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Liquid crystalline elastomers combine the ordering properties of liquid crystals with elasticity of
cross-linked polymer networks. In monodomain (permanently aligned) elastomers, altering the ori-
entational (nematic) order causes changes in the equilibrium sample length, which is the basis of the
famous effect of large-amplitude reversible mechanical actuation. The stimulus for this effect could
be a change in temperature, or illumination by light in photo-sensitized elastomers, but equally the
nematic order changes by mixing with a solvent. This work theoretically investigates a competition
between the spontaneous contraction on swelling of a monodomain nematic elastomer and the ex-
ternally imposed stretching. We find that this competition leads to bistability in the system and
allows a two-phase separation between a nematic state with lower swelling and an isotropic state
with higher solvent concentration. We calculated the conditions in which the instability occurs as
well as the mechanical and geometric parameters of equilibrium states. Being able to predict how
this instability arises will provide opportunities for exploiting nematic elastomer filaments.

PACS numbers: 61.30.Vx, 83.80.Va, 61.25.hp

I. INTRODUCTION

Liquid crystalline elastomers (LCEs) are cross-linked
rubber-elastic polymers, which also have properties of
liquid crystals arising from mesogenic molecules that are
a part of the polymer chains. They combine elasticity
of elastomers with orientation ordering of liquid crys-
tals, making them special and distinct from other elastic
materials, a concept originally introduced by de Gennes
in 1975 [1]. Changing the average order parameter of
the mesogenic units affects the equilibrium shape of the
LCEs. This reversible shape variation was predicted by
Warner [2] and Khokhlov [3] and first achieved in ex-
periment by Finkelmann [4] after the uniformly aligned
(monodomain) LCE materials were developed. As a re-
sult, LCEs can be used for their mechanical actuation
from applying heat [5], light [6] or solvents [7]. Another
application is to use their birefringence properties, which
can be manipulated mechanically [8]. In some liquid crys-
talline phases, other than simple nematic, they also have
photonic structures with band gaps and exhibit mechan-
ically tunable optical effects, which can be very useful in
display devices [9].

Mechanical actuation in nematic LCEs arises from the
coupling of the rubber elasticity and the order param-
eter. As the order parameter changes, the elastic free
energy evolves and so does the spontaneous expansion of
the material. Similar to any phase transitions, the or-
der parameter Q(T ) depends on the temperature for T
below the critical temperature, Tc. This is observed in
the experiment as a change in the spontaneous uniaxial
expansion as the temperature drops [5]. The changes in
the extension can be very large — up to 500% in the
record experiment [10], while a reversible uniaxial exten-
sion by 30-60% is a commonplace in nematic LCEs. The
same effect could be observed with light as a stimulus,
instead of heat, either due to an effect of photoisomeriza-
tionthat can change their order parameter and shift the

phase transition [11], or by simply converting light to lo-
cal heat in the network and observing the effectively ther-
mal effect [12]. Adding impurities (e.g. isotropic solvent)
has the same effect as photo-isomerization. The critical
temperature of isotropic-nematic transition decreases lin-
early with the impurity concentration and hence changes
the order parameter [13]. This will be discussed in more
details in section II.

Using nematic LCEs as actuators can be difficult in
practice because of the domain boundaries that persist
even though the director in each domain aligns in the
same direction [14]; this is an especially well-known is-
sue with monodomain LCEs prepared by the ‘two-step
crosslinking’ method of Finkelmann [4]. One way of
improving the nematic alignment and thus enhancing
the actuation is by using aligned fibers. Shape-memory
fibers have many real-world applications from textiles to
biomimetic fibers [10]. Several groups were successful
in producing such fibers in the lab [15, 16]. The shape-
memory response of the nematic LCE fibers is very strong
compared to other types of materials, which is due to a
higher degree of alignment in a fiber that was formed
under high tension; the actuation response time is also
short as the fibers can be made very thin and exchange
heat faster.

