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Modern biological techniques such as Hi-C permit one to measure probabilities that different chromosomal
regions are close in space. These probabilities can be visualized as matrices called contact maps. In this paper,
we introduce a multifractal analysis of chromosomal contact maps. Our analysis reveals that Hi-C maps are
bifractal, i.e., complex geometrical objects characterized by two distinct fractal dimensions. To rationalize this
observation, we introduce a model that describes chromosomes as a hierarchical set of nested domains and we
solve it exactly. The predicted multifractal spectrum is in excellent quantitative agreement with experimental
data. Moreover, we show that our theory yields a more robust estimation of the scaling exponent of the contact
probability than existing methods. By applying this method to experimental data, we detect subtle conformational
changes among chromosomes during differentiation of human stem cells.
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I. INTRODUCTION

During cellular interphase, mammalian chromosomes as-
sume a globular structure in the nucleus [1–5]. Their
conformational properties can be studied in vivo with a set
of techniques called chromosome conformation capture [6],
most notably their genome-wide version called Hi-C [7]. Re-
sults of Hi-C experiments can be represented as matrices the
elements of which are proportional to the probability that
two chromosomal regions are in contact in space [8]. Hi-C
measurements have paved the way for a mechanistic under-
standing of chromosome folding [9–12]. In particular, they
have revealed that mammalian chromosomes are character-
ized by a hierarchy of nested, tightly connected structures
[13,14]. At the scale of tens of kilobases one identifies “con-
tact domains” [15,16]. Structures at the hundreds of kilobases
scale are usually called “topological associating domains”
(TADs) [17–19]. TADs have been extensively studied due to
their essential role in gene regulation [12,20–24], although
they do not seem to be privileged over other levels in the
hierarchy from a structural point of view [14]. At scales of few
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to tens of megabases, Hi-C experiments have identified “com-
partments” [7]. Compartments are checkerboardlike domains
that are thought to be driven by mutually exclusive association
between active and inactive chromatin [7,25]. At the scale of
the whole nucleus, microscopy and Hi-C experiments showed
that chromosomes occupy distinct “chromosomal territories”
[7,26].

A simpler approach to characterize the behavior of Hi-C
matrices at different scales is to study the average contact
probability p(�) of pairs of chromosomal regions i and j
with respect to their genomic distance � = |i − j|. Such decay
appears to follow a power law:

p(�) ∼ �−β. (1)

The contact probability exponent β is often estimated to be
slightly smaller than 1 [7,15,27,28]. Such low values are in-
compatible with simple equilibrium homopolymeric models
[29]. In contrast, nonequilibrium models such as the crumpled
globule [7,29] are able to account for such low exponents.
Other proposed mechanisms include mediation of polymer
interaction by other molecules [30], active loop extrusion [31],
and finite-size effects in heteropolymers [32]. In any case, the
apparent power-law range of the contact probability is usually
limited to one decade or less (see, e.g., [7,15,27]). Therefore,
estimates of the exponent β are rather sensitive to the choice
of the fitting range.

A single physical mechanism is unlikely to explain the
structure of chromatin at all scales. In fact, selective removal
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of proteins known to be involved in protein architecture can
affect some levels of the hierarchy and not others [33–36].
Because of their importance in the control of gene expression,
we focus our attention on the scales associated with TADs,
i.e., below the megabase scale. It has been suggested that this
hierarchy of structure can be analyzed by comparing statistical
properties of Hi-C matrices at different resolutions [37].

In this paper, we robustly characterize scale-invariant
properties of chromosomes at the scale of TADs using the
theory of multifractals. This theory has been developed to
characterize heterogeneous systems characterized by scale
invariance [38–40]. This analysis reveals that chromosome
contact maps are bifractal, i.e., geometric objects character-
ized by two distinct fractal dimensions. Bifractal behavior
has been previously reported in studies of surface roughness
[41], distribution of matter in the universe [42], and turbulence
[43]. We show that multifractal theory also provides a robust
estimation of the scaling of the contact probability at the scale
of TADs.

