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Abstract—This article focuses on the problem of reconstructing
dynamic sparse signals from a series of noisy compressive sensing
measurements using a Kalman Filter (KF). This problem arises
in many applications, e.g., Magnetic Resonance Imaging (MRI),
Wireless Sensor Networks (WSN) and video reconstruction.
The conventional KF does not consider the sparsity structure
presented in most practical signals and it is therefore inaccurate
when being applied to sparse signal recovery. To deal with this
issue, we derive a novel KF procedure which takes the sparsity
model into consideration. Furthermore, an algorithm, namely
Sparsity-fused KF, is proposed based upon it. The method of
iterative soft thresholding is utilized to refine our sparsity model.
The superiority of our method is demonstrated by synthetic data
and the practical data gathered by a WSN.

I. INTRODUCTION

Most practical signals have a sparse structure in a suit-
able basis and the sparse signal model has made dramatic
improvements on solving linear inverse problems. Based on
this, Compressive Sensing (CS) [1], [2], [3], has emerged
as a new sampling paradigm, which allows sparse signals
to be recovered accurately from far fewer measurements as
required by the Nyquist sampling rate. CS for static sparse
signal recovery has been heavily investigated, e.g., [4], [5],
[6], [7]. Compared to the static case, dynamic sparse signals
have more correlated statistics that can be exploited. Improved
CS schemes using dynamic correlation features have been
successfully developed in many applications, e.g., MRI [8],
Wireless Sensor Networks (WSNs) [9] and video [10].

The Kalman Filter (KF) has been one of the most popular
approaches in the area of linear dynamic system modeling.
However, the KF is not an ideal method when it comes to
dynamic sparse signals, as the KF in general does not consider
any sparsity constraints during the state estimation. In [11], the
first KF based CS method was proposed. They employed CS
on the KF residual, identified the support set of the signals and
then carried out a second KF corresponding to the obtained
set. The signal sparsity is enforced by the support detection,
rather than by changing the underlying principle of the KF. In
[12], they transformed the KF procedure as a MAP estimator
and included the sparse constraint as in CS-type algorithms.
By exploiting the inherent statistics of the KF, the authors of
[13] proposed to employ a hierarchical Bayesian network to
capture the sparsity. However they only focused on the sparsity
of the innovations between correlated signals. In [14], they
formulated the KF into the optimization framework, to which

it is straightforward to add any sparsity constraints. But it
lacks the updates on the covariance as in conventional KF.
Using the constrained optimization problem, Carmi proposed
a stand-alone KF-based reconstruction approach by employing
pseudo-measurements [15]. To our best knowledge, all the
existing methods are either enforcing sparsity by estimating
the signal amplitudes and support separately or pursuing spar-
sity by introducing the optimization problem into the original
KF in various ways. The non-sparse estimating framework
underlying the KF has not been altered.

In this article, we propose a novel KF process which has
directly fused the signal sparsity model into its filtering process
and we then develop an algorithm for the reconstruction of
dynamic sparse signals based on the sparsity-fused KF. We
pursue the sparsity of signals via Iterative Soft Thresholding
(IST), which has been proved to be effective in estimating
sparse signals [16]. Our method outperforms the existing
algorithms in the following respects: 1) our reconstruction
results for CS acquired dynamic sparse signals are more
accurate in the practical noisy case; 2) it is more robust
when the measurement noise increases; 3) it converges in
fewer iterations; 4) it is easier to tune the parameters for our
algorithm.

The rest of the paper is organized as follows: Section II
provides the mathematical formulation of the problem; section
III presents the details of our work, including the sparsity
statistic model, the novel sparsity-fused KF process and our
proposed algorithm; section IV demonstrates the experimental
results for both the synthetic and practical data; section V
concludes this article.

II. PROBLEM FORMULATION

Consider a sequence of signals xt ∈ RN (t = 1, ...T ). Each
of the signals is sparse in some sparsifying basis Ψ ∈ RN×N ,
i.e., st = Ψ∗xt, where st has only K (K � N) non-zero
coefficients and Ψ∗ denotes the conjugate transpose of Ψ.
We sample this sequence of sparse signals via:

yt = Atst + et, (1)

where At = ΦtΨ is the equivalent projection matrix, Φt ∈
RM×N is the sensing matrix, yt ∈ RM (M � N) is the t-th
observation vector and et ∈ RM is the measurement noise.

This is an under-determined system and conventionally it is
impossible to recover st from yt. However, under the condition
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Fig. 1. Fusion process for (a) the conventional KF; red: prediction distribution
p(st |̂st−1); blue: measurements distribution p(yt|st); green: KF estimation
p(st|yt,ŝt−1); (b) sparsity-fused KF; red and blue curves represent the same
distributions as in (a); yellow: distribution of sparse estimation p(st); green:
sparsity-fused KF estimation p(st|yt,ŝt−1).

that st is sparse, if At satisfies the Restricted Isometry
Property (RIP) [17], CS offers a way to solve the problem
with an overwhelming probability of success. Conventional CS
reconstructs st by solving the following optimization problem:

min
st
||st||1 s.t. ||yt −Atst||22 ≤ ε, (2)

where ||v||p = (
∑N
j=1 vpj )

1/p is the lp-norm of v and ε is a
tolerance parameter. So reconstructing dynamic sparse signals
one by one using the conventional CS as in (2) does not exploit
any correlations between the signals.

We model our system as a linear dynamic system which
follows:

st = Ftst−1 + qt, (3)

where Ft denotes the state transition matrix from the (t− 1)-
th signal to the t-th signal and qt represents the process
noise. For the system defined by (1) and (3), if we assume
the statistics of st−1 are known as p(st−1) ∼ N (̂st−1,Pt−1)
and we further assume the following Gaussian distributions:
p(et) ∼ N (0,Rt), p(qt) ∼ N (0,Qt), p(st |̂st−1) ∼
N (Ftŝt−1,Pt|t−1) and p(yt|st) = N (Atst,Rt), it becomes
a standard KF setting. Under these assumptions, the KF pro-
vides a solution that both minimizes the MSE, E[||st− ŝt||22],
and maximizes a posterior probability, i.e.,

ŝt = argmax
st

p(st|yt, ŝt−1). (4)

See [18] for the original KF equations. The process for the
conventional KF includes two stages: predicting the current
signal using the previous one and updating the estimate using
the measurements. It utilizes the correlations between dynamic
signals, but the solution ŝt is generally not sparse. This is
highly inaccurate when being applied to the recovery of sparse
signals. We therefore propose to design a new KF process that
does not ignore the sparse structure of the signals.

III. SPARSITY-FUSED KALMAN FILTERING

From a statistical view, the original KF essentially approx-
imates the probability in (4) as:

p(st|yt,ŝt−1) ∝ p(st|ŝt−1)p(st|yt)
= p(st |̂st−1)[p(yt|st)p(st)/p(yt)]
∝ p(st|ŝt−1)p(yt|st), (5)

where p(st |̂st−1) denotes the predict step and p(yt|st) repre-
sents the update step. Accordingly, the operation of the KF can

be explained by Fig. 1(a). The green curve that represents the
distribution of the KF estimation, i.e., p(st|yt,ŝt−1), is derived
by multiplying the red and blue curves, i.e., p(st |̂st−1) and
p(yt|st), respectively. We refer to this process as “fusion”.
Obviously, in this fusion process, p(st) is approximated as a
uniform distribution, i.e., the conventional fusion process does
not include any probability related to the sparsity of the signal.

In our method, we take into consideration the signal sparsity
constraint, which gives:

p(st|yt,ŝt−1) ∝ p(st |̂st−1)p(yt|st)p(st), (6)

where p(st) is the distribution modeling the sparsity of the
signal. As illustrated in Fig. 1(b), we derive our sparsity-fused
KF estimation (the green curve) by fusing the distributions of
the prediction (the red curve), measurements (the blue curve)
and the sparse estimation (the yellow curve).

