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Immersion and Invariance Stabilization of Nonlinear Systens: A
Horizontal Contraction Approach

Lei Wand', Fulvio Forn?, Romeo Ortegg and Hongye St

Abstract— The main objective of this paper is to propose the plant and by a neverror dynamics, denoted by the
an alternative procedure to carry out one of the key steps of coordinatez, that measures the distance to the manifold.
immersion and invariance stabilising controller design. Namely, Then, a full-state feedback controller must be designed to

the one that ensures attractivity of the manifold whose intenal
dynamics contains a copy of the desired system behaviour. €MSUre boundedness of the plant state and convergence to

Towards this end we invoke contraction theory princip|es and Zero Of theZ Coordinate. The main Stabilisation result in
ensure the attractivity of the manifold rendering it horizontally  1&I states that the evaluation of this control law on the
contractive. The main advantage of adopting this alternative manifold defines an asymptotically stabilising controfier

approach is to make more systematic the last step of the e gystem. The construction leads to a static controlieres
design with more explicit degrees of freedom to accomplish th trol | . functi v of the plant stat
the task. The classical case of systems in feedback form isads € control law IS a function only of the piant state.

to illustrate the proposed controller design. The design of the aforementioned full-state feedback
Index Terms— Stabilization; contraction; nonlinear sys-  controller is not systematic and finding a controller that
tems. renders the desired manifold attractive could be challengi
in practice. The main objective of this paper is to carry
|. INTRODUCTION out this step by exploitingontraction theory principles [6].

Immersion and invariance &) is a controller design More precisely, we will usehorizontal contraction [4] to

technique that has been recently proposed in the literatUfgAW geometric conditions that guarantee the attractis@ne
to stabilise non-linear systems [1]—see also the recenk bo8f the desired manifold. The main advantage of adopting this

[2] where many applications of the technique are presentegiternative approach inldl is to make more systematic the
The &I approach captures the desired behaviour of thgesign of the control action away from the desired manifold.

system to be controlled by introducing a target dynamical/e anticipate that the stabilization of the extended sysiém
system. Then, a suitable stabilizing control law is desige &1 S replaced by the stabilization of the prolonged system
guarantee that the controlled system asymptotically besha3], defined by the plants and its linearization. In compamis

like the target system. More precisely, tHel Imethodology 0 &I, the local nature of the approach pursued in this
relies on finding a manifold in the plants state-space th&@&Per provides more degrees of freedom in the design of the
can be rendereihvariant and attractive by feedback control, controller, possibly widening the use atl in applications.
such that (i) on the manifold, the closed loop dynamics be- ~The paper is organized as follows. Sectloh Il briefly
haves like the desired dynamics (i) away from the manifold€calls the standardil controller design procedure. The
the control law steers the state of the system towards t@vel design based on horizontal contraction is illusttate
manifold. The usual way to carry out the latter step is t&) Section[Ill. The section provides the main result of the

define an extended dynamical system given by a copy &@Per, whose proofis in Appendix B. The classical example
of systems in feedback form is presented in Secfich IV.
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whereg; : R® — R is the i-th element ofg. When clear
from the context the subindex of the operalérand the
arguments of the functions will be omitted. All the function
in the paper are assumed sufficiently smooth.
Il. THE STANDARD |&I| STABILISATION PROCEDURE
Consider the system

&= f(z) +g(x)u oy
with statex € R", the input controlu € R™, and an
assignable equilibrium point

z, € {z € R" | g™ (2)f(z) = 0}

to be stabilized, whereg* : R" — R(=m)xm jg g full-
rank left annihilator ofy(z). Stabilisation is achieved ir&l
fulfilling the following four steps. The reader is referreal t
[2] for the proof of the next proposition
Proposition 1: Assume that there exist mappings
a:RP-RP, 7:RP = R", c¢:R*"—=R™,
¢p:R* >R P ¢:R*"xR"P 5 R™,
with p < n, such that the following hold.
(A1) (Target system) The system