The paper is organized as follows. In Sec. II we introduce
the multifractal analysis using as example a Hi-C map of chro-
mosome 1 of mouse embryonic stem cells (mESC). In Sec. III
we introduce the hierarchical domain model and compute its
multifractal spectrum and the scaling of its contact probability.
We also show that the model predicts very accurately the
multifractal spectrum of Hi-C maps. In Sec. IV, we apply our
findings to a broader range of experimental datasets. We show
how our theory can be used as a computational method to dis-
cern differences among Hi-C maps in different experiments.
We show in particular that our method is able to characterize
differentiation of human stem cells. Section V is devoted to
conclusions and perspectives.

II. MULTIFRACTAL ANALYSIS

We introduce our idea using a Hi-C map of chromo-
some 1 in mouse embryonic stem cells [see Fig. 1(a) and
Appendix A]. The contact probability seems to decay as a
power law, at least for relatively short genomic distances [see
Fig. 1(b)]. However, the local logarithmic slope of the contact
probability does not present the clear plateau characteristic of
a power law [see Fig. 1(c)].

To characterize scaling properties of chromosomes in a
more robust way, we study the Hi-C map as a multifractal.
A multifractal is a system described in terms of a density, that
in our case is the density of counts in the Hi-C map. To study
structures at different scales, we construct two-dimensional
histograms of the Hi-C map with bins of different linear res-
olution ε [see Fig. 1(d)]. Geometrical structures of linear size
smaller than ε are not resolved in these maps. The smallest
possible value of ε is the resolution of the original Hi-C map,
in our case ε = 4 × 104 base pairs (bp). We define the proba-
bility pi j (ε) in bins at coordinates i and j at resolution ε. We
always work with normalized maps, so that

∑
i j pi j (ε) = 1 for

all choices of ε.
We assume the density to be scale invariant, at least for ε

small enough:

pi j (ε) ∼ εα, (2)

where ∼ denotes the leading behavior and α is the scaling
exponent associated with the density. Since the map is not
homogeneous, different bins can be in principle characterized
by different values of α. The number of bins N (α) associated
with a given value of α must also scale as a power of ε:

N (α) ∼ ρ(α)ε−D(α). (3)

The exponent D(α) characterizes the scaling of the number of
bins of linear size ε necessary to cover the set with density
exponent α and therefore can be interpreted as the fractal
dimension associated with this set. The quantity ρ(α) is a
prefactor independent of ε.

Computing D(α) directly is often unpractical. A conve-
nient related quantity is the partition function Z (q, ε), defined
by [39,40]

Z (q, ε) =
∑

i j

[pi j (ε)]q. (4)

The name “partition function” originates from an analogy
with statistical physics, where the exponent q plays the role
of an inverse temperature. Indeed, in a nonhomogeneous
system, for q → 0 (high temperature), all bins give similar
contributions to the sum in Eq. (4), whereas for large q (low
temperature) the sum is dominated by relatively few terms
characterized by largest values of the measure pi j . For a scale-
invariant system, one also expects a power-law scaling of the
partition function with the resolution,

Z (q, ε) ∼ εK (q), (5)

at least for small ε. This happens to be the case for our
Hi-C map [see Fig. 1(e)]. In this case, for ε slightly larger
than its minimum value, the local logarithmic slope of the
partition function is essentially flat for a broad range of scales
encompassing the typical sizes of TADs [see Fig. 1(f)]. This
signals that the power-law behavior in Eq. (5) is much more
robust than that of p(�).

In the theory of multifractals, the function K (q) defined in
Eq. (5) is called the multifractal spectrum. The multifractal
spectrum is related with the fractal dimensions D(α) by a
Legendre transform. To show that, we collect in Eq. (4) all
terms with the same value of α:

Z (q, ε) ∼
∑

α

ρ(α)εqα−D(α). (6)

A saddle-point evaluation of Eq. (6) reveals that

K (q) = min
α

[qα − D(α)], (7)

as anticipated. As a consequence, a linear multifractal spec-
trum indicates that the system is homogeneous, i.e., all of its
parts are characterized by the same fractal dimension D = α

and hence by the same scaling behavior N ∼ ε−D and pi j ∼
εD. Conversely, a nonlinear multifractal spectrum signals a
diversity of scaling exponents and associated dimensions. The
multifractal spectrum of chromosome 1 presents two different
linear regimes [see Fig. 1(g)] and can therefore be associated
with two distinct fractal dimensions. A system with such
properties is named a bifractal [41–43]. Since the exponent
q is analogous to an inverse temperature, the sharp change of
slope in the spectrum of a bifractal system is akin to a phase
transition in equilibrium statistical physics [46].
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(a) (b) (c)

