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Abstract 

Ecological studies, which consider patient groups rather than individuals, are common in 

health policy research. The ‘ecological fallacy’ is a well-recognised methodological concern, 

but in this perspectives paper, we focus on less often appreciated but 

equally important limitations of such studies. In particular, we consider reliability and power 

as they apply to ecological studies, and make recommendations to inform the appropriate 

design and interpretation of these increasingly popular studies. 

 

Introduction 

Ecological studies, which consider patient groups rather than individuals, are popular in 

American and European health services and policy research.(1-5) Such studies often 

correlate aspects of quality, or characteristics of health care organisations, examining 

associations such as those of patient experience with care quality,(4,5) or hospital mortality 

with competition.(6,7) Unfortunately, these quick, inexpensive studies may influence policy 

or clinical practice disproportionately to their methodological rigour. 

The ‘ecological fallacy’ (the fact that associations between measures at the person level may 

differ from associations at an aggregated level, e.g. hospitals, providers) is a well-known 

concern about such studies.(8) Here we argue that the ‘ecological fallacy’ is only one of 

several important methodological concerns, some of which are less often appreciated. 

These concerns may stem from a failure to recognise the distinction between healthcare 

organisations and individual patients as different levels of analysis.(9)  In particular, we 

consider measurement reliability and power as they apply to the design and interpretation of 

findings from studies of healthcare organisations.  

Measurement reliability of organisational characteristics  

The statistical concept of reliability can be applied in many situations where we are 

concerned with data reproducibility, and the degree to which observations are influenced by 

measurement error.  It is increasingly recognised that the observed performance of 

healthcare organisations (or providers) is subject to chance variation. Often this chance 

variation is visualised with the aid of funnel plots, which provide a graphical summary of the 

‘scatter’ of performance estimates for different organisations and the degree to which they 

reflect chance variation.(10) It can be quantified by estimating the unit-level, or Spearman-

Brown reliability; in this contexts ‘units’ can be hospitals, health centres or individual 

physicians (e.g. general practitioners or surgeons) within which different individual patients 



are clustered. Unit-level reliability is a specific form of reliability suited to organisational 

characteristics that must be inferred by sampling and measurement within organisations.(11) 

We provide formulas for unit-level reliability in Box 1. 

Some measures, particularly administratively-measured organisational characteristics such 

as the number of beds in a hospital, are likely to have minimal error. However, for measures 

that aggregate sampled patient-level data to the organisation-level, as many clinical quality 

measures do, the unit-level reliability may be substantially lower. Because these quality 

measures are interpreted as informing the likely experiences of a future patient at a given 

hospital, their precision is limited by the number of responding patients. This concern is clear 

when only some patients are sampled (e.g. for a patient survey); however even if all patients 

were measured for a given hospital, a degree of error will be present in these organisation-

level measures due to statistical noise (chance) alone.(12) Unit-level reliability can be 

defined as the proportion of the total variance in measured organisational-level scores 

attributable to true variation among organisations.(11)   

The unit-level reliability of an aggregated measure is determined by three factors.  First, 

reliability increases as true organisational-level variability in the measure increases, 

measured by the intraclass correlation coefficient. Second, measurement error decreases 

and reliability increases with greater sample sizes/organisation. Third, measurement error 

decreases and reliability increases when measures have a lower patient-level variance. For 

binary (yes/no) performance indicators, this variance is highest and reliability is lowest for 

indicators with a frequency near 50%.   

Because reliability depends on the degree of variability between organisations, it may be 

very context-specific. In England, most NHS hospitals are relatively similar to each other, in 

terms of size, spectrum of clinical services and specialties provided, staff training, 

recruitment and remuneration policies, patient case-mix, etc. This contrasts sharply with the 

US, where much greater variability is observed between different hospitals in respect of all 

these factors. Measures that may be reliably measured in a heterogeneous setting, e.g. all 

US hospitals, may not be reliable in a more homogeneous setting, such as English hospitals, 

even when similar numbers of observations are used per organisation.   

The most important consequence of using measures with imperfect reliability is the 

attenuation of estimated effect sizes. An observed correlation coefficient between two 

measures will be attenuated (biased towards0) if either has reliability <1. Specifically, it will 

be attenuated by the product of the square roots of their reliabilities.(13)  For example, 

weaker effect sizes typically observed for organisation-level correlations for binary 



performance indicators can be attributed to their lower reliability, rather than truly lower 

correlations. 

A related issue is that ‘proxy’ measures may not in fact reliably measure the intended 

construct. When this is the case correlations of the underlying constructs will be 

underestimated. As an example, the presence of a CT scanner is a hospital characteristic 

which can be measured directly with little error.  Nonetheless, correlations between the 

presence of CT scanning facilities and health outcomes might understate the correlation 

between CT access and health outcomes if the presence of a scanner is not a reliable and 

valid measure of the intended construct ease of patient access to CT investigations.  

