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We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-
Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows 
to recover the topological spectrum, as first constructed by Witten, by means of an equivariant (or 
constrained) BRST cohomology. As standard gauge-fixed Yang-Mills theories suffer from the gauge copy 
(Gribov) ambiguity, one might wonder if and how this has repercussions for this analysis. The resolution 
of the small (infinitesimal) gauge copies, in general, affects the dynamics of the underlying theory. 
In particular, treating the Gribov problem for the standard Landau gauge condition in non-topological 
Yang-Mills theories strongly affects the dynamics of the theory in the infrared. In the current paper, 
although the theory is investigated with the same gauge condition, the effects of the copies turn out 
to be completely different. In other words: in both cases, the copies are there, but the effects are very 
different. As suggested by the tree-level exactness of the topological model in this gauge choice, the 
Gribov copies are shown to be inoffensive at the quantum level. To be more precise, following Gribov, we 
discuss the path integral restriction to the Gribov horizon. The associated gap equation, which fixes the 
so-called Gribov parameter, is however shown to only possess a trivial solution, making the restriction 
obsolete. We relate this to the absence of radiative corrections in both gauge and ghost sectors. We give 
further evidence by employing the renormalization group which shows that, for this kind of topological 
model, the gap equation indeed forbids the introduction of a massive Gribov parameter.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Topological Yang-Mills theories in the (anti-)self-dual Landau gauges

During the early eighties, Donaldson constructed a whole new class of topological invariants as integrals of differential forms over the 
moduli space of instantons [1]. The Donaldson polynomials are of the utmost importance in the classification of four-manifolds as they 
keep track of the smoothly inequivalent ways one may cover a topological space with local charts. This created a new toolbox to study 
the so-called “exotic” manifolds [2], a.k.a. manifolds with non-standard differential (smooth) structures. The simplest examples are the 
“exotic” R4’s: four-manifolds homeomorphic to the usual Euclidean space, R4, but not diffeomorphic to it.

The classification of four-manifolds is not only an abstract topic reserved for mathematicians. The physics on exotic manifolds has also 
being investigated with results ranging from particle physics to cosmology, [2–7]. Moreover topology-changing processes might play a 
relevant role in quantum gravity and QCD, to name only these two examples. For instance, the knowledge of topologically inequivalent 
four-manifolds might be fundamental to define the physically inequivalent states in some quantum gravity models [8–10]. On the other 
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hand, the moduli space of instantons represents a huge degeneracy of the QCD vacuum. Topology-changing processes among these vacua, 
a famous non-perturbative effect, can explain the anomalous U (1) axial symmetry [11,12] and is related to the strong CP problem.

In what follows, we will consider a SU (N) topological Yang-Mills theory over a four-dimensional Euclidean spacetime. This theory was 
first put forward by Witten as an exact local quantum field theory description of the Donaldson polynomials [13]. The observables of such 
a theory are not dynamically propagating field excitations (there are none), rather they are exclusively given by topologically invariant 
Donaldson polynomials [1]. A nice review paper on general aspects is [14].

Here, we will not be directly concerned with the Witten construction itself, but rather with the local BRST description of such topolog-
ical quantum field theories, as it was introduced in [15] and further worked out in [16,17]. The goal of such program is to characterize the 
topological degrees of freedom using local quantum (gauge) field theory, that is, via an action that is constrained via various Ward identi-
ties. The (topological) observables of the theory are then defined as the elements of a BRST cohomology (gauge invariant operators) that 
also do not depend on the ghost field c, see [14,16], thereby defining an equivariant cohomology. That the standard cohomology is trivial 
can be seen by using shifted variables [16] in which case the new variables always appear as doublets, i.e., cohomologically trivial [18]. 
In [19], see also [20], it was shown one can evade the complications of having to deal with expliciting an equivariant cohomology, rather 
the observables in field space can also be defined from a constrained BRST cohomological analysis. The particular space of observables 
was shown to contain only polynomials of the field φ (see later) and their correspondent descent equations (see later), without spacetime 
derivatives. These correspond precisely to the Donaldson polynomials upon explicit further evaluation, as it can be found in e.g. [21]. As 
such, the Witten construction is recovered in this alternative language, providing a quantum field theory description of the Donaldson 
invariants.

Once the topological Yang-Mills theory is reformulated in the BRST language, one automatically encounters the issue of gauge fixing. 
For the usual (non-topological) non-Abelian Yang-Mills theories, the gauge fixing (Baulieu-Singer) procedure is hampered by the Gribov 
obstruction: in any covariant gauge, there are multiple solutions to the gauge condition [22,23]. A procedure to remove the particular 
subclass of the small gauge copies was proposed first by Gribov at the semi-classical level, and later on improved upon by Zwanziger 
in a series of papers, see e.g. [24–27] or [28] for a review. In brief, one restricts the domain of integration for the gauge connection to 
a smaller region, encapsulated by the region of all gauge connections in the chosen specific gauge. Modulo some mild assumptions, this 
restriction can be implemented at the level of the action, leading to the Gribov-Zwanziger (GZ) quantization scheme. Its main effect is 
the introduction of a new, massive, Gribov parameter which is dynamically fixed via a suitable gap equation. Obviously, the introduction 
of a massive parameter in the originally massless gauge theory strongly influences the infrared dynamics, with potential ramifications 
to understand typical non-perturbative phenomena such as (de)confinement, etc. We refer the interested reader to the vast literature on 
these topics.

A major drawback of the original GZ approach was the loss of BRST invariance. