil with parameters
AR = 0.5, KC = 8.16 and β = 5, for an initially ‘pure’ oscillation for 0 6 t/T0 6 80 which is
then released to execute flying oscillations for t > 80T0, where T0 = 1/β is the period of the
primary oscillation.

effect on the horizontal force is dramatic, and instantaneous, as it drops very rapidly,
and essentially exponentially, and after a slight overshoot relaxes back to extremely small
values, of the order of the initial numerical fluctuations.
The mechanism by which this rapid return to (close to) symmetric flow occurs can

be understood by considering the vorticity contours shown in figures 25(a)-(k), which
show the vorticity at 11 evenly spaced time intervals directly after the foil is released in
panels. The left-right asymmetry associated with this flow is clearly apparent. On both
the upward and downward stroke the induced vortex to the left of the foil dominates the
vortex to the right, in that it is more elongated, slightly stronger, angled towards the right,
leading to the strong (and tilted to the right) asymmetry observed in the Lagrangian
particle distributions shown in figure 7(b). Significantly, as the slightly stronger vortex
is shed from the left side of the foil, it imposes a slightly weaker force on the foil than
the vortex to the right, since it induces a slightly lower pressure on the left. Since the
foil is now free to move, the foil moves to the left. This is in response to the negative
(on average) horizontal forces, shown in figure 24. This leftward motion has two key
components. First, it tends to weaken the subsequent vortex generation to the left, and
strengthen the vortex generation to the right, thus exerting a stabilising influence on the
asymmetry growth mechanism. Second, and very importantly, this stabilising influence
is in turn synchronous with the primary oscillation of the foil and with the asymmetry,
and so is precisely tuned to symmetrise the flow, as is apparent in figure 25(l), where the
vorticity contours are plotted 5 periods after the foil is released. This leftward motion
of the foil actually ‘overshoots’ before the symmetry of the flow has been completely
restored, leading to the weak net positive horizontal force on the foil, which causes the
foil ultimately to move (very slowly) rightwards with a velocity approximately 0.1% of
the maximum vertical velocity associated with the primary oscillation. This slight drift
appears to control the flow very close to symmetry for long periods.

4.2. Encouragement of quasi-periodic asymmetry for flying oscillations

For the two larger aspect ratios which we have considered, the situation is qualitatively
different for flows with parameters to the left of the freezing point, where the asymmetry,
when it onsets, is of QPH-type. In this region of parameter space, by consideration
of figure 20, allowing the oscillating foil to move horizontally actually encourages the
onset of quasi-periodic asymmetry. To investigate the physical mechanisms underlying
this phenomenon, we consider the flow around an elliptical foil with AR = 0.5, with
β = 40. As is shown in figure 20(b), when KC = 3.2, if the elliptical foil is free to move
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Figure 25. (a)-(k): 22 evenly spaced contours of vorticity between −60 (blue) and +60 (red)
at evenly spaced time intervals during the first primary period after the foil is released to ‘fly’
for the flow around an elliptical foil with parameters AR = 0.5, KC = 8.16 and β = 5; (l) 22
evenly spaced contours of vorticity between −60 (blue) and +60 (red) for the flow five periods
after the release of the foil to move horizontally.

Figure 26. 22 evenly spaced contours of vorticity between −60 (blue) and +60 (red) for flow
around an elliptical foil with aspect ratio AR = 0.5 when the foil is at its minimum vertical
location for flows with parameters KC = 3.2, β = 40 subject to (a) a pure oscillation and (b) a
flying oscillation.

horizontally, we observe high-aspect ratio quasi-periodic QPH-type asymmetry. However,
if we fix the horizontal location of the foil, the flow rapidly returns to symmetry, and
QPH-type asymmetry only arises when KC is increased to 3.32.
In figure 26(a), we plot vorticity contours around the purely oscillating foil with as-

pect ratio AR = 0.5, when it is at its minimum vertical location, for a flow with β = 40
and KC = 3.2. The contours are close to symmetric, unlike the equivalent contours for
the flying oscillation shown in figure 26(b), which exhibit a marked QPH-type asymme-
try. The time histories of the corresponding horizontal forces for these pure and flying
oscillations are shown in figure 27(a) and (b) respectively. Unsurprisingly, the forces as-
sociated with the pure oscillation remain at very low values throughout the whole time
history, although there is some complicated spectral structure manifest as beating of the
very small-amplitude signal, while for the flying oscillation, the horizontal force increases
rapidly after an initial transient to large quasi-periodic values, implying a significant sym-
metry breaking process eventually arising with no specific forcing (apart from numerical
round-off error).
Considering the spectral properties of these horizontal force time histories as plotted
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Figure 27. Time dependence of the horizontal force on an elliptical foil with aspect ratio
AR = 0.5 in a flow with parameters KC = 3.2, β = 40 subject to (a) a pure oscillation and (b)
a flying oscillation. Time is scaled with the primary oscillation period T0 = 1/f0 = 1/β. Note
the relative size of the vertical axes.
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Figure 28. Horizontal force power spectra for the flow around an elliptical foil with aspect ratio
AR = 0.5 with parameters KC = 3.2 and β = 40 subject to: (a) a pure oscillation; and (b) a
flying oscillation, corresponding to figure 27(a) and (b) respectively. Frequencies are scaled with
the nondimensional frequency of the primary oscillation f0 = β.

in figure 28, it is clear the ‘symmetric’ flow does indeed contain frequencies either side of
the primary oscillation frequency, leading to a further, much smaller, beating frequency.
Nevertheless, the primary frequency is still strongly dominant, and it is appropriate to
consider the flow to be (at least close to) symmetric. On the other hand, there is clear
evidence of dominant frequency splitting either side of (twice) the primary oscillation
frequency for the flying oscillation shown in figure 28(b), with a strong long secondary
period, as is also evident in the time history of the horizontal force plotted in figure 27(b).
This is entirely consistent with the QPH-type asymmetry for purely oscillating foils with
sufficiently high aspect ratio as discussed above.
The physical interpretation of this encouragement of the onset of QPH-type asymmetry

for flying foils has several aspects. At high β, the period of the primary oscillation is
short, and so it is possible for complex interactions between the vortices associated with
different primary oscillations. If the foil is free to move, these interactions can lead to the
foil being displaced from its equilibrium position (J. Zhang, private communication 2012).
Furthermore, such a displacement can encourage the development of slight perturbations
to the frequencies with which the vortices are shed, leading to the possibility of the
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Figure 29. (a) Time dependence of the x−coordinate of the centre of mass of the elliptical
foil with aspect ratio AR = 0.5 undergoing a flying oscillation with parameters KC = 3.2 and
β = 40 as shown in figure 27(b). (b) Horizontal trajectory of the mass centre at t/T0 = 80−100.
Some specific time instants are marked with various symbols on the two panels.

development of a long secondary period through beating between two close but different
frequencies of the induced flow, exactly as is observed for the flying oscillation.
Therefore, distinctly from the low β case discussed above, the horizontal force pertur-

bations on the oscillating foil are not synchronous with the primary oscillation, and so
actually feed back positively on perturbations in the foil’s horizontal location, leading
to substantial quasi-periodic movement of the flying oscillating foil. In figure 29 we plot
the trajectory of the flying foil, showing just such a nontrivial quasi-periodic horizontal
motion. Fundamentally, due to the high frequency of oscillation when β is large, and
thus the potential for multiple, close frequencies due to vortex-vortex interaction, free-
dom to move horizontally actually encourages loss of symmetry, making the symmetric
flow around intermediate aspect ratio foils less stable in a very real sense. Conversely,
at lower frequencies of oscillation, (i.e. smaller β to the right of the freezing point) the
synchronization of oscillation, shed vortices and horizontal forces cause freedom of the
foil to move horizontally actually to stabilise strongly synchronous asymmetry, through
a locked mechanism of negative feedback.