Power considerations 

In studies considering the correlation between healthcare organisation characteristics, 

although the number of individuals included in each organisation determines the unit-level 

reliability of the organisation-level measure, it is the number of organisations, rather than the 

number of individuals which provides the most relevant sample size for the correlation.  For 

example, the English General Practice Patient Survey currently comprises ~1 million patient 

responses but when using Clinical Commissioning Group average scores, the relevant 

sample size is the number of organisations, i.e. ~200. 

In some instances, even organisation-level sample sizes are large.  Studies of US hospitals 

will have a possible maximum sample size of up to 4800;(14) and studies of all English 

general practices have a sample size of about 8000.(15) However, in studies of English NHS 

acute hospitals, the organisational sample size upper bound is about 160,(15) and for 

hospitals in the Netherlands, less than 100.(16)  Unlike studies of individual patients, where 

recruitment can be increased, the sample sizes of healthcare organisations in a 

geographical region or country are fixed. 

As well as sample size we must also consider the true magnitude of associations being 

examined. For example, organisation-level correlations between two different measures of 

the same underlying construct (e.g. two measures of patient experience),  are typically 

moderate, with correlation coefficients ≤0.45.(2) However, organisation-level correlations 

between different dimensions of healthcare quality can be much weaker.  In a large English 

primary care study correlations between clinical quality measures and patient experience 

were positive but small, often ≤0.1.(5)  

We use standard sample size calculations(17) to illustrate the relationship between power 

and effect size (here magnitude of correlations) in ecological studies, initially without further 



considering the role of measurement error. Figure 1 illustrates, in studies of 100 healthcare 

organisations, there is 80% power to detect (positive or negative) correlations of ≥0.28, in 

studies of 160 there is 80% power for correlations of ≥0.22 and in studies of sample size 

1000 there is 80% power to detect correlations of ≥0.09.  Where both the sample size and 

expected effect sizes are small, studies may be markedly underpowered. For example, 

studies of correlations near 0.1 in English NHS hospitals will be very underpowered (~50% 

power, i.e. a 50% type II false negative error rate).  

These calculations assume all variables are measured without error. With less than perfect 

reliability, the observed correlation is attenuated. Such a situation requires a larger sample 

size of organisations to be adequately powered to detect the same true (as opposed to 

observed) association, than would have been needed if the organisation-level score had 

been measured without error (Figure 2).  The number of required organisations 

approximately doubles for correlations between two measures, if both have reliability of 0.7 

(often considered a level adequate for evaluating healthcare organisation performance, and 

so might typically be seen in studies using performance indicators) (Figure 2).  In practice 

this would mean 320, rather than 160 hospitals being needed for a study to have 80% power 

to detect a true correlation of 0.22, or in 160 hospitals a study would have 80% power only 

for a true correlation of 0.31 or higher. 

Consequences of underpowered studies 

Statistically significant results from underpowered correlational studies of healthcare 

organisations will underrepresent small associations.  For example, correlations between 

hospital characteristics and mortality seen in a large sample of US hospitals (1) are not 

replicated when translated to a sample of <100 hospitals in the Netherlands.(3)  There is 

uncertainty around non-significant results from small studies and we do not know whether 

weak, non-significant findings in such studies are true negative findings or simply reflect 

inadequate power.  In a study of 160 hospitals an observed correlation coefficient of zero 

(i.e. no association) is compatible with a true correlation between -0.16 and 0.16 (based on 

95% confidence intervals, Table 1) when both measure have perfect reliability, and with a 

range of -0.23,0.23 if each measure has reliability of 0.7.  That is, finding a correlation of 

zero in a study of English NHS hospitals does not rule out  correlations of sizes typically 

seen in these studies. In a study of 1000 healthcare organisations observed correlations 

greater than 0.07 will be significant at p<0.05, but in a study of sample size 100 only 

observed correlations greater than 0.20 will be significant (Table 1). Apparent 

inconsistencies across settings may simply reflect failure to detect similar true associations 

in a less-powerful study. 



Ease of access to data, multiple testing, and  publication bias 

The availability of publicly-reported data on health organisations is rapidly expanding.(14,15) 

For researchers, this organisation-level data is often free of the data governance and 

confidentiality issues that apply to using person-level data, and does not require lengthy and 

expensive primary data collection.   

Under these circumstances it is easy to explore large numbers of hypotheses and 

correlations, raising concerns about multiple testing. For example, with ~1600 indicators 

available on the NHS indicator portal(15) there are >2.5 million possible hypotheses about 

correlations among them.  If all indicators were independent, with a nominal p-value of 0.05, 

we would expect 125,000 false positive (type I error) findings from this data source alone. 

Even if an individual researcher is not performing multiple hypothesis tests or adequately 

accounts for doing so,(18) the public availability of data means that among all those 

performing research many tests will be carried out.  