A. Sparsity Distribution Model

We model the sparse signal distribution by:

p(st) ∼ N (0,Tt), Tt = diag(λ) = diag([λ1, ..., λN ]), (7)

where the vector λ denotes the variance of the signal. As
noticed, the sparsity is transferred from the amplitude of the
signal to the variance of it. If we denote st = [s1, s2, ..., sN ]T ,
the corresponding signal amplitude at each index is

si = argmax
λi

1√
2πλi

e
− s2i

2λi , (8)

where i = 1, ..., N . Thus, we can derive that the relationship
between the signal amplitudes and the variance in our model
is:

s2i = λi. (9)

This relationship paves the way to apply any conventional
sparsity pursuing method that functions on signal amplitudes,
rather than the variance, into our system.

B. Sparsity-fused KF update steps

Because of the difference between (5) and (6), the original
KF update steps are no longer applicable to our model. We
derive the following novel KF updating equations based on
(6):

Mt = Pt(Pt + Tt)
−1, (10)

s̃t = (I−Mt)̂st, (11)
P̃t = (I−Mt)Pt, (12)

where Pt and ŝt are, respectively, the covariance matrix and
the state estimate in the original KF, Tt is the variance
matrix for the sparsity model as defined in (7) and I is an
identity matrix. The resulting Mt, s̃t, P̃t are the Sparsity-
fused KF gain, the sparse state estimate and the corresponding
covariance matrix, respectively.

Derivation: Define the green Gaussian function in Fig.
1(a) as y1(s;µ1, σ1) = (1/

√
2πσ2

1)exp[−(s−µ1)2/2σ2
1 ] and

the yellow Gaussian function in Fig. 1(b) as y2(s; 0, σ2) =
(1/

√
2πσ2

2)exp(−s2/2σ2
1). Note that the process of deriving

the green Gaussian distribution in Fig. 1(b) is equivalent to



Algorithm 1 Sparsity-fused KF
Input: yt(t = 1, .., T ),A,Ft,Q,R = σ2

0I, ŝ0,P0, γ,N,Nτ .
Output: ŝt(t = 1, ..., T ).

1: for t = 1 to T do
2: Run the original KF:

ŝt|t−1 = Ftŝt−1,Pt|t−1 = FtPt−1F
∗
t + Q, (14)

Kt = Pt|t−1A
∗(APt|t−1A

∗ + R)−1, (15)
ŝt = ŝt|t−1 + Kt(yt −Aŝt|t−1), (16)

Pt = Pt|t−1 −KtAPt|t−1, (17)
3: Initialization: s0t = ŝt, P0 = Pt.
4: for τ = 1, 2, ..., Nτ do
5: Thresholding:

στ =
√

(Pτ−1(1, 1) + ...+ Pτ−1(N,N))/N, (18)
rτ−1t = yt −Asτ−1t , (19)

šτt = ητ (A∗rτ−1t + sτ−1t ; γστ ). (20)
6: Derive T: Tτ

t = diag([̌sτt (1)2, šτt (2)2, ..., šτt (N)2]).
7: Run sparsity-fused KF:

Mτ
t = Pt(Pt + Tτ

t )−1, (21)
sτt = (I−Mτ

t )̂st, (22)
Pτ = (I−Mτ

t )Pt. (23)
8: end for
9: Update: ŝt = sτt ,Pt = Pτ .

10: end for

fusing y1 and y2. Follow the scalar derivation process in [18],
we can get the expression for the fused function as:

yfused(s;µfused, σfused) =
1√

2πσ2
fused

e
−

(s−µfused)
2

2σ2
fused ,

(13)
where µfused = µ1 − σ2

1µ1

(σ2
1+σ

2
2)

and σ2
fused = σ2

1 −
σ4
1

(σ2
1+σ

2
2)

.
Substitute the scalars with the KF terms as follows: µfused →
s̃t, µ1 → ŝt, σ2

fused → P̃t, σ2
1 → Pt, σ2

2 → Tt, M =
σ2
1/(σ

2
1 + σ2

2)→Mt, the sparsity-fused KF update equations
(10)-(12) are derived. �

C. Proposed Algorithm for the Recovery of Dynamic Sparse
Signals via IST

Based on the sparse signal model and the newly-derived
KF process, we propose our Sparsity-fused KF algorithm, as
presented in Algorithm 1. The algorithm proceeds as follows.
For each of the signals in the sequence, an original KF
is performed at first, based on which the thresholding and
the sparsity-fused KF steps are initialized. Then we employ
soft thresholding (with a threshold function η) to pursue the
sparsity of the signal, in which the threshold σ is determined
by the KF covariance matrix P. The threshold function is
defined as:

ητ (u; γστ ) =


u− γστ

u+ γστ

0

if u ≥ γστ ,
if u ≤ −γστ ,
elsewhere,

(24)

where τ is the index for the τ -th iteration, γ is a control
parameter, u is a scalar element and the the function η
is applied component-wise when applied to a vector. Then,

according to the result of thresholding and the relationship
we obtained in (9), the variance matrix T of the sparsity
distribution can be derived. It is then utilized by the sparsity-
fused KF procedure to obtain the reconstruction result for
this iteration. The steps of the thresholding and the sparsity-
fused KF are repeated to refine the reconstruction iteratively.
Serially, the same process is carried out for the next signal in
the sequence.

In the area of static sparse signal recovery, iterative thresh-
olding schemes have been popular for some years [19]. Such
schemes are attractive because they have very low compu-
tational complexity and low storage requirements. However,
there are two issues concerning the implementation of such
methods. Firstly, it is essential to choose the thresholds very
carefully and they need to vary from iteration to iteration.
In [20], they carried out extensive experiments and finally
proposed how to optimally tune the parameters. Secondly,
these methods behave poorly in the presence of noise.

Fortunately, these issues are not problematic in the context
of our algorithm. Specifically, for the soft threshold function
η that we employed as in [6], the thresholds σ is defined as
(στ )2 = E[||sτ − s||]22, which is the estimate of the current
MSE. In conventional IST, an empirical estimate of (στ )2 is
used as the true MSE is unknown. But in our case, it is much
simpler as the KF process happened to provide us such an
estimate in the covariance matrix P. Therefore, we define στ

as in (18). Regarding the second issue, we benefit from the
correlations between the signals. Our reconstruction depends
on both the previous signal and the current measurements,
rather than purely rely on the noisy measurements as in the
conventional IST. We will show by simulation that compare
to the existing algorithms, our algorithm is more robust when
the noise presents in Section IV.

D. Heuristics for the Proposed Algorithm

We shall start with the heuristics for the conventional
IST algorithm in the static case [6]. Define the operator
H = A∗A− I. In the first iteration of the IST, an estimate of
the true signal s is derived as:

s1 = η(A∗y) = η(s + Hs), (25)

where Hs can be regarded as a noisy random vector with i.i.d.
Gaussian entries with variance N−1||s||22. It is well-understood
that the soft thresholding results in s1 being closer to s than
A∗y [6]. Then in the next iteration, the estimate is:

s2 = η[A∗(y −As1) + s1] = η[s + H(s− s1)], (26)

where the noisy vector is again a Gaussian vector with variance
N−1||s− s1||22. We can see that the noise level is lower than
the last iteration, so the thresholding result can be anticipated
to be more accurate at this iteration, and so on.

Now consider the proposed algorithm. In the first iteration
τ = 1 at t, we get an estimate as:

š1t = η[A∗(yt −As0t ) + s0t ] = η[st + H(st − s0t )], (27)

where the noise vector has a variance of N−1||st − s0t ||22 and
s0t is the initialization by the conventional KF. Therefore, if the
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Fig. 2. An example of reconstructed signal using the Sparsity-fused KF
algorithm and the conventional KF. The red circles denote the amplitudes of
the original signals for all its non-zero coefficients. (t = 100, M = 72, N =
256, σ0 = 0.2.)

original KF step produces an acceptable result so that ||st −
s0t ||22 < ||st||22, we can anticipate that our estimate š1t is closer
to st than the one in (25). Then in this case, by fusing it with
the distribution, which contains the information of both the
previous signal and the measurements, that we obtained in the
original KF step, the fused estimation s1t is even closer to st
than š1t .

In the next iteration, the estimate is:

š2t = η[A∗(yt −As1t ) + s1t ] = η[st + H(st − s1t )], (28)

where the noise vector has a variance of N−1||st − s1t ||22. As
shown previously, when our estimation in the first iteration,
i.e., s1t , is closer to st than in the conventional IST, i.e., s1

in (25), the noise level in (28) is lower than that in (26).
In consequence, we can anticipate that our estimate in each
iteration is more accurate than that of the original IST and
so our algorithm will converge in fewer iterations than the
conventional IST. This will be shown by simulation in Section
IV. Besides, a better recovery of st will help to create a more
accurate s0t+1, which is crucial to the reconstruction of the
(t+ 1)-th signal.

IV. EXPERIMENTAL RESULTS

The performance of the Sparsity-fused KF algorithm is
tested using several examples in which dynamic sparse signals
are recovered from noisy observations. We first test it using
synthetic signals and then employ it to reconstruct practical
signals obtained in a WSN.

A. Experiments on Synthetic Signals

We generate a sequence of sparse signals (T = 130) which
behave as a random walk process as following:

st+1(i) =

{
st(i) + qt(i),

0,

if, st(i) ∈ supp(st)
otherwise,

(29)

where i is the index, st ∈ R256 is assumed to be a sparse vector
and its support consists of 8 elements of which the index is
uniformly sampled in the interval [1, 256]. The process noise
obeys qt ∼ N (0,Q) and the covariance matrix Q is taken
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Fig. 3. Histogram of the MSE for all 13000 reconstructions for various
algorithms. (T = 130, M = 72, N = 256, σ0 = 0.2.)
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Fig. 4. The track of the MSE at different number of iterations for various
algorithms. (T = 130, M = 72, N = 256, σ0 = 0.2.)

as a diagonal matrix with entries equal to 1 on its diagonal.
The transition matrix Ft is taken as an identity matrix for t =
1, ..., T . For all the simulations, we employ the i.i.d. Gaussian
matrix as the sensing matrix A and R = σ2

0I with various
values of σ0 as the measurement noise covariance matrix.

In the first experiment, we take 72 samples at each t and
try to recover the signals when σ0 = 0.2. For initialization,
we set ŝ0 = 0 and P0 as a diagonal matrix whose entries
are all 9 [11]. Let γ = 2 [21] and the number of iteration
Nτ = 100. Fig. 2 shows an example of the signal reconstructed
by our algorithm and the conventional KF method. We can see
that our method manages to recover the signal with a sparse
structure; while the conventional KF fails to do so as it does
not use any information about the sparsity.

Under the same parameter settings, we then compare our
algorithm with the CS-embedded KF method for dynamic
signals in [15] (denoted as CSKF), as well as the conven-
tional static methods, i.e., CS and IST. We set Rε = 2002,
Nτ = 100 for the CSKF algorithm and the IST algorithm is
optimally tuned [20]. 100 trials for each algorithm are carried
out. Fig. 3 illustrates the distributions of the MSE for all
the T × 100 = 13000 reconstructions. It is clear that the
performance of our algorithm surpasses the others. Most of
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Fig. 6. The MSE for reconstructions under different amount of noise for
various algorithms. (T = 130, M = 72, N = 256.)

our reconstructions have an MSE of approximate 0.006; while
the mean MSE for the other algorithms are all above 0.014.

Note that the other dynamic algorithm, CSKF, is only
slightly better than the static algorithms. This is because
the CSKF algorithm is highly dependent on the number and
quality of the measurements. In other words, when just a small
fraction of measurements are taken and/or they are too noisy,
the benefit of the dynamic correlations in the CSKF algorithm
is submerged by the error induced by the measurements.

Fig. 4 demonstrates the track of the MSEs at different
numbers of iterations for various algorithms. Our algorithm is
compared with the iterative algorithms for static reconstruction
(IST, AMP [6]) and for dynamic reconstruction (CSKF). Each
point in the figure is the average of 130 signals over 100 trials.
For clarity, we only show the first 15 iterations. We can see
that the dynamic algorithms converge in fewer iterations than
the static ones. Our algorithm requires the fewest number of
iterations for convergence and its MSE is always the lowest
for different number of iterations.