Polymer gels have been studied intensively because of
their many applications [17]. They can be made of thin
fibers, which can be useful for biological materials such
as artificial muscles [18]. Swelling of ordinary isotropic
gels under deformation has been recently studied for both
good and poor solvents surrounding the swollen network
[19]; one of the fundamental results is that a gel in a
bath of good solvent takes in more solvent (i.e. increases
its volume) under tensile deformation. Gels created from
nematic LCEs have an additional internal degree of free-
dom, the nematic order, which is coupled to both sol-
vent intake and the elastic deformation of the network.
One expects dramatic effects on swelling of monodomain
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(aligned) LCEs because of their strong mechanical actu-
ation in response to the changing order parameter, and
indeed theories have been developed to describe these
effects [20, 21].

In this paper we want to extend this theoretical anal-
ysis to a situation when an elastomer sample under im-
posed tensile strain is swelling in a solvent. Although the
theory we develop is not explicitly linked to a thin fiber
shape of samples, we would like to have this geometry in
mind – especially to avoid complicate issues of inhomoge-
neous swelling and gradients (of solvent, of strain, and of
the nematic order) across the sample cross-section when
it is subjected to a uniaxial extension. It also helps the
speed of solvent transfer across the thin sample. Under a
large deformation, gels often undergo instabilities. Neck-
ing is one of the examples of such instabilities, where the
material splits into the necking region of plastic deforma-
tion and the normal region with different cross-sectional
areas. We need to consider possibilities of having insta-
bilities from deforming stretched LCE gels as well.

The effects of stretching and solvent mixing compete
against each other. For good solvents, mixing would
cause the elastomer to swell. However, this would stretch
the elastomer and so increases the elastic free energy.
The swollen will be limited by these two factors. Com-
plication arises from the phase transition induced by the
solvents. At highly swollen state, the elastomer could be-
come isotropic and responses differently to the stretching.
This could allow the elastomer to exist in two different
phases, which could cause the formation of the solvent
rich ‘pocket’ coexisting with a less swollen still-nematic
(i.e. naturally extended) region of the sample. The aim
of this theoretical work is to find a description of such an
instability as well as calculating the size of each region.

II. BACKGROUND THEORY

Liquid crystal elastomer

The nematic liquid crystalline order parameter is de-
fined as the orientational average over the typically rod-
like mesogenic units: Q = 3

2 (〈cos2 θ〉 − 1
3 ), where θ is the

angle between each uniaxially anisotropic (mesogenic)
molecule and the average director axis. The polymer
backbones couple to the mesogens and change their struc-
ture depending on the order parameter. In our case,
the structure is uniaxial with the nematic director along
the stretching axis (z-direction). This is described by
step lengths, l⊥ and l‖, perpendicular and parallel to
the nematic director. In the isotropic phase, we have
l⊥ = l‖ = a, where a is the isotropic step length. On the
other hand, in the nematic phase, they are different and
depend on the order parameter by [22]:

l⊥ = a(1−Q), l‖ = a(1 + 2Q). (1)

These expressions appear strongly model dependent (in-
deed, originally derived for a freely-jointed rod model of

nematic polymer chains). However, the qualitative rela-
tion – that l‖ increases with the growth of nematic order
while l⊥ decreases, in a ratio 2:1 – is quite universal, and
in practice there have been many measurements of these
parameters in different materials, more or less confirming
the Eq. 1 in most side-chain LCEs (in the exceptional
and more rare case of main-chain LCE the dependence
l‖(Q) is much sharper [23]).

The elastic free energy of a nematic LCE is given by
the ‘Trace formula’ [24, 25]

Fel =
Nx

2
kBT

(
Tr
[
l
0
· λT · l−1 · λ

]
− ln

det l
0

det l

)
, (2)

where Nx is the number of cross-links in the elastomer.
Note that we are writing the full, extensive form of the
free energy, in contrast to typical literature expressions
giving the intensive energy density in this context. The
reason is that we shall need to account for the total
amount of solvent in different parts of the sample, and
our analysis goes better with full expressions. However,
to link with the traditionally used format, we define an in-
tensive parameter: the crosslinking ratio, ν, as the num-
ber of cross-links per monomer (1/ν gives an average
number of monomers between crosslinks on a network
strand). This gives Nx = νNp, where Np is the total
number of monomer ‘particles’ in the cross-linked poly-
mer network.