Further, selective reporting (when investigators opt not to report negative findings), and 

publication bias (the selection of papers with positive findings during the publication process) 

result in over-representation of papers with statistically significant results in the published 

literature, independent of the work’s methodological strength. Large effect sizes can be eye-

catching, but because statistically significant findings from small studies can only have very 

large effect sizes (table 1), false positive findings from small studies may be particularly 

over-represented. Both publication bias and selective reporting are more likely where true 

typical effect sizes are small, where there is a large number and less pre-selection of 

relationships to be tested, and where many teams are involved in similar studies;(19)  all 

these conditions are present in studies of healthcare organisation-level correlations using 

publicly available data. The development and use of guidelines for the design and reporting 

of ecological studies could help improve research and editorial practice in this area, such as 

under the auspices of the RECORD initiative.(20) 

Conclusions  

Policy makers should exercise caution when making decisions based on the results of 

correlation studies of healthcare organisation performance or characteristics. Where the 

number of healthcare organisations is small, where expected associations are weak (such 

as for correlations between different dimensions of quality), or where measures are not 

reliable, studies are often underpowered and small associations may be undetectable.  Null 

findings need to be carefully interpreted; the failure to replicate findings of large studies in 

smaller sample sizes and/or less diverse settings may reflect lack of power in the replication 



study, rather than an incorrect finding in the original.  Further, undue emphasis should not be 

given to those results that are statistically significant, particularly large effect sizes from 

studies of small numbers of organisations.  Following some simple recommendations for 

best practice (Box 2) will improve the translation of appropriate and robust research findings 

into healthcare policy and practice. 



 

Box 1: Spearman-Brown reliability 

Unit-level, or Spearman-Brown reliability is defined as the proportion of the total variance in measured 

organisational-level scores which is attributable to true variation between organisations (organisation-

level variance), and can be estimated using the formula below. The term within-organisation variance 

used here is also sometimes known as the residual variance; “n” is the mean achieved sample size 

per organisation. 

 

 

 

Spearman-Brown reliability is the intraclass correlation coefficient (ICC) when the number of 

observation or the sample size within each organisation is 1  

 

 

 

By rearranging the above formula, unit-level reliability can therefore be estimated from the ICC and 

sample size as follows: 

 

 

 



Figure 1. Power to detect correlations in samples of 100, 160 and 1000 healthcare 
organisations
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As the strength of the correlation to be detected increases, the power at all sample sizes 
increases, but 80% power is only possible at a higher true correlations when sample sizes 
are smaller.  Illustrations are provided for sample sizes of 100 organisations (the 
approximate number of hospitals in the Netherlands) 160 organisations (applicable to the 
number of acute NHS hospitals in England) and 1000 (a possible sample size in studies of 
subsamples of general practices in England or hospitals in the US) is calculated for a range 
of true correlations.   

 

Table 1. Margin of error for an observed correlation coefficient of zero 

Sample 
size* 

Margin of error 
(95% confidence interval for 

an observed  correlation 
coefficient of zero) 

Minimum observed 
correlation coefficient 

at which p<0.05 

2000 - 0.04 to 0.04 0.04 

1000 - 0.07 to 0.07 0.07 

160 - 0.16 to 0.16 0.16 

100 - 0.20 to 0.20 0.20 

50 - 0.28 to 0.28 0.28 
*for an ecological study of healthcare organisations, this would be the number of 
organisations, not the number of individuals



 

Figure 2. Required sample size (number of organisations) to detect a true population 
correlation where measurement (Spearman-Brown) reliability is less than 100% 
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In this figure, ‘R’ is the true correlation in the population.  Where reliability is less than 1.0, 
required sample sizes are calculated assuming that the measurement reliability of both 
characteristics and / or performance measures considered for the correlation study is at the 
stated level.  This calculation was made by multiplying the true correlation by the square root 
of the reliability of each measure and calculating the required sample size for this attenuated 
correlation.  Note that the required sample size axis is on a log scale. 

For measures of healthcare organisation quality which are used for ‘high stakes’ applications 
(such as for pay-for-performance or public reporting schemes) the measurement reliability is 
typically required to be between 0.7-0.9.(11) 
 



 
Box 2: Recommendations for best practice 

 Ecological or organisation-level correlation studies often provide only weak research 

evidence, and only those with adequate reliability, power, and validity should  

substantially influence policy 

 

 Where patient-level associations are of interest, organisation-level analyses may not 

be the right approach. Where organisation-level analysis is performed it is important 

that this is stated or identified directly 

 

 Regarding unit-level (Spearman-Brown) reliability, there need to be enough patients 

included at each organisation, and enough variation between organisations, for a 

reliable measure.  

 

 The total number of organisations rather than individual patients is the most relevant 

sample size for the analysis of organisation-level associations.  The data illustrated in 

figures 1 and 2 can be used as ‘ready reckoners’ by researchers and policy makers 

when designing or interpreting the findings of such studies 

 

 The way that the organisation characteristics or performance are measured is also 

important.  The construct validity and unit-level reliability of what is being measured 

are important to consider, and can also influence the power of the study.  

 

 It is important to report any multiple testing and exploratory analyses as well as 
significant findings, particularly when using publicly available data for which multiple 
possible correlations could be considered 
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