(d)

(e) (f) (g)

FIG. 1. Contact probability scaling vs multifractal analysis of a Hi-C map. (a) Hi-C map of chromosome 1 of mouse embryonic stem cells
(mESC) [44]. Darker shades of red correspond to higher values of the contact probability pi j . (b) Scaling of the average contact probability
p(�) as a function of the distance � = |i − j|. The continuous line is a best fit of a power law, Eq. (1), in the range of distances [105, 106],
yielding β ≈ 1.06. (c) Local logarithmic slope d ln P(�)/d (ln �) of the contact probability. (d) Coarse graining of the Hi-C map at increasing
values of the resolution ε = 106, 107, and 2 × 107 bp. (e) Scaling of Z (q, ε) as a function of the resolution ε [see Eqs. (4) and (5)]. Different
lines correspond to different values of q, increasing from top to bottom from q = 0 to 5 at intervals of �q = 0.25. (f) Local logarithmic slopes
of the first momenta of Z (q) (q = 0, 0.25, 0.5, 0.75). (g) Corresponding multifractal spectrum K (q). Here and throughout the paper, spectra
are obtained by a fit in log-log scale of Z (q, ε) vs ε in the range ε ∈ [105, 107] unless specified otherwise. Two straight dashed lines are shown
to guide the eye. The PYTHON code to compute the multifractal spectrum is available at [45].

III. HIERARCHICAL DOMAIN MODEL

To rationalize these observations, we introduce a hierar-
chical domain model of Hi-C maps. We define the model by
an iterative transformation of a measure on the unit square
[0, 1] × [0, 1]. At the first iteration, the measure is given by
a 2 × 2 matrix with diagonal element a and off–diagonal
elements b, with a > b > 0. At each following iteration n
we generate a 2n × 2n matrix. The off-diagonal element of
the matrix at the previous iteration becomes a 2 × 2 block
of identical values in the matrix at the nth iteration. The
diagonal blocks are further multiplied by the original matrix.

The procedure is illustrated in Fig. 2(a) and Supplemental
Material Fig. S1 [47]. We impose b = 1/2 − a, so that the
measure remains normalized at each iteration. This means
that, effectively, the model is defined in terms of a single
free parameter a. Because of the normalization and the re-
quirement that the measure should be concentrated along the
diagonal, such parameter falls in the range 1/4 � a � 1/2.

Physically, the parameter a represents the weight of do-
mains compared to the rest of the Hi-C map. Matrices with
larger a have a measure more concentrated along the diagonal,
whereas matrices with smaller a are characterized by a more
uniform measure [see Fig. 2(a)]. In the limiting case a = 1/4
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FIG. 2. Hierarchical domain model. (a) Construction of the hi-
erarchical domain model for two different values of the parameter
a. (b) Colored symbols show the multifractal spectrum calculated by
the hierarchical domain mode at different values of a; the solid curves
are the predictions of Eqs. (11) and (12). (c) Multifractal spectra of
the first three chromosomes of mESC (colored symbols). The solid
curve is a fit of Eqs. (11) and (12), resulting in a ≈ 0.413. Here and in
the following, all fits are performed using the least-squares method,
unless specified otherwise.

the matrix is uniform at all iterations, whereas for a = 1/2 the
matrix is characterized by a uniform measure on the diagonal
and all the off-diagonal elements are zero.

We now analytically compute the multifractal spectrum of
the hierarchical domain model. The partition function can be
expressed as

Z (q, n) =
n∑

k=0

exp[ξ (k)], (8)

where we defined the exponent

ξ (k) = [n + max(n − k − 1, 0)] ln 2 + kq ln a

+ (1 − δkn)q ln b − max(n − k − 1, 0)q ln 4. (9)

A saddle-point estimation of the partition function gives

dξ

dk
= − ln 2 + q ln 4a, (10)

which is positive for q > qc = (ln 2)/(ln 4a). This means that,
for q � qc, the leading term is either ξ (n) or ξ (n − 1). Since
ξ (n) − ξ (n − 1) = q ln(a/b), the maximum of the exponent
is attained at k = n. Thus, for large n, the partition function
scales as Z (q, n) ∼ εK (q) with the length scale ε = 2−n and
the multifractal spectrum