£=a(f), )
has a globally asymptotically stable equilibriuméate
R?P andz. = 7(&).
(A2) (Manifold invariance condition) For all ¢ € R?,

f(@(€)) + 9(m(€))e(r(§) = Vr(al§) - (3)

(A3) (Implicit manifold description) The following set iden-
tity holds

Mi= (o R = (O} = (= € Rl =0}

(A4) (Manifold attractivity and trajectory boundedness) Con-
sider the system

i = flz)+g(x)v(z,2) 5)
= Vo()[f(z) + g(z)v(z, 2)], (6)
with the initial condition constraint
z(0) = ¢(x(0)), (7)
andv(z, z) verifying
v(m(£),0) = c(m(§)), V€ € RP. (8)

All trajectories of the system are bounded and satisfy
lim z(t) =0.

t— o0 (9)

Then, z, is aglobally asymptotically stable (GAS) equilib-
rium of the closed—loop system
&= f(z) + g(@)v(z, ¢(x)) . (10)

|

the successful completion of th&l design. Exploiting [4],
we propose in the next section to replace (A4) by a novel
condition based on horizontal contraction [4].

Remark 1: In comparison to the results presented in [1],
[2], we have added the initial condition constraint (7) and
the requiremen{{8). The first condition ensures th@} =
o(x(t)), ¥t > 0, while the second one guarantees that the
x—system behaves like the-system when restricted to the
manifold M. These requirements were implicitly assumed
in previous works. If these conditions are not imposed it is
possible to show that the claim of Propositidn 1 is false. An
example of this fact is given in Appendix A. J

Remark 2: The &I technique makes contact with the
literature of invariant manifolds stability [8] and of cand
tional stability (relative to a set) [7]. Indeed, in théll
technique the action of a state-feedback controller render
invariant and stabilizes a suitable submanifold of theeyst
state space while enforcing a desired steady-state behavio

represented by the target dynamics. a

IIl. THE I&| HORIZONTAL CONTRACTION PROCEDURE

The proposition below proposes to replace the step (A4)
in Propositior ]l by a horizontal contraction based desigh th
ensures attractivity of the manifold1.

Proposition 2: Given the conditions (A1)—(A3) in
Propositior 1L, assume there exist mappings

P:R" —» Rv=p)x(n—p)  p— pT >
R:R" — R(=p)xn

B:R™ — R™,

p:R" - R, p>0,

such that the following holds.
(A4") (Manifold attractivity via horizontal contraction)

(i) For all z € R™, R(z) is full rank and

R(m(£)) = Vo(r(£)), V& € R”.
(i) Forall ¢ € RP

(11)

B(m () = c(n(£))-

(i) The candidate Finsler-Lyapunov functioi : R" x
R™ — R>( given by
V(z,0z) =6z R" (z)P(x)R(z)0z, (12)

satisfies

V(z,ox) < —p(z)V(z,5z) (13)

along the trajectories of the prolonged system
i = (@) +9@)B) (14)
oz V(@) + g(x)B(x)]d. (15)

(iv) The trajectories of{(114) arbounded.
Then,z, is a GAS equilibrium point of the closed—loop

system [(I4). Furthermore, if the fixed poifit of the target
system[(R) is hyperbolic, then, is hyperbolic.

Following the discussion in the introduction, the accom-
plishment of step (A4) is not systematic and may challengerovided thatV¢(x) is full rank for all x € R™.

J
Remark 3: A natural simple choice foR(x) is V(x),

J



Remark 4: In contrast with the classical 1&I Proposi- Fixing p(z) = k > 0 the condition [(IB) is satisfied if and
tion [2 directly provides the static state—feedback cotgrol only if
B(x). This should be compared with the contigk, z) that L L
should verify condition (A4) for the augmented systdth (5)M (1) + M (21)[Q(z) + 1] + QT (z) + 5 11M(21) < 0.
@), which is later evaluated on the manifold to generate the (22)
actual control to be applied, that is(z, ¢(z)). 2 We are in position to state the following proposition.
Remark 5: Propositiol 2 can be formulated in a similar Proposition 3: Consider a system described by equa-
way for any forward invariant regiod C R™. If C = R™ tions of the form [[1b) and suppose there exist mappings
then, as stated in the proposition, one gets GAS. Otherwise, : R” — R and 5 : R("*1) — R such that the following
one gets regional stability. This formulation may be usefuholds.
in applications when global results are difficult to achieve  (a) The system
when the system lives in a manifold different frak%. Note i1 = f(x1, ma(x1))
that if C is compact, then the condition (iv) of boundedness

of trajectories is automatically satisfied. J has a GAS equilibrium at zero.
(b) The inequality[(2R) is satisfied for some> 0.