The matrix l in Eq.(2) describes step lengths that a
chain random walk makes in each direction, which in the
uniaxial case can be written in principal axes (‘parallel’
meaning along the nematic director):

l =

 l⊥ 0 0
0 l⊥ 0
0 0 l‖

 . (3)

The subscript ..0 denotes the quantities at the initial state
before the deformation or swelling is applied to the sam-
ple. The deformation tensor is λij = 1 + εij , where εij is
the strain. For dry elastomers the volume has to be con-
served, which imposes a constraint on the principal ex-
tensions: λxλyλz = 1. Hence, for a uniaxial deformation

imposed along the z-axis, λx = λy = 1/
√
λz ≡ 1/

√
λ.

Putting everything together and minimizing Fel with re-
spect to λ, the spontaneous extension that occurs due to
the underlying nematic order can be calculated as [24]

λm =

(
l‖l⊥ 0

l‖ 0l⊥

)1/3

=

(
r

r0

)1/3

, (4)

where r ≡ l‖/l⊥ is a non-dimensional ratio that charac-
terizes the uniaxial anisotropy in the polymer backbone.
Substituting (1) in (4), λm can be calculated as a func-
tion of the order parameter, Q(T ). Increasing Q (e.g.
by lowering temperature) increases the ratio r and so the
length of the elastomer is larger [2, 3]. This is the modern
format of the basic theory behind the effect of reversible
thermal actuation of monodomain LCEs.
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FIG. 1: [Color online] (a) The nematic order parameter
Q as a function of scaled temperature T/Tc, the data
from two recent experimental studies highlighting the
critical and supercritical cases. (b) The order parame-
ter plotted against solvent concentration, labelled here
as φimp, using the parametrization in Eqs. (5) and (6).

Instead of solving a complicated problem of weak
first order transition in an elastomer with mechanical-
orientational coupling (which is the contents of [22]), we
can simply use the results from experiments [26, 27] to
parametrize the temperature dependence of the order pa-
rameter Q(T ):

Q =

{
Q0|T − Tc|ξ for T ≤ Tc
0 for T > Tc

, (5)

where Q0 is a constant, Tc is the isotropic-nematic tran-
sition temperature, and the exponent ξ ≈ 0.2. One may
question why in practice there appears to be a critical
point at Tc while the nematic transition is a first or-
der; this is a complex issue of the so-called ‘random
first-order transition’ explored, for instance, in [27] —
for us it is sufficient to simply use the empirical form
(5). It has been broadly discussed in the literature that
nematic elastomers of the so-called ‘isotropic genesis’
should have such behavior [27], in contrast to the ma-
terials of ‘nematic genesis’ – where the uniaxial internal
stress is frozen into the order and the resulting order pa-
rameter Q(T ) is supercritical [28]. Figure 1(a) shows the
two characteristic types of the order parameter variation,
taken from the literature; in the rest of this paper we shall
be working with the form of Eq. (5) with understanding
that in some practical systems the singularity at T = Tc
would be smoothed out.

The order parameter can be related to the impurity
concentration, φimp, as Tc decreases linearly with impu-
rity concentration [13, 29],

Tc = T0(1− βφimp), (6)

where β is a constant (of the order 0.1 [13]). In this
work, we use Q0 = 0.5, with T = 300 and T0 = 320
for the parametrization, so that the experimentally mea-
sured Q(T ) in a typical nematic elastomer is approxi-
mately reproduced. This relation explains how adding
impurities changes the shape of the LCEs. We assume
these parameters to be independent of other variables,
since we assume that the phase transition is the property
of the mesogenic units in the LCE network (i.e. the cross-
linking does not affect the phase transition in the first
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FIG. 2: [Color online] (a) The spontaneous exten-
sion of a uniaxial nematic elastomer along its director
as a function of temperature, Eqs. (4) and (5). (b)
The spontaneous extension in the case when the ne-
matic order is reduced by the added solvent of volume
fraction φ, Eq. (7). The dashed line is the isotropic
λ = (1− φ)−1/3.

approximation). If the impurity/solvent concentration
is kept constant, stretching does not change the volume
and so would not affect the mesogens, hence, λ should
not affect the parameters in Eq. (6).