K (q) = −q
ln a

ln 2
− 1. (11)

For a = 1/2, the matrix pi j (ε) is diagonal at each iteration.
In this case, Eq. (11) predicts a linear spectrum with slope
D = 1, consistent with the fact that the geometric set is equiv-
alent to a one-dimensional line. For a = 1/4 the distribution is
uniform on the square, and Eq. (11) correctly returns D = 2.

Between these two limiting cases, Eq. (11) predicts a fractal
distribution with a dimension D = − ln a/ ln 2 between
1 and 2.

We now focus on the “high-temperature phase” where
− ln 2 + q ln 4a < 0. In this case, the term dominating the
scaling is k = 0, so that

K (q) = 2(q − 1). (12)

Since in the high-temperature phase the scaling is determined
by the terms far from the diagonal, the spectrum is that of a
regular two-dimensional set.

Summarizing, the predicted multifractal spectrum is
characterized by two linear regimes: one with slope
− log(a)/ log(2) for q > qc = (ln 2)/(ln 4a) [Eq. (11)] and
one with slope 2 for q < qc [Eq. (12)]. Such predictions are
in excellent agreement with numerical simulations, as shown
in Fig. 2(b), with very small discrepancies for high values of
q and low values of a arising from finite-size effects. These
results confirm the validity of our saddle-point approximation.

Strikingly, our theory predicted extremely well also the
multifractal spectra of real chromosomes, with a fitted value
of a ≈ 0.425 and very little variability among the first three
chromosomes of mouse embryonic stem cells, with a mean-
squared deviation (MSD) of ≈0.0015 in all three cases [see
Fig. 2(c)]. To test whether this result is a unique signature
of a hierarchical mechanism, we numerically computed the
spectra of two null models. In the first null model, the contact
probabilities are expressed as

pi j = |i − j|−β + bi j, (13)

where bi j is equal to 1 if i and j belong to the same block of
linear size M and zero otherwise. In the second null model,
the contact probabilities are given by

pi j = |i − j|−β + ξi j . (14)

The terms ξi j are independent identically distributed random
variables with average zero and standard deviation σ . If the
resulting value of pi j is negative, it is rounded up to zero. In
both models, the contact probabilities are normalized at the
end of the procedure.

The solution of Eqs. (11) and (12) provides a poor fit to the
first null model with MSD in the range 0.01–0.02 depending
on parameters [see Figs. 3(a) and 3(b)]. The second null model
provides a better fit, comparable with that of chromosomes
for some values of the parameters (see Fig. 3). However, for
realistic values of parameters (σ ≈ 3 × 10−5 and and β � 1)
the quality of the fit is appreciably worse than that of maps
from a real chromosome [see Figs. 3(a) and 3(c)].

Our theory accurately describes also Hi-C maps of
Drosophila chromosomes with average MSD ≈0.001 for the
first four chromosomes (see Supplemental Material Fig. S2
[47]) and of human chromosomes with average MSD ≈0.005
for all chromosomes except chromosome Y (see Supplemen-
tal Material Fig. S3 [47]). These observations support that the
bifractal spectrum predicted by the hierarchical domain model
is compatible with that observed in a broad class of higher
organisms.

In the hierarchical domain model, the contact probability
P(�; n) decays as a power law of the genomic distance [see
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(a)

(b)

(c)

FIG. 3. Performance of null models. Points and curves show
the mean-square deviation (MSD) between the multifractal spec-
trum computed from different sets of data and the one predicted
by Eqs. (11) and (12) upon fitting the parameter a. Blue upward
and red downward triangles denote fits of the multifractal spectrum
computed from the null models expressed by Eqs. (13) and (14),
respectively. In (a), fits are shown as a function of β for fixed
Nblocks = N/M = 15 for the first null model, and fixed σ = 3 × 10−5

for the second null model. In (b), fits of the first null model are shown
as a function of Nblocks for fixed β = 0.5. In (c), fits of the second null
model are shown as a function of σ for fixed β = 0.8. In all panels,
the dark black line indicates the MSD of a fit of experimental data
from mouse chromosome 1. The light orange line indicates the MSD
associated with a numerical fit of the hierarchical model itself, with
a = 0.45 and n = 10 iterations.

