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Abstract 

Blood stem cells need to both perpetuate themselves (self-renew) and differentiate into all 

mature blood cells to maintain blood formation throughout life. However, it is unclear how the 

underlying gene regulatory network maintains this population of self-renewing and 

differentiating stem cells, and how it accommodates the transition from a stem cell to a 

mature blood cell. Our current knowledge of transcriptomes of various blood cell types has 

mainly been advanced by population-level analysis. However, a population of seemingly 

homogenous blood cells may include many distinct cell types with substantially different 

transcriptomes and abilities to make diverse fate decisions. Therefore, understanding the 

cell-intrinsic differences between individual cells is necessary for a deeper understanding of 

the molecular basis of their behavior. Here we review recent single cell studies in the 

haematopoietic system and their contribution to our understanding of the mechanisms 

governing cell fate choices and lineage commitment. 
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Introduction 

A single cell type, the haematopoietic stem cell (HSC), is responsible for generating all blood 

cells throughout the lifetime of an organism 1. The HSC is a rare cell that resides primarily in 

the bone marrow of adult mammals. It has the ability to either self-renew, and generate more 

stem cells or differentiate and generate over 10 different blood cell types. These different 

blood cells provide functions such as protection against infections, oxygen transport and 

maintaining haemostasis. Thus, over time each HSC makes essential fate decisions by 

integrating a wide array of signals from the microenvironment and completing complex 

changes in the regulation of gene expression. Clarifying how HSCs differentiate into diverse 

cell types is important for understanding how they attain their various functions and offers 

the potential for therapeutic manipulation. 

 

Traditionally, different blood cells are distinguished from each other based on the expression 

of a handful of cell-specific surface markers 2, 3. Our knowledge of the different 

haematopoietic cell types is a direct result of the development of reagents to distinguish 

these various cells by their cell surface markers, followed by functional, transplant-based 

tracking of their activities 4. An inherent problem with this approach is that the presence of 

specific cell surface markers doesn’t directly reflect the transcriptional state of a cell. In 

addition, the variable loss or gain of marker expression occurs according to the 

activation/proliferative state of the cell 5. Since the typical mammalian cell expresses around 

104 genes 6, a more comprehensive and objective strategy is needed to define cell types.  

Although the transcriptomes of populations of HSC and progenitor cells have previously 

been assessed on microarrays 7 and more recently using RNA-Sequencing of bulk cells 8, 

individual cells can exhibit substantial heterogeneity in gene expression (Figure 1) with 

important functional consequences 9. Understanding the cell-intrinsic differences between 

individual cells is necessary for a deeper understanding of the molecular basis of their 

behavior. 
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A population of seemingly homogenous haematopoietic cells captured at any one time, 

using well defined combinations of cell surface markers, may include many distinct or 

intermediate cellular states 9-11. This has been nicely illustrated by recent studies showing 

that early diversification into cells with distinct lineage bias within the HSC compartment may 

exist and that individual HSCs lead to different reconstitution patterns. The balanced 

production of myeloid and lymphoid cells or deficiency in lymphoid potential as well as long 

term self- renewal potential are shown to be intrinsic HSCs properties that are stably 

inherited by their HSC offspring 10, 12, 13. Considering only average properties, for example by 

bulk transcriptomics analysis, masks subpopulations of cells (Figure 1) 14. The unique 

epigenetic signature and transcription factor networks in individual progenitor cells can 

influence the fate-choice decisions and the response of these cells to extrinsic signals. 

Therefore, a study of blood development with single-cell resolution is required to define 

cellular level heterogeneities that presage distinct differentiation decisions.  

 

Recent technological advances now provide us with tools that allow single-cell molecular 

profiling and acquisition of transcriptomic data from hundreds to thousands of individual 

cells. These methods range from fluorescent in situ hybridization (FISH) as a probe-

dependent method, RT-qPCR where cDNA obtained from a single cell can be used to 

quantify the expression of up to 100 transcripts to single-cell RNA sequencing which 

provides a highly resolved picture of whole-genome gene expression patterns of a single cell 

(reviewed in 15-18). The development of automated massively parallel RNA single cell 

protocols that allow molecule counting of the transcripts from thousands of cells (such as 