Figure 1(b) shows the resulting dependence of the ne-
matic order parameter Q on φimp, while Fig. 2 illustrates
the associated spontaneous extension along the director
obtained from Eqs. (4) and (7). In particular, we see
in Fig. 2(b) that the sample length decreases as the im-
purity concentration increases, suppressing the nematic
order in the material.

The same scenario applies for a swollen nematic gel:
one could manipulate the order parameter and the shape
of the gel by changing the solvent concentration. In the
rest of this paper we interpret the solvent swelling the
polymer network as the impurity, i.e. φimp = φ. How-
ever, for the gel, the conservation of the volume occupied
by the network does not apply if the solvent concentra-
tion changes. Instead, we have λxλyλz = 1/(1 − φ),
where φ is the solvent volume fraction. The formula for
the spontaneous extension, λm, in (4) has to be modified
accordingly:

λm =

(
l‖l⊥ 0

(1− φ)l‖ 0l⊥

)1/3

. (7)

In the isotropic phase the length along the (former) di-
rector increases affinely with the volume, as (1− φ)−1/3,
as marked by the dashed line in the plot.

Mixing free energy

Introducing solvent to the system also adds the inter-
action between the solvent and the elastomer. In a good
solvent, this causes the polymers to swell. The energy
of mixing polymers in the solvent is given by the Flory-
Huggins equation [30]

Fmix = Ntot(φ)kBT

[
(1− φ) ln(1− φ)

Np
+ φ lnφ (8)

+φ(1− φ)χ] .
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FIG. 3: [Color online] Plots of Fel, Fmix and Ftot

against solvent volume fraction φ in good solvent, for
λ = 1, that is, without initial pre-stretching of the dry
elastomer. The kink seen in the elastic part of the free
energy is a point where the nematic order parameter
drops to zero: cf. Fig. 1.

Here Ntot(φ) = Ns(φ) + Np, where Ns is the num-
ber of solvent molecules. The solvent volume fraction
φ ≈ Ns/(Ns +Np), while 1−φ gives the volume fraction
of the polymer. The Flory χ parameter measures the ef-
fective solvent-polymer interaction. As Np is very large
(extensive), the first term in the brackets in Fmix can be
ignored for a cross-linked network. Writing Ntot in terms
of φ and Np, we obtain an equivalent expression:

Fmix =
Np

1− φ
kBT [φ lnφ+ φ(1− φ)χ] . (9)

The total free energy is then the sum of the two con-
tributions: Ftot = Fel + Fmix. The cross-linking ratio,
ν, gives the ratio between the strength of Fel and Fmix.
Figure 3 shows Fel, Ftot and Ftot as a function of φ for
constant λ = 1 (no stretching) and ν = 0.1. The mix-
ing free energy decreases as more solvent is added, as ex-
pected for good solvents. However, the plot of Fmix shows
a non-zero value at φ = 1 as opposed to zero when the
system only has one species (no mixing). This is because
Ntot(φ) depends on φ and goes to infinity as φ→ 1 while
Np is still finite, i.e. there is still some mixing. Swelling
increases the elastic free energy. There is a kink in the Fel

curve due to the phase transition to the isotropic phase
at higher solvent concentration. The minimum in Ftot

corresponds to the optimum swelling of the gel.