Eq. (1)], with an exponent

β = ln(4a)

ln(2)
. (15)

Derivation of Eq. (15) is presented in Appendix B. For 1/2 �
a � 1, Eq. (15) predicts contact probability exponents in the
range β ∈ [0, 1]. This prediction is supported by numerical

distance ℓ

P
(ℓ

)

FIG. 4. Contact probability in the hierarchical domain model.
Decay of contact probability P(�; n) as a function of the genomic
distance � in the hierarchical model for n = 10 and different values
of the parameter a, shown in the figure legend. Continuous lines are
the exponent predictions of Eq. (15).

simulations (see Fig. 4). This means that the hierarchical
structure of contact matrices automatically leads to exponents
β � 1, as observed in chromosomes.

IV. COMPARISON WITH EXPERIMENTAL DATA

We test more extensively our method using datasets from
different Hi-C experiments. We fit the multifractal spectrum
of each dataset and obtain the corresponding exponent β via
Eq. (15). PYTHON scripts to perform this analysis on any Hi-C
dataset are freely available [45]. We first test the robustness
of the multifractal analysis across two Hi-C experiments in
mESC from two different laboratories [33,44], both following
the Hi-C protocol in solution [see Fig. 5(a)]. Both the multi-
fractal and the power-law methods predict that the variability
of the exponent β across chromosomes is significantly larger
than the variability of the exponent across replicates. To deter-
mine which method performs best, we implement a bootstrap
test with the null hypothesis that the values of β of different
chromosomes are paired at random. The multifractal method
permits one to exclude random pairing of chromosomes with
p value 5.2 × 10−4 much better than the direct fit with p value
0.11 (see Supplemental Material Table S1 [47]). Moreover,
the mean-squared difference of β between the two replicates
is smaller in the multifractal case compared to direct fit (0.009
versus 0.04). The χ2 associated with the direct fit is affected
by a strong systematic error, although remaining quite corre-
lated. This effect is much milder in the multifractal approach
[see Fig. 5(b)]. The multifractal and direct fit methods are
similarly robust with respect to varying the resolution of Hi-C
maps (see Supplemental Material Fig. S4 [47]).

We apply the two methods to attempt to distinguish among
experiments on the same cell lines, but following different
experimental protocols. These different protocols mainly dif-
fer in the ligation step of digested DNA fragments. In the
original in solution protocol, the ligation is performed in a
diluted solution [50]. In other protocols, the ligation step
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. Application of multifractal analysis to experimental Hi-C maps. (a) Exponents β calculated from the multifractal spectrum using
Eq. (15) and from a direct fit of mouse embryonic stem cells [as in Fig. 1(b)] measured with different Hi-C methods. In particular, we analyze
results of Hi-C experiments of in situ [8], TCC [48], and two independent replicates of in solution [33,44]. Black bars indicate medians over
chromosomes, colored boxes mark the first and third quartiles, and black dots are outliers. (b) Scatter plot of the data displayed in panel
(a). (c) Value of β obtained for the wild-type (wt) system and for a mutant (mut) in which either CTCF [33] or Nipbl [48] is depleted in
experiments. (d) Scatter plot of the data displayed in panel (c). (e) Exponents β obtained with the multifractal method for cell lines at different
stages of human stem cell development [49]. (f) Exponents obtained by direct fit of the same data.

is carried out either in intact nuclei (in situ protocol [50])
or on solid substrates [tethered conformation capture (TCC)
protocol [51]]. The two latter protocols are able to produce
Hi-C maps with better signal-to-noise ratio compared to the
in solution protocol [50,51]. Both the multifractal and the
direct fit methods show that the values of β obtained from in
situ and TCC experiments are markedly different from those
obtained in solution [see Fig. 5(a)]. The multifractal method
estimates compatible scaling exponents for in situ and TCC
protocols. The p value associated with the null hypothesis that
chromosomes are paired at random is 0.021 [see Supplemental
Material Table S2 [47] and Fig. 5(b)]. A direct fit does not
permit us to draw this conclusion (p value 0.14). This result
suggests that the in situ and TCC protocols result in statisti-
cally compatible Hi-C maps due to their high signal-to-noise
ratio.