4.3. Suppression of primary QPL-type asymmetry for flying oscillations

As is apparent in figures 20(c) and (d), allowing a foil of aspect ratio AR = 0.1 to
move horizontally markedly changes the transition boundary in the region of parameter
space where the new primary QPL-type asymmetry, as discussed in section 3.3, occurs. To
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Figure 30. 22 evenly spaced contours of vorticity between −500 (blue) and +500 (red) for flow
around an elliptical foil with aspect ratio AR = 0.1 when the foil is at its minimum vertical
location for flows with parameters KC = 1.26, β = 60 subject to (a) a pure oscillation and (b)
a flying oscillation.
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Figure 31. Time dependence of the horizontal force on an oscillating elliptical foil with param-
eters AR = 0.1, KC = 1.26 and β = 60 for: (a) a pure oscillation; and (b) a flying oscillation.
Time is scaled with the period of the primary oscillation T0 = 1/β. Note the relative size of the
vertical axes.

investigate how this type of asymmetry is modified by allowing the foil to fly, we consider
the flow with parameters AR = 0.1, KC = 1.26 and β = 60. As is shown in figure 20(c),
the flow with these parameters is symmetric when the foil is purely oscillating, but is
asymmetric when the foil is allowed to fly. In figure 30, we plot vorticity contours for
these two flows when the foil is at its minimum vertical location. The flying oscillation
flow shown in figure 30(b) is undoubtedly asymmetric, but by comparison with figure
11, it bears much more qualitative resemblance to the S-type asymmetry flows shown
in figures 11(c)-(d) than to the primary QPL-type asymmetry flows shown in figures
11(a)-(b).
This qualitative resemblance can be made more quantitative by considering the time

dependence of the horizontal force on the foil, as shown in figure 31. The horizontal
force on the foil with asymmetric flow exhibits an initial transient, which overshoots
somewhat before settling back to its final, still significant quasi-steady state, as shown
in figure 31. Although the force undoubtedly oscillates, there is no evidence of ‘beating’



30 Jian Deng and C. P. Caulfield

0 1 2 3 4 5
10

50

90

130

170

f / f
0

A
m
pl
itu

de

0 1 2 3 4 5
0

1

2

3

4

5

f / f
0

A
m
pl
itu

de

(b)(a)

Figure 32. Horizontal force power spectra for the flow with a purely oscillating elliptical foil
with parameters AR = 0.1, KC = 1.26 and β = 60 for: (a) a pure oscillation; and (b) a flying
oscillation corresponding to figure 31(a) and (b) respectively. Frequencies are scaled with the
nondimensional frequency of the primary oscillation f0 = β.

in its amplitude. The power spectrum of the horizontal force time history, as shown in
figure 32(b), is completely dominated by twice the frequency of the primary oscillation
frequency 2f0 = 2β.
Therefore, all the evidence points towards the primary QPL-type asymmetry of the

purely oscillating low aspect ratio foil being suppressed when the foil is allowed to move.
Indeed, the transient in the horizontal force in this flow is associated with the foil accel-
erating to a constant speed of horizontal locomotion. It appears for this aspect ratio that
the onset of asymmetry for flying oscillations inevitably leads to locomotion. Forcing the
foil to remain at a fixed location leads to the primary QPL-type of asymmetry for high
values of β, but once the foil is free to move, the growth mechanism for this type of
asymmetry is completely removed.
On the other hand, unsurprisingly for the essentially symmetric purely oscillating foil,

as shown in figure 31(a), the horizontal force is very small in magnitude, and is clearly
highly periodic. That periodicity corresponds closely to the primary frequency of the os-
cillating foil, as shown by the power spectrum plotted in figure 32(a). We have considered
flows associated with other parameter combinations along the transition boundary for
flying oscillations of foils with AR = 0.1, and, once asymmetry onsets, the asymmetry is
always of S-type. We find that the foil always flies at an eventually close to constant speed
and we have been unable to identify a parameter combination which leads to primary
QPL-type asymmetry for flying oscillations.

5. Conclusions

In this paper, we have numerically studied both ‘pure’ (i.e. fixed horizontally) and
‘flying’ (i.e. free to move horizontally) oscillations for elliptical foils with aspect ratios
of AR = 1.0, AR = 0.5 and AR = 0.1 for a range of nondimensional frequencies and
amplitudes of oscillation, searching through KC − β space, as defined in (2.1). We have
focussed on determining the symmetry-to-asymmetry transition boundaries in KC − β
space for both pure and flying oscillations, as well as the (two-dimensional) flow be-
haviours immediately after symmetry breaking.
For pure oscillations, our consideration of elliptical foils with aspect ratio AR < 1 has

led to three main observations. First, the transition boundary shifts to smaller KC for
given β as AR is reduced, indicating that symmetry breaking is encouraged for elliptical
foils, while the previously identified two types of asymmetry, namely quasi-periodic (‘QP-
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type’) asymmetry at high β, small KC, and synchronous (‘S-type’) asymmetry at low
β, high KC continue to appear either side of a ‘freezing point’ on the transition bound-
ary. Second, for the smallest aspect ratio we have considered, the transition boundary
effectively occurs at a fixed value of the ‘amplitude’ Stokes number βA = 4π2fA2/ν ≃ 3,
independently of the major axis c of the foil for all values of KC. Third, we find that
the low aspect ratio foil exhibits a qualitatively different form of quasi-periodic asym-
metry, (which we refer to as ‘primary QPL-type’) from the other foils, and in particular
from the previously considered cylinder with AR = 1.0. Primary QPL-type asymmetry
is characterised by the flow in the vicinity of the two ends of the foil effectively evolv-
ing independently, and the horizontal force time history being dominated by two close
frequencies either side of the primary frequency of oscillation f0, as opposed to either
side of twice the primary frequency as occurs for the quasi-periodic (which we refer to as
QPH-type asymmetry) flow around the cylinder and the elliptical foil with higher aspect
ratio. We demonstrate, following Elston et al. (2004) and Elston et al. (2006), that the
QPH-type asymmetry is well-predicted by a Floquet stability analysis, but interestingly
the QPL-type asymmetry is not.
When the foils are allowed to ‘fly’, we have found that the effect on the transition

boundary is qualitatively different for the regions susceptible to synchronous asymmetry
from the regions susceptible to quasi-periodic asymmetry. S-type asymmetry is actually
stabilised by freedom to move horizontally, due to the fact that horizontal motions at
the same frequency preferentially damp the stronger vortex shed from the oscillating
foil. Conversely, when the spectral content of the horizontal forces on the foil is richer
at higher values of β, effectively due to interactions between the vortices shed during
successive oscillation cycles, freedom to move actually encourages the onset of QPH-type
asymmetry around the foil. Multiple frequencies effectively buffet the foil at sufficiently
high aspect ratio, leading to a quasi-periodic trajectory of the foil when it can ‘fly’ for
parameters where a fixed foil maintains a very close to symmetric flow.
However, for the smallest aspect ratio (AR = 0.1) foils which are allowed to move

horizontally, the primary QPL-type asymmetry is suppressed. For sufficiently thin foils,
the tendency actually to fly at a close to constant speed appears to be so attractive
once a symmetry-breaking bifurcation occurs that it is not possible to maintain the
subtle balance required to lead to quasi-periodicity and erratic motions in the flow. It
is important to appreciate that we have focussed on parameter choices which are very
close to the transition boundary, where our two-dimensional analysis is most likely to be
relevant. It would undoubtedly be of interest to connect our results with investigations of
symmetry breaking leading to propulsive vortex streets driving unidirectional swimming
(see e.g. Godoy-Diana et al. (2009)).
However, in this paper, for clarity we have considered only a single density ratio, and

we have deliberately avoided parameter values where strong and unidirectional flying
is expected, where inherently three-dimensional motions are likely to be significant, or
indeed where the flapping foil itself is three-dimensional. It is undoubtedly of natural
interest to investigate the influence of density ratio on our results, and also whether our
two-dimensional results concerning the suppression or encouragement of different types
of asymmetry for freely flying foils carries over into three-dimensional motions, and we
intend to report on the results of just such investigations in due course.
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