III. BISTABILITY AND OPTIMUM SWELLING

Figure 4 shows schematically how we model the insta-
bility. Initially, the elastomer is in the dry state with
length L0 (a). This will be the reference state (λ = 1).
Then, we stretch the elastomer to a fixed length, L, with
a stretching ratio λ = L/L0 = constant (b). Solvent
molecules are added to the system. The elastomer swells
to an optimum swelling with solvent volume fraction φ
(c). This is the homogeneous swollen nematic state. The
instability occurs and the homogeneous state splits into
two different states (d). The last step will be discussed



L=L  (dry)0

=L/L  (dry)
0

L=const

Solvent:  1 1

2 2

(1-x)
x

(a) (b)

(c) (d)
L=constL=const

FIG. 4: [Color online] Schematic illustration of the
instability: (a) aligned elastomer in stress-free equi-
librium nematic state; (b) the sample stretched by
extension λ along the director axis, after which the
length L remains fixed; (c) the sample is swollen by
adding solvent molecules with volume fraction φ. (d)
After the instability the sample is split into two regions
with different φ and λ, in proportion x and (1-x); the
higher-φ portion is in the isotropic state.

in section IV. We need to be able to calculate the free
energy at each state of the instability. Having combined
the elasticity and mixing free energy, we looked at how
the total free energy varies as a function of parameters.

The shape of the total free energy curve depends on the
parameter χ. For a solvent with a large positive value of
χ, the total free energy has the absolute minimum within
the nematic range (upper curve in Figure 5(a)). On the
other hand, a very good solvent, χ very negative, can
have the minimum at large φ, within the isotropic range
(lower curve in Figure 5(a)). The kink near the phase
boundary gives rise to two minima, one in the nematic
region and another in the isotropic region. This is bista-
bility and it allows the system to split into two phases.
Figure 5(a) shows Ftot for different values of χ. For large
χ, i.e. poor or not very good solvents, only one minimum
exists. However, the second minimum develops as χ is
lowered. This means there is a bistability for a very good
solvent.

We wanted to analyze the evolution of the bistability
as a function of χ. The second minimum exists when the
gradient at φc, the concentration at which phase tran-
sition occurs, becomes negative. This happens when χ
is smaller than χc. Figure 6 shows χc as a function of
extension, λ. The plot shows that the bistability always
exists for good solvents. This depends on the choice of
parameters, such as the parametrization of the order pa-
rameter in (5), and the cross-linking ratio, ν. The plot
also shows that stretching promotes bistability as χc in-
creases as the extension is larger. The value of χc can be
calculated as a function of parameters:

χc = − (1−Q[φ = 0])ν/λ+ 1− φc + ln(φc)

(1− φc)2
. (10)

Next, we calculated the free energy for different
stretching to see how the minima evolve as a function
of extension. We used χ = 0, which is below χc so that
there is bistability. Figure 5(b) shows how the free en-
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FIG. 5: [Color online] (a) Plot of Ftot against φ for different values of χ, at λ = 1 (i.e. without initial pre-stretching
of the dry elastomer). Lower values of χ mean better solvent quality and stronger natural swelling. The step, also
seen in Fig. 3, is a point where the nematic phase turns isotropic with an apparent singularity: cf. Fig. 1. (b) Plot
of Ftot against φ for different values of λ with χ = 0. φ1 and φ2 are the values of φ at the nematic and isotropic
minima, respectively. Dash line denotes when the free energy values are equal at the two minima (which we denote
λcrit).
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FIG. 6: Plot of χc, below which bistability occurs,
against the imposed extension λ. Note the very weak
dependence χc(λ) over a long range of strains.

ergy at the two minima, Ftot(φ1) and Ftot(φ2), changes
as λ increases. At λ = 1, we have Ftot(φ1) > Ftot(φ2).
This means the isotropic state is more stable than the
nematic state, with an energy barrier between them.
As λ is increased, Ftot(φ1) becomes closer to Ftot(φ2).
Ftot(φ1) = Ftot(φ2) when λ is at λcrit = 1.29. Above
λcrit, Ftot(φ1) < Ftot(φ2), i.e. the nematic state becomes
more stable. This is expected because stretching would
promote ordering along the stretching direction. The en-
ergy barrier between them is also larger as λ is increased.
Figure 7 shows λcrit as a function of χ. The nematic state
becomes less stable as the the mixing is better. This is
because a better solvent gives a larger swelling.