MARS-Seq) enabled dissection of complex tissues into distinct cell types 19. The wider 

application of these methods will permit agnostic interrogation of haematopoiesis and 

transform our view of how cellular decisions are made.  An integrative strategy, combining 

genetic perturbation with computational sequence and network analysis methods, will further 

reveal regulatory networks that maintain the dynamic balance between different blood cell 

types.  
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The traditional model of haematopoiesis assumes a stepwise set of binary choices 

across the full haematopoietic spectrum 

Haematopoiesis is often depicted by a hierarchical differentiation tree, with HSCs at the root 

and the mature blood cells as the branches. Self-renewing HSCs give rise to intermediate, 

transiently amplifying multipotent progenitor cells (MPPs) that subsequently, through lineage 

commitment and differentiation, generate all cells of the haematopoietic system. The 

multipotent state of stem and progenitor cells is characterized by the co-expression of 

numerous lineage-affiliated genes.  This “multilineage priming” is thought to be functionally 

related to the cell’s ability to “chose” the cell fate prior to unilineage commitment and 

differentiation i.e. irreversibly losing the capacity to differentiate to any other cell type 20-23.  

 

The conventional model of haematopoiesis assumes a stepwise set of binary choices across 

the full haematopoietic spectrum 24. In the first step, MPPs produce common lymphoid (CLP) 

or common myeloid (CMP) progenitor cells. CMP cells are restricted in their development to 

cell types of the megakaryocyte-erythroid and myeloid  (i.e. granulocyte-monocyte) lineages 

whereas CLP cells show restricted development into T-cells, B-cells, and natural killer cells 

25-28. After the early and irreversible segregation of lymphoid and myeloid differentiation 

pathways, progenitor cells usually differentiate into one of two cell fates. For example, 

megakaryocyte-erythroid progenitors can differentiate to either megakaryocytes or erythroid 

cells and granulocyte-monocyte progenitors give rise to neutrophils and monocytes. This 

descriptive and widely accepted model of haematopoiesis is, however, probably too 

simplistic. The identification of early progenitors with lymphoid and myeloid potential 

(EPLMs) 29 and lymphoid-primed multipotent progenitors (LMPP) 30, 31 that have granulocytic, 

monocytic and lymphoid potential but low potential to form megakaryocyte and erythroid 

lineages suggests that myeloid and lymphoid potential remain associated downstream of the 

HSCs. This has prompted development of new, alternative models of haematopoiesis 32-35.  

 

http://www.copewithcytokines.de/cope.cgi?key=cell%20types
http://www.copewithcytokines.de/cope.cgi?key=megakaryocytes
http://www.copewithcytokines.de/cope.cgi?key=T%2dcells
http://www.copewithcytokines.de/cope.cgi?key=B%2dcells
http://www.copewithcytokines.de/cope.cgi?key=natural%20killer%20cells
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Single cell analysis supports an alternative model of the cellular organization of the 

haematopoietic lineage tree 

Analysing transcriptomes of cells is a standard molecular approach to better understanding 

how cells function and to uncover the state of a cell in a specific environment. Single cell 

analysis proved to be very valuable in resolving some of the outstanding issues in the 

cellular organisation of the haematopoietic lineage tree. Single cell gene expression analysis 

of 280 cell surface markers and 180 intracellular regulators, including important transcription 

factors (TFs), revealed considerable heterogeneity within each of, over ten, examined 

haematopoietic populations 9. The transcriptional differences were present in even closely 

related cells emphasizing that no two cells are truly identical in terms of gene expression.  

However, it also suggested that populations of progenitor cells, sorted based on well-defined 

cell surface markers and previously considered to be functionally homogenous, are actually 

a mixture of cells with distinct differentiation fates.   The hierarchical clustering of most 

variable genes within the CMP population revealed that CMPs are composed of at least two 

distinct populations, which could be separated based on CD55 expression. When 

transplanted in irradiated mouse recipients, CD55+ CMPs produced predominantly platelets, 

whereas CD55- CMPs gave rise mainly to myeloid cells 9. Therefore, transcriptional 

differences between CD55+ and CD55- populations were mirrored in their functional 

properties. To recover the cellular hierarchy from these single cell expression data, 

spanning-tree progression analysis of density-normalized events (SPADE) was used. The 

generated model implied that the megakaryocyte-erythroid lineage (CD55+ compartment) is 