Then we test the performance of our algorithm with differ-
ent numbers of measurements and under different amounts of
measurement noise. The results are shown in Fig. 5 and Fig.
6. All the results are the average of 130 signals over 100 trials.
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Fig. 7. An example of the reconstructed temperature signals using various
algorithms. (17th SN, M = 150, N = 1024, σ0 = 0.2.)
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In the experiment that yielded the results in Fig. 5, to keep the
energy of the measurement noise constant, we set σ2

0M = 3. It
is clear that our algorithm is superior to the others, especially
when the number of measurement is low. Note that the IST
algorithm fails when less than 30 measurements are taken. To
obtain Fig. 6, we set M = 72 and the rest of the settings are
the same as before. We can observe that our algorithm is also
more robust than the others when the noise increases.

B. Experiments on Practical Signals

We now employ the proposed algorithm to reconstruct the
signals gathered by the WSN located in the Intel Berkeley
Research lab [22]. In this WSN, 54 Sensor Nodes (SNs) were
deployed at various positions in one floor of the lab building,
and each of them has gathered humidity, temperature and light
level data for more than one month.

We extract the temperature data during a continuous time
period collected by 20 SNs as the dynamic sparse signals, i.e.,
T = 20. As demonstrated in [9], these independently collected



signals are highly correlated. Meanwhile, these signals are
highly sparse in the Discrete Cosine Transform (DCT) domain.
Therefore, we utilize the DCT matrix as the sparsifying matrix
Ψ and the sensing matrix Φ ∈ RM×N is set as an i.i.d. Gaus-
sian random matrix. Due to the high correlation presented, we
let the transition matrix F be an identity matrix and use the
method in [23] to learn the process noise covariance matrix Q.
We use the conventional CS reconstruction result to initialize
ŝ0 and P0 = 100Q [11].

Let M = 150, N = 1024, σ0 = 0.2 and the rest of the
parameters are set as in section IV-A. Fig.7 demonstrates the
reconstructed temperature signals for the 17th SN using dif-
ferent algorithms. It is observable that our algorithm produces
better reconstruction results in term of the Normalized Squared
Error (NSE), which is defined as ||ŝt − st||22/||s2||22.

We then vary the number of the measurements to see the
performance of our algorithm, as illustrated in Fig. 8. For each
particular number of measurements, we carried out 100 trials
and took the average of them to calculate the NSE over all
20 SNs. For clarity, the NSE when M < 100 is not shown.
But we note that when M = 50, both the CS and CSKF
algorithms fail, i.e., the NSE values are in excess of 0.01; while
that of the Sparsity-fused KF is 0.0073. We can see that our
algorithm preserves its reconstruction performance advantage
with fewer measurements when evaluated with practical data.
With fewer measurements needed, our method can reduce the
energy consumed in both sampling and transmission, which is
one of the most significant concerns in a practical WSN.

V. CONCLUSIONS

In this article, we have derived a novel KF procedure, which
has fused the sparsity distribution model into its underlying
operational principle. Based on this, a Sparsity-fused KF
algorithm for reconstructing dynamic sparse signals from a
series of noisy CS measurements has been proposed. In the
algorithm, we employ the IST method to refine the sparsity
model iteratively, which is then utilized in the sparsity-fused
KF step. Our algorithm has solved the problem of the con-
ventional KF, i.e., it does not consider the sparsity of signals
and cannot be applied to sparse signal recovery. Experimental
results using synthetic signals have shown that our algorithm
outperforms the static reconstruction algorithms (CS, IST)
and the dynamic algorithm (CSKF) when noise exists. It is
also shown that compared to these algorithms, our algorithm
converges in fewer iterations, has better performance when the
number of measurements is lower and it is more robust when
the noise level increases. Using practical temperature data
gathered by the WSN in the Berkeley Research lab, we have
demonstrated that our algorithm can produce visibly better
reconstruction than the aforementioned algorithms and it can
help to reduce the energy consumption in a practical WSN.
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