We see that under right conditions, the bistability ex-
ists in the system with two minima at the nematic (low
φ1) and isotropic (high φ2) states. This predicts the fiber
splitting into solvent-rich isotropic, and solvent-poor ne-
matic regions that was sketched in Figure 4. The pocket
at the middle of the fibre is at the isotropic minimum,
whereas the rest is at the nematic minimum. The con-
centrations at each minimum can be determined from
the minima of the plots in Figure 5. We also see that
stretching has an effect on the relative stability of the two
states. In general, stretching the elastomer decreases the
amount of solvent for the nematic state while increases
the swelling for the isotropic state (in agreement with

2

3

4
 crit.

Better mixing
1

-1.5 -1.0 -0.5 0.50

FIG. 7: Plot of λcrit, at which the total free energy
of the nematic and isotropic states are equal, against
mixing parameter χ. The dashed line marks the non-
stretched state (λ=1), corresponding to Fig. 5(a).

[19]). The optimum swelling of the homogeneous swollen
nematic state, i.e. Figure 4(c) in our model, would take
the value of φ1. With these calculation, we can now find
the energy cost of the swelling instability.

IV. SWELLING INSTABILITY

We model the instability by splitting the elastomer into
two regions, each with different homogeneous swelling
and stretching, Figure 4(d). The position of the isotropic
pocket is irrelevant to our calculation. Region I (nematic
state) has solvent volume fraction φ1 and extension λ1,
whereas region II is isotropic, with φ2 and λ2. We define
the molar fractions of the region I and II to be x and
1− x, respectively.

In equilibrium the chemical potential of solvent inside
the elastomer in each region has to be equal the chemical
potential of the pure solvents outside. In addition, the
values of φ1 and φ2 minimize the total free energy in each
region, producing the combined condition:

∂Ftotal(φ, λ1)

∂φ

∣∣∣∣
φ=φ1

=
∂Ftotal(φ, λ2)

∂φ

∣∣∣∣
φ=φ2

= 0. (11)

As a result, they depend on λ1 and λ2. To find the values
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FIG. 8: [Color online] The energy cost for the instability, ∆F , as a function of separation fraction x for different
stretching λ. The three plots are for an increasing cross-linking density of elastomer network (see below): (a) ν =
0.5, i.e. about 20 monomers between cross-links, (b) ν = 0.1, about 10 monomers, and (c) ν = 0.2, i.e. every 5th
monomer is cross-linked. The minima of curves denote the optimum molar fraction of the separation xc.

λ1 and λ2, we need to consider balancing of the force at
the junction between the two regions. The force along
the elastomer is given by

fi =
1

Li0

∂Ftot

∂λi
, (12)

where fi is the force along the i direction, Li0 is the initial
length along the i direction and λi is the stretching ratio
along the i direction. The total length must be fixed and
so this imposes another constraint,

xλ1 + (1− x)λ2 = λ. (13)

Both Ftot and Li0 scale with the number of monomers
in the elastomer. This means the force is intensive and
the different size of Li0 and Nx in Ftot for each region
can be ignored when calculating the force. Balancing the
force along the stretching axis gives

∂Ftot(φ1, λ1)

∂λ1
=
∂Ftot(φ2, λ2)

∂λ2
. (14)

By solving (11), (13) and (14) together, we obtain λ1
and λ2 as a function of x. The instability occurs if it
lowers the total free energy. We calculated the change
in the total free energy, ∆F , as the difference between
a possibly inhomogeneous state with regions of sizes x
and (1−x) coexisting on the fiber, and the homogeneous
state of stretched and swollen sample:

∆F = xFtot(φ1, λ1) + (1− x)Ftot(φ2, λ2)− Ftot(φ, λ).
(15)