IV. APPLICATION TO SYSTEMS IN FEEDBACK FORM (c) Forall¢ e R

Consider the class of systems in feedback form de- B(&,m2(8)) = Vma (&) f(§, m2(§))-

ibed by th ti
seribed by the equations Then, the systeni (16) in closed—loop wijtiz) has a GAS

oy = f(x,22), (16) equilibrium at zero. ¥
To = u, Example 1: To illustrate the result in Proposition 3,

. . ... consider the two-dimensional system
with « := col(z1, 22) € R™ xR, andu € R. Consistent with

the standard backstepping scenario [5] assume there axists B o= —x 4 Axdze 23)
mappingms : R” — R such that the system Ty = u,

in which A > 0. We proceed now to verify condition (a).
Selectingma(21) = —2% we obtain

has a GAS equilibrium at the origin. A sensible choice of

@y = f(x1,m2(21))

O _ _ 5
the target dynamics is then given by 1= flzn,ma(21)) = = = Aay
. which has a GAS equilibrium at zero. To check condition
£ = f(§m(6)), (17) (b) we, first, compute
and this implies that the mapping¢) has the form plz) = 27+
2
¢ _ 4z 2x
7T(§)Z|:772(€):| M(x) [2%1 1
_ 2 3
To verify Assumptions (A2) and (A3) of Propositiéh 1 we Qx) = [ 1V+ BATIT; v AT ] .
can choose o, B(x) 22 B8()
Some lengthy, but straightforward calculations, show that
C(&a 2 (6)) = Vm (g)f(gv T2 (5)) (18) 1 ) 1 A
lz) = xy—ma(z1), (19) Blx) = —5(]{3 —4)x] — 5/@:02 — 2Dz w2 (24)
which clearly satisfy[(3) and14). solves I;ZE) with identity. It only remains to verify conditi
The differential relation of the systerfi{16) in closed-(¢). Which holds true because
loop with the controli(x) is B(&ma(€)) = 262(1+ Ag") = (=2€) [~ + 26 (=€)
—— — — —
sp= | Yol @) Ve f(2) 50 02)6a, Vra(§)  f(Ema(9)

Va B@) Ve, f(2) In conclusion, the systen{_(R3) in closed—loop with the
From Propositiofl2 we seleét(z) = V(z) and P(z) = I. control [24) has a GAS equilibrium at the origin. J

Whence the Finsler-Lyapunov functidn{12) takes the form V. CONCLUSIONS

V(x,0z) = 02" M(z1)d0z, (20) An alternative procedure to complete the designéoff |
controllers for stabilization of nonlinear systems hasrbee

where we have defined proposed. The central idea is to replace by a contraction—

M(z1) = [Voé(z)]"Vo(x) based design the stabilization step on the extended dysamic
Vra(z1)[Vre(z1)] T  —Vma(x1) (8).(8) required by condition (A4) of the I&I procedure.
o —[Vra(z1)] " 1 The main advantage of the contraction—based approach is to

(21) render more systematic the design and to give more degrees



of freedom for its accomplishment. The key step of the novethere§ # 0 is a constant parameter and= col(uy, u2)
design is the use of horizontal Finsler—Lyapunov functions the control input. The control objective is to stabilizet
[4] that decays along the trajectories of the prolongedesyst system at the origin using thé:| procedure.

in the spirit of classical Lyapunov theory. Of course, sarlif First, we select the target system @s= —¢&, which

to all constructive procedures for the design of nonlineaslearly has a GAS equilibrium at zero, verifying the first
controllers or observers, for the successful applicatioh® part of (Al). Selectingr(£) = col(¢,0) it is easy to see
novel design proposed by the paper it is necessary to soltreat the manifold invariance condition (A2) holds with the
a partial differential equation. In particular, for systenim constant control

feedback form, it is necessary to find a controlr:) that _g
satisfies[(2R) §(x) is encoded irQ(z)) for a suitable choice c(n(§)) = [ }
of R(x) and P.