closely linked to long-term repopulating HSCs and separated early from the lympho-myeloid 

lineage (CD55- compartment). Single cell in vitro assays further confirmed that the 

megakaryocyte colonies are the first to emerge from HSCs. In line with these findings, no 

single cells have been identified so far, in the HSPC pool, that co-express lymphoid and 

megakaryocyte-erythroid lineage affiliated genes; thus, the megakaryocyte-erythroid lineage 

separates early from myeloid and lymphoid fates. This early separation of the 

megakaryocyte-erythroid lineage from HSCs has been supported by other, alternative 
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models of haematopoiesis, which assume that myeloid, and megakaryocyte-erythroid 

priming of HSPCs precedes lymphoid lineage priming. 

 

Interestingly, recent studies suggested that platelet-primed HSCs are at the top of 

haematopoietic cellular hierarchy. Platelet-primed stem cells were identified within vWf (von 

Willebrand factor) expressing long term HSCs (LT-HSC). Single transplanted vWf+ HSCs 

gave rise predominantly to platelets and myeloid cells, and were able to self-renew and give 

rise to lymphoid-biased HSCs 36. Thus, commitment to the megakaryocyte lineage starts in 

the most primitive stem cell compartment 36.  

 

Principles of lineage commitment: insights from single cell gene expression analysis 

The competence of multipotent cells to differentiate into diverse blood lineages is followed by 

their irreversible commitment towards a specific lineage. Understanding of the molecular 

basis of lineage commitment relies on the ability to asses transcriptional changes in 

individual cells at either side of the “commitment boundary”. While this is experimentally 

challenging in vivo, in vitro single cell gene expression studies offered some interesting 

insights. By investigating Sca1lo CD34+ and Sca1lo CD34- cells from a multipotent 

haematopoietic cell line EML (Erythroid-Myeloid-Lymphoid cells) 37 the experimental system 

has been established in which it is possible to examine transcriptional changes that underlie 

transition from self-renewal to lineage commitment. Sca1lo CD34+ cells reconstituted in 

culture and are multipotent with erythroid and neutrophil differentiation potential whereas 

Sca1lo CD34- are erythroid-committed cells with no culture reconstitution potential. On a 

population level, the two compartments were transcriptionally different confirming that self-

renewal and lineage commitment are two independent and separable cell states. 

Examination of these two states at the single cell level revealed that erythroid cell 

commitment could occur in the absence of a complete erythroid transcriptome and some of 

the key lineage regulators (e.g. Gata1) but also prior to silencing components of alternative 

lineage programs. Self-renewing cells were more similar to each other, with no clear 
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subpopulations that would reflect differences in the functional culture-reconstitution potential 

of these cells. In contrast, a significant cell to cell variation was present in early-committed 

erythroid cells further suggesting that commitment can occur through multiple entry points. In 

other words, commitment occurs due to stochastic independent expression of key regulatory 

factors rather than coordinated expression of lineage programs. Computational modeling of 

this data set further revealed that an increase in Gata2 and a decrease in Mpo, were the 

best predictors of erythroid commitment, whereas Gata1 was important to a lesser extent 38. 

However, no significant level of gene expression coordination was detectable in the 

commitment transition. Due to the lack of correlation between the expression of Gata2 and 

other genes, it remained unclear what the specific molecular mechanisms by which Gata2 

can drive cells into commitment are.  

Similar principals of lineage restriction in lymphoid cells have been reported during B-cell 

lineage commitment 39. Lymphoid lineage priming starts in LMPPs, which express the 

repertoire of lymphoid associated genes but do not express genes specific for B- or T-

lineage cells; this lineage commitment starts in a subpopulation of CLPs. Analysis of the 

expression of key B lineage genes in individual CLP cells revealed that B lineage 

commitment occurs in a stepwise manner, prior to expression of B lineage specific surface 

markers 40. CLPs initially lose NK-cell potential to become B/T cell–restricted progenitors, 

and then mature into B cell–restricted progenitors. Therefore, the CLP compartment, as 

defined based on the classical combination of cell surface markers, is composed of a 

mixture of cells with relatively restricted lineage potentials. On a molecular level, Ebf1 (early 

B cell factor 1) has been recognized as essential for expression of B lineage genes and B 

cell specification. However, physiological levels of Ebf1 are not sufficient to cause lineage 

restriction. Instead, the stable commitment of B cells is dependent on the action of Pax5 