We compare the two methods in detecting differences be-
tween wild-type and mutant cell lines, in which either the
Nipbl gene [48] or the CTCF gene [33] is knocked down
[see Fig. 5(c)]. Knock-down of these genes has been shown

to disrupt chromosome folding. In particular, Nipbl knock-
down leads to loss of TAD structures and global changes in
scaling properties [48]. We quantify average differences in
exponents between the wild-type and the mutant in terms of
χ2 of pairs of chromosomes, weighted by their mean-squared
errors (see Supplemental Material Fig. S5). Multifractal anal-
ysis detects more marked differences (χ2 = 214) compared
to the direct fit (χ2 = 4.7), although both methods highlight
a statistically significant difference between the two sets (p
values 1.3 × 10−5 for the direct fit and <10−6 for the mul-
tifractal). Knock-down of CTCF also causes a loss of TAD
structure, but without a clear effect on genome-wide scaling
[33]. Nonetheless, the values of β of different chromosomes
obtained by multifractal analysis reveal a large (χ2 = 86) and
significant (p value <10−6) difference between the scaling
properties of wild-type and CTCF-deficient cells. Also in this
case, the direct fit detects less marked differences (χ2 = 25)
[see Figs. 5(c) and 5(d)].

We apply the multifractal analysis to elucidate how chro-
mosome structure changes during cellular differentiation. To

043078-6



BIFRACTAL NATURE OF CHROMOSOME CONTACT MAPS PHYSICAL REVIEW RESEARCH 2, 043078 (2020)

this aim, we analyze Hi-C data obtained from different human
cell lines at different stages of early development [49]. In
temporal order, one differentiation branch includes the cell
lines: trophectoderm, embyonic stem cells (ESC), mesoderm,
and mesenchymal. Another differentiation branch is in order
trophectoderm, embyonic stem cells (ESC), neuronal precur-
sor cells (NPC) cells. The value of β obtained by multifractal
analysis [see Fig. 5(e)] tends to increase upon differentia-
tion. We first tested for significance applying Kendall’s tau
test to all chromosome pairs in different cell lines, excluding
Mesoderm-NPC pairs since they are at similar differentiation
stages. We obtained a p value <10−15 for the multifractal test
versus 10−3 for the power-law fit [see Fig. 5(f)]. Testing for
ordering of cell lines in each differentiation branch separately
results in p values <10−18 (multifractal) versus 2 × 10−6

(power-law fit) for the first branch, and 10−4 (multifractal)
versus 0.5 (power-law fit) for the second branch. In this latter
case, the direct power-law fit is not sensitive enough to detect a
significant ordering. The increase of β with the developmental
stage points to the idea that more differentiated cell types
require more insulated domains to achieve more specialized
functions.

V. CONCLUSIONS

Multifractal analysis of Hi-C data is a powerful statistical
tool to characterize scaling properties of chromosomes. We
have shown that contact maps of chromosomes are bifractal,
i.e., they are characterized by two distinct fractal dimensions.
To understand this observation, we proposed a hierarchical
domain model, the analytical solution of which is in strik-
ing quantitative agreement with observed multifractal spectra.
Our theory implicates a power-law scaling of the contact
probability with exponents β lower than 1, in agreement with
experimental observations. The multifractal method is sensi-
tive enough to discard a null model with power-law decay of
the contact probability, but domains on a single length scale
only. We found that another null model, in which the contact
probability is a sum of a power law plus noise, is able to
produce a similar spectrum, but only for unrealistically large
values of either the exponent β or the noise intensity. The
predicted form of the multifractal spectrum provides a more
stringent prediction than the contact probability exponent
alone. The analysis proposed here can be used as a stringent
benchmark to select among different polymer models that
provide similar values of β [29–32].