From the conceptual viewpoint, the use of FinslerMoreover,7(0) = col(0,0), verifying the second part of
Lyapunov functions replaces the stabilization of the offf{Al1). The implicit manifold condition (A3) is verified with
manifold coordinate of 1&1 with the horizontal stabilization ¢(z) = 5. Finally, we need to define a controllefz, z)
of the linearization along trajectories. For instance, théor the augmented system
method proposed in this paper stabilizes limearization of

the system along suitable directions of its tangent spacs, t 5:”1 = —oit+0+u(e,2)

providing a local and intrinsic feedback design procedure *2 = va(7, 2)

that does not require any a-priori definition of the off-  : — () { —z1+ 0+ vi(z, 2) } — volz, 2),
manifold coordinatez. The advantage is a more general va(, 2)

design method, possibly. This generality is directly erebd 5t ensures boundedness of trajectorieslang, o z(t) =
into the conditions of Propositidd 2: thecoordinate of clas- ( This is clearly guaranteed with the selection

sical &l is replaced at local level by the matriX(x), which

is one of the free parameters to be selected in the formulatio (i, 2) = { 0 } _

of the partial differential equatioi (P2)\M (=) depends on ’ —z

R(z)). The intrinsic nature of the design combined with the

increased degrees of freedom make the present formulation It is claimed in Theorem 2.1 of [2] that applying the

of horizontal contraction—baseétl a promising stabilization control 0
tool for applications. u=v(z,(x) = { . } ;
REFERENCES to the z—system ensures the origin is a GAS equilibrium.
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APPENDIX Notice that the conditior{8) is also not verified since

(@00 = | o | #etmen=| 3]

It is clear from [25) that imposing the initial condition
(qZI), that is,z(0) = z2(0) we getz(t) = z2(t). But we still
eed to modify the controller to comply withl(8). A simple
choice being

S.Cl = —I1—|—9+U1 ’U(I Z)—|:_9:|

A. Counterexample to Theorem 2.1 of [2]

Our objective in this appendix is to show that if we
follow all the steps of the standaré&l procedure of Propo-
sition [I—without imposing the conditiond{7) anfl(8)—we
cannot guarantee GAS of the equilibrium. Towards this en
consider the two—dimensional, linear, time—invariantesys

i‘g = U2 —z



For this new choice the control Il. Global attractiveness of z,

By (A2), (A4’) and the boundedness of trajectories we
} have that any trajectory of the closed loop system converges
to the manifold¢(xz) = 0. Moreover, by (Al) and (A2),
+ the manifold is invariant and internally asymptoticallgiste,
hence all trajectories of the closed loop system converge to
the equilibriumz, [

—0
u=oteote) = |
yields & = —z, which certainly has a GAS equilibrium a
zero.

B. Proof of Propogtionm 11, L00a| Sab|||ty Of €Ty

To conclude the proof we need to show that is
Lyapunov stable. Note that any trajectory of the closed loop
system is the image through the mappir(g) of a trajectory
of the target systeng. Moreover, for anysy, there exists

The proof is divided in four parts establishing global
attractivity of (1) the manifold and (1) the equilibrium pd,
(1) local stability and (IV) hyperbolicity of the equilibum

point. 41 such that|¢(0)] < 4y implies |£(t)] < 1. Hence, by
regularity of 7, for any e > 0 there existsy > 0 such that
I. Global attractiveness of M |7 (£(0))] < ¢ implies |7 (£(1))] < e.
Take |dz|, = /V(z,dx). Given any differentiable IV. Hyperbolicity of x,
curvey : [0,1] — R define the horizontal length(v) := Without loss of generality take, = 0 and defineS :=

Jo ()], (s)ds. Note thaté(y) # 0 iff R(v(s))3(s) # 0 for  va(0), I := V(0), and A := V[£(0) + g(0)c(0)]. For
somes € [0,1]. Thus,£(y) # 0 if y(s) ¢ M for some semplicity denote the matrixk(0) by R and P(0) by P.