(paired box 5) and Ikaros (IKAROS Family Zinc Finger 1). Pax5 deficiency results in 

accumulation of cells specified for development toward the B lineage but these cells display 

defective lineage commitment 41. Pax5–deficient progenitors maintained the ability to 

differentiate to T cells and to a lesser extent to myeloid cells, suggesting a minimal role of 
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Pax5 in lympho-myeloid lineage restriction.  Therefore, distinct regulatory networks control a 

coordinated activation of B lineage associated genes and those linked to specification of B 

cells as opposed to genes responsible for B lineage commitment, which restricts the cell to a 

single, B lineage fate. 

 

Cellular decisions: discrete steps or gradual process? 

One of the drawbacks of traditional methods of purifying haematopoietic cells to relative 

homogeneity is the limited number of cell surface markers that is used simultaneously to 

define the blood cell type. Therefore, the sorted populations are transcriptionally and 

functionally heterogeneous 9, 40. In addition, only a subpopulation of the overall cellular pool 

is examined which restricts the ability to characterize transitional populations and the 

relationships between them. Due to these technical limitations, the prevalent model for 

haematopoiesis assumes a stepwise set of obligatory steps through which progeny of 

haematopoietic stem cells passes during lineage development. The transcriptional programs 

that govern this process have mainly been investigated by population-level analysis of 

these discrete steps, which cannot reveal the continuous nature of the differentiation 

process. It is now appreciated that differentiation of haematopoietic cells is governed by 

gradual changes in the expression of the array of key TFs 42. Since these changes in 

expression of TFs occur at different rates, progenitor cells with varying degrees of lineage 

potential are generated; therefore accounting for progenitors with varying combinations of 

myeloid and lymphoid potential. Indeed, rather than a process of immediate transition 

between strictly defined stages, haematopoiesis is more likely a progressive and continual 

sequence of fate decisions that the cell makes (Figure 2) in response to intrinsic factors and 

environmental signals. 

 

One of the early computational methods designed to capture trends in high-dimensional 

data, including ordering of cells based on their developmental progression, was SPADE 43. 

For example, SPADE was used to computationally reconstruct the haematopoietic lineage 
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progression, in an unbiased way, from HSCs using 40 distinct gene expression clusters 9. 

However, while SPADE allowed easier visualisation and interpretation of the data, its main 

application was not to infer a trajectory and the precise order of events nor their progression. 

The minimum spanning tree (MST) that underlies SPADE could provide only an estimation 

of the developmental ordering. Therefore, single cell resolution was lost in SPADE and it had 

limited success in depicting the continuous nature of transcriptional changes occurring 

during haematopoietic cell differentiation.  

 

Of the more recently developed algorithms, amongst others, Monocle 44, Wanderlust 45 and 

Waterfall 46 were designed to order single cells along a one-dimensional trajectory and track 

their developmental chronology. Instead of clustering blood cells in similar groups, 

Wanderlust was designed to position individual cells in a graph structure. Antibodies coupled 

to different, stable, transition element isotopes were used to bind target epitopes within and 

on the surface of the cells. By using information from single-cell mass cytometry data and 

simultaneous measurement of different surface markers, as well as internal functional 

proteins, Wanderlust generated trajectories that enabled ordering of human cells from HSCs 

through to naive B cells 45. The unbiased ordering of cells identified a population of very 

early B cell progenitors that developmentally precede cells that express canonical B cell 

surface markers, CD10 and CD19.  CD10 and CD19 have been considered to be the earliest 

markers traditionally used in the identification of human B cells. The newly identified, early 

population of human B cells in the marrow was marked by expression of CD24 on their 

surface. Evidence from single cell expression analysis of murine CLPs also suggests that 

even in the absence of detectable CD19 surface expression, a significant proportion of 

progenitor cells are B lineage committed 40. Therefore, single cell analysis allows 

identification of previously unrecognized subsets of progenitor cells. 

 

Gene regulatory networks: blueprint of the functional cooperativity among genes 

It is well accepted that the spatio-temporal control of transcription of thousands of genes 
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during fate determination is not regulated by a single lineage-specific TF. Instead, fate 

choice is enforced by combinatorial diversity generated by the binding of multiple TFs at key 

regulatory sites 47, 48.  The regulatory regions serve to combine the input signals from the 

regulators (e.g. TFs) and thereby control the level of gene expression during transcription. 

The regulators and genes, together with the regulatory connections and interactions 

between them, form the gene regulatory networks (GRNs). Therefore, GRNs can be 

regarded as a blueprint for understanding the functional cooperativity among genes and can 

offer elucidation of developmental processes and cell differentiation on a systems level.  

 

The total amount of mRNA produced during transcription is a measure of how functional or 

active a gene is. Although gene expression analysis from populations of cells can be used to 

infer gene networks, population level analysis can mask important gene correlations. For 

example, while a group of genes can be regulated independently by two TFs, the GRN 

generated from the bulk RNA-sequencing data might predict that these two TFs are co-

expressed or that one regulates the other one. Single cell RNA-sequencing can reveal that 

the examined population of cells is heterogeneous and that actually these two TFs are 

exclusively expressed in any given cell. GRNs constructed from single cells would reveal 

that the group of genes is regulated by two different TFs. Therefore, identifying GRNs that 

regulate the behavior of individual haematopoietic cells is essential for understanding the 

underlying transcriptional programs that drive lineage specification and commitment.  

 

Single cell analysis, in combination with functional studies, discovered a GRN that is 

associated with early segregation of the megakaryocyte-erythroid lineage from the lympho-

myeloid lineage 9. The correlated gene expression in individual cells from five 

haematopoietic populations (HSC, MPP, CMP, MEP, GMP, CLP) combined with an existing 

ChIP-seq binding dataset for ten major TFs 47 revealed Gata2 as a central regulator in the 

megakaryocyte-erythroid versus lympho-myeloid fate choice. The functional relevance of 

these findings was confirmed by single cell analysis of Gata2 haploinsufficient HSPCs, which 
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showed down-regulation of megakaryocyte-erythroid and up-regulation of lympho-myeloid 

markers 9. Similarly, single cell gene expression analysis of 18 TFs in hundreds of primary 

blood stem and progenitor cells also identified Gata2 as an important regulator of 

commitment of HSCs toward the megakaryocyte-erythroid lineage 11. Examination of the 

existing ChIP-Seq data combined with transgenic and transcriptional assays revealed a 

regulatory triad that consisted of Gata2, Gfi1 and Gfi1b. Gata2 has been proposed to 

function in a regulatory loop to modulate Gfi1/Gfi1b cross-antagonism and thus control 

specification of HSCs into megakaryocyte-erythroid and lympho-myeloid lineages 11. All 

together, these findings supported the idea that the commitment to the megakaryocyte-

erythroid lineage might occur, at the top of the haematopoietic lineage tree, in HSCs. 

 

Gene regulatory networks can also be used to delineate lineage progression during early 

blood development 49. Murine blood and vessel development initiates during gastrulation 

from mesodermal multipotent cells that express Flk1 (Fetal Liver Kinase 1). These cells 

initially have the potential to form blood, endothelium and smooth muscle cells. Gene 

expression analysis of over 40 TF and marker genes involved in endothelial and 

hematopoietic development of post-implantation mouse embryos, at four sequential stages 

of development, identified key events necessary for the development of mesoderm toward 

blood and endothelial-like fates and specification of primitive erythroid cells.  The analysis 

revealed asynchronous maturation of individual cells while they underwent commitment to 

haemogenic endothelium.  The analysis of the underlying regulatory network predicted a key 

role of Sox7 in the development of erythroid fate, which was subsequently experimentally 

validated using a transgenic mouse assay. The generated network coupled with 

experimental validation further identified transcriptional regulator Erg as a downstream target 

of Sox and Hox factors during early blood specification. Therefore, single-cell expression 

profiling, combined with novel computational approaches for network synthesis, can provide 

insight into the molecular basis of early blood development.  
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Concluding remarks 

Traditionally HSCs are defined as cells with the long-term ability to self-sustain and to 

persistently generate both lymphoid and myeloid cells. However, intrinsic heterogeneity of 

classically defined HSCs in their differentiation output has challenged the concept that all 

HSCs have equal multi-lineage differentiation potential. HSCs isolated using any of the 

known combinations of cell surface markers, are transcriptionally heterogeneous, 

underscoring the importance of analyses at the single-cell level.  

 

Single cell gene expression analysis has revealed that populations of progenitor cells, sorted 

based on the well-defined sets of specific cell surface markers, such as CMPs, CLPs and 

possibly other progenitors, are also transcriptionally and functionally heterogeneous. An 

additional level of complexity has been introduced, into the traditional hierarchical model of 

haematopoiesis, with the identification of progenitor cells with mixed lineage potential; these 

populations cannot be integrated into the current model of haematopoiesis that posits early 

segregation of myeloid and lymphoid potential. Therefore, it is necessary to revise the 

current view of the lineage development in haematopoiesis. 

 

Future studies will need to address the exact composition of the stem and progenitor’s 

transcriptional states in vivo, as well as the relationships between them. It is now more 

appreciated that HSPCs’ differentiation is a gradual, continuous process both on a 

transcriptional and functional level rather than a set of obligatory, discrete steps. However, 

what these transcriptional states are in vivo and what the key genes and networks that 

regulate the transition of cells from one state to another are remains unclear. Single cell 

transcriptome analysis might provide answers to these questions.  

 

Although current methodology for sorting haematopoietic stem and progenitor cells, based 

on well- defined cell surface markers, have long provided means for classifying 

haematopoietic cells, the identification of the whole spectra of blood transcriptional states will 
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require alternative methodology for isolating cells. The marker-free isolation of 

heterogeneous populations of blood cells, followed by single cell transcriptome analysis 

could provide means for data-driven classification of cell types. The high-resolution 

transcriptional maps of both main and intermediate cellular states during differentiation will 

further help in (re)defining the haematopoietic lineage branching map. Importantly, the 

relationships in the GRNs that regulate blood cell state transitions will need to be assessed 

for functional relevance by perturbation experiments. Single cell RNA-sequencing has been 

used, for example, to identify network controlling differential responses of dendritic cell 

subtypes, in the spleen and bone marrow, to different stimuli 19, 50. Application and 

development of appropriate computational and statistical methods will be essential to fully 

exploit the wealth of generated data 51. 

 

Gene expression analysis of multiple genes in a limited number of individual cells has 

identified that stochastic, independent activation of regulatory factors leads to lineage 

commitment prior to establishment of a coordinated lineage program. Single cell RNA 

sequencing will provide information on the full spectrum of molecular changes that are 

necessary for the transition from multipotent to committed state to occur. It should be noted 

however, that fluctuations in gene expression at the RNA level do not necessarily reflect the 

level of protein present in individual cells. The simultaneously measured absolute mRNA 

and protein abundance in both bacteria and eukaryotes, suggests that the cellular 

concentrations of mRNAs and corresponding proteins do correlate. It has been estimated 

that between 40% and 80% of the variation in protein concentration can be explained by 

variation in mRNA abundances 52-56. Single-cell mass cytometry theoretically allows 

simultaneous detection of over 100 different proteins in thousands of cells. Development of 

methodologies for detection of protein and mRNA level in the same cell will be necessary to 

relate these parameters with cell behavior and fate choices.  

By sequencing thousands of single cells, future studies are poised to go beyond traditional 

approaches in examining the complex relationships between the continuous spectra of blood 
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cells, and will provide unprecedented insight into the regulation of blood cell formation. They 

will illuminate novel disease-causing genes and inform approaches aimed at manipulating 

the expansion, directed-differentiation or reprogramming of stem cell fate for therapeutic 

advantage. 
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Figure legends: 
 
Figure 1: Bulk transcriptomics masks heterogeneity at the single cell level.  

Our knowledge of transcriptomes of various haematopoietic lineages has been advanced 

mainly by population-level analysis. However, a population of seemingly homogenous 

haematopoietic cells may include many distinct cell types. Thus, the transcriptome of an 

individual cell may differ substantially from the averaged transcriptome of the population of 

cells. These transcriptional differences between individual cells likely have important 

functional consequences by altering the ability of cells to make diverse differentiation 

decisions.    

 

Figure 2: Gradual transition of cells between different cell states. 

Rather than a process of abrupt transition between strictly defined stages, haematopoiesis is 

more likely a continuous process both on a transcriptional and functional level. Ultimately, at 

the end of this process, functional, fully differentiated, lineage restricted cells are formed. 

 