Figure 8(b) shows the plot of ∆F against x, using the
same parameters as in the previous section. The instabil-
ity can occur if ∆F < 0. The optimum value of x, defined
as xc, can be calculated by minimizing ∆F with respect
to x. For small stretching, xc = 0 and the elastomer
becomes homogeneously isotropic. On the other hand,
xc = 1 for large stretching and the elastomer remains
homogeneous. At intermediate values of λ, xc takes a
value between 0 and 1. Figure 9(a) shows that the value
of xc increases linearly with λ up to xc = 1. This means
we have the separation at these values of λ, with the
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FIG. 9: [Color online] Plot of xc as a function of λ
for different cross-linking ratios ν. When xc 6=1 or 0,
the fiber is split into two distinct coexisting regions as
shown in Fig. 4(d). The pure states: xc = 0 implies the
homogeneous isotropic state; xc = 1 implies the homo-
geneous nematic state. It appears the 10% crosslinking
density is the ‘best’ case to observe the coexistence and
swelling instability.

isotropic pocket getting smaller as the elastomer is being
stretched. The fractional length of each region can be
calculated from the values of xc, and the extensions λ1
and λ2 at xc as:

L1

L
=
xcλ1(xc)

λ
and

L2

L
=

(1− xc)λ2(xc)

λ
, (16)

where L1 and L2 are the lengths of the nematic and
isotropic regions respectively.

Another factor that we need to consider is the cross-
linking ratio ν. Increasing the ratio enhances the effect
of elasticity over the mixing interaction. We expect high
swelling for small ν, which increases the propensity of the
isotropic state. In contrast, large ν should give poor mix-
ing and promotes the nematic state with smaller swelling.
Figure 8 shows ∆F as a function of x with ν = 0.05 (a)
and 0.1 (b), which are in contrast with the case of ν = 0.2
in (c). For the low and medium cross-linking density,
ν = 0.05 and 0.1, at low stretching state with small x
is preferable compared to the case of ν = 0.1. This is
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FIG. 10: [Color online] The overall swelling ratio of
the sample as a function of cross-linking ratio ν for
the imposed strain λ = 1 (no stretching) and λ = 2.
Dashed lines show the swelling ratio if the elastomer
remained in the homogeneous isotropic/nematic state,
respectively.

because isotropic state has relatively lower energy and
larger stretching is required to obtain xc → 1. Figure 9
shows xc as a function of λ for different values of ν. For
the highly cross-linked elastomer, ν = 0.2, only x = 1
is energetically favorable, i.e., the elastomer can only be
entirely nematic. This shows that stronger cross-linking
prevents the instability from occurring at any extension.

This is summarized in Figure 10. The plot shows
the commonly used characteristic of gels: the swelling
ratio (defined as {swollen volume}/{dry volume}) as a
function of ν. The plot shows highly swollen isotropic
at small ν and smaller swollen nematic state at large
ν. Intermediate values give coexistence between the two
states, i.e. splitting of the elastomer, with the average
swelling ratio between the values of the isotropic and the
nematic states. We see that the instability cannot occurs
at high cross-linking regime. Stretching the elastomer
would lower the values of ν corresponding to the transi-
tions.

V. CONCLUSION

We have shown that the shape instability could lower
the total free energy of the system where the swelling

in a good solvent competes with the nematic elasticity
response to an imposed stretching. The conditions and
the size of the instability can be calculated for differ-
ent amount of stretching of the elastomer sample. We
found that a nematic elastomer in a good solvent exhibits
bistability, allowing the swollen network to separate into
two phases. An isotropic pocket could be formed along
the sample where most of the solvent will accumulate,
its size depends on the stretching as well as the degree
of cross-linking of the network. In general, stretching
promotes nematic ordering and hence decreases the size
of the isotropic pocket formed in the instability. More
crosslinks in the network also favor nematic ordering and
inhibit the instability. This will be useful for utilizing
nematic elastomer filament in actuator applications.

However, the model that we presented here can-
not predict the shape of the highly swollen isotropic
pocket. A more realistic (and much more complicated)
theory would include the energy penalty for a sharp
inhomogeneous interface between the different regions,
i.e. including the gradient terms in the free energy
of a nematic elastomer [31]. Another simplification
that we imposed was to treat the order parameter,
Q, as an experimentally prescribed function of solvent
concentration and temperature. This allowed a lot of
progress to be made, however, a more rigorous way
is to add the thermodynamic free energy of the order
parameter and treat Q as another independent variable.
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