€ [0,1]. For instance, consider any andy in M. By  The linearization of the closed loop system computed on the
construction, there exists a differentiable curyeuch that fixed point readsi = Az. £ = S¢ denotes the linearization
7(0) =z, v(1) = y and~(s) € M for all s € [0,1]. Then of the target system at the fixed poifit = 0
R(v(s))7(s) = Vo(v(s))¥(s) = 0, by (IT), which implies Now, S is Hurwitz by assumption. The span of the
[7(8)|5(s) = 0, thusé(v) = 0. In a similar way, consider any columns ofIl and RT define two orthogonal subspaces of
r € M andy ¢ M and lety be any differentiable curve the state space. To see this, note tfiate 7,. M therefore
such thaty(0) =  and~(1) = y. Then, because of the rank RI1¢ = V¢(0)IIE = 0. Since¢ has dimension, it follows
condition onR(x) and differentiability of R(x), there exists that RIT = 0. Clearly, I RT = (RII)T = 0. It follows
a measurable subset 8fC [0, 1] such that|y(s)|,) # 0.  that the state of the linearized closed loop system can be
Thus, £(v) > 0. decomposed as

Let ¢+(x¢) denotes the flow of the systein= f(x) + F=If+R"e

g(x)B(z) at time ¢t from the initial conditionyg(zg) =

(n—p)
zo € R". Exploiting the boundedness of trajectoriesWNeree is a vector inRt=. In particular, take

global attractiveness aM can be proven by showing that e:=(RR")'R(z — Hg) = (RR") 'Rz .
lim;, oo (¢4 (y)) = 0 for any given curvey such that ) - N
((v) # 0. We show this in the next two paragraphs. The invertibility of RR" follows from the rank condition on

R. The last identity follows from orthogonality, i.&II = 0.
Take any trajectoryz(-). Then, there exist positive
constants:, ¢o, c3, ¢4, ¢5, ¢g Such that

By boundedness of trajectories, for any [0, 1] — R"
there exists a compact s&t such that,y.(y(s)) € K for
eachs € [0, 1] andt > 0. By continuity, for each: € I and

dr € R™, (@I3) guarantees that there exists> 0 such that lZ(t)] < c1|H£( t)+ RTe(t)|
V(x,0z) < —AV(z,dx) < 0. It follows that < alIE@)] +ei|RTe(t)|
d d < 01|H§( )+ |[(RRT)LRE(t)|
V (5006, T06) ) < -2V (2661 1160 < llE()] + e/VI0,7(0)
< ealé(t)] + caexp(—3)y/V(0,%(0))
which implies that < czexp(Amax(9)1)[€(0)] + ¢s exp(—3)|e(0)]
< c¢g exp(max{Amax(9), %}t)|:i(0)|
i"/’t('}/(s)) < exp <_ﬁ) iv(s) . where \,.x(S) is the largest eigenvalue of and \ is the
ds Pe(v(s)) 2 ) |ds y(x) local decay rate of/ (part 1 of the proof). Finally, expo-

nential stability of the linearization implies local expartial
Thus, £(¢:(7)) < exp(—At stability of z, for the closed-loop dynamics.
Suppose now that (0

i (7(0)) € M for all t >

\/\_/

(manifold invariance). Thus,
the combination ofim;_,~ £(¢:(v)) = 0 with boundedness
hat(y

_Of trajectories guarantees t ( )) converges asymptot- 1This steps coincide with the ones of Theorem 2.1 of [2]. Theesa
ically to M. remark applies to the derivations of part IIl.

().

€ M and~(1) ¢ M. By (A2),
0

£y
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