Our results indicate that scaling properties of chromo-
somes are a direct consequence of the hierarchical structure of
chromosome domains, at least at the level of TADS [14,16].
Recent work has suggested that such domain structure is
generated by a “hierarchical folding” mechanism, mediated
by different proteins such as cohesin and CTCF [10]. The
precise mechanism driving the folding of chromosomes has
been the subject of debate [11]. It will be interesting to test
whether the activity of these factors can produce self-similar
structures compatible with our observations. The shape of the
multifractal spectrum is controlled by a single parameter, that
also controls the contact probability exponent β via Eq. (15).
The determination of β from the fit of the multifractal spec-
trum is a much more robust way of characterizing the Hi-C

map than the direct fit of β. Multifractal analysis is also more
sensitive in highlighting subtle structural differences as shown
in the case of Nipbl and CTCF knock-down. The analysis
of the multifractal spectrum is simple and robust enough to
become a routine tool to analyze contact maps, from both
polymer models and experiments, and capture subtle differ-
ences among them.
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APPENDIX A: HI-C DATA ANALYSIS

We reanalyzed published datasets (Table I) using HiC-Pro
version 2.11.1 [52] to maintain a consistent data process-
ing pipeline. Briefly, we mapped reads to the corresponding
genome (mm10 for mouse, hg19 for human, and dm6 for fly)
retrieving chimeric reads and keeping only unique mappable
reads. We divided genomes into bins of fixed sizes (40 kb
unless specified otherwise) and made histograms of reads. We
applied Ice normalization [53] to the binned matrices. We then
applied library size normalization to allow comparison across
samples.

APPENDIX B: SCALING OF CONTACT PROBABILITY IN
THE HIERARCHICAL DOMAIN MODEL

We derive the scaling of the contact probability in the hier-
archical domain model. The contact probability P(�; n) at the
nth iteration can be expressed by summing the probabilities of
blocks at a genomic distance � from the diagonal:

P(�; n) =
∑

i j

pi j (n)δ|i− j|,� (B1)

with the distance �. To find an explicit expression for P(�; n),
we start from the expression of the partition function in
Eqs. (8) and (9). The only difference between P(�; n) and
Z (1, n) is the Kronecker delta in (B1), that selects a subset
of terms at a given genomic distance. It can be seen from the
structure of the matrix that the number of terms with a given
power of a first increases linearly with � up to a maximum,
then decreases linearly to zero. This means that P(�; n) can be
expressed as

P(�; n) =
n−1∑
k=0

2ng(� 2k−n)
akb(1−δkn )

4max(n−k−1,0)
, (B2)

where g(x) is defined to be x if 0 � x � 1/2 and 1 − x if
1/2 < x � 1. We now approximate the sum with an integral:

P(�; n) ≈
∫ n− ln 2�

ln 2

−∞
dk � exp[k ln 2 + k ln a

+ (1 − δkn) ln b − max(n − k − 1, 0) ln 4]

+
∫ n− ln �

ln 2

n− ln 2�
ln 2

dk exp[n ln 2 + ln(1 − � e(k−n) ln 2)

+ k ln a + (1 − δkn) ln b − max(n − k − 1, 0) ln 4].

(B3)
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TABLE I. Hi-C datasets analyzed in this paper. Raw data are downloaded from the GEO database at the relative accession number.

Cell type Organism GEO Condition Protocol Study

ES cells Mus Musculus GSE128015 Wild Type In situ [8]
ES cells Mus Musculus GSE93431 Wild Type TCC [48]
ES cells Mus Musculus GSE72697 Wild Type In solution [44]
ES cells Mus Musculus GSE98671 Wild Type In solution [33]
ES cells Mus Musculus GSE98671 CTCF KD In solution [33]
ES cells Mus Musculus GSE93431 Nipbl KD TCC [48]
Trophectoderm Homo sapiens GSE52457 Wild Type In solution [49]
ES cells Homo sapiens GSE52457 Wild Type In solution [49]
NP cells Homo sapiens GSE52457 Wild Type In solution [49]
Mesoderm Homo sapiens GSE52457 Wild Type In solution [49]
Mesenchymal Homo sapiens GSE52457 Wild Type In solution [49]

For large n, the scaling is determined by the maximum of the
argument of the exponential. This maximum is attained at a
value k∗ given by

� 2(k∗−n) = ln(4a)

ln(4a) + ln 2
. (B4)

Therefore the decay exponent of the contact probability with
the genomic distance is β = ln(4a)/ ln(2), as reported in
Sec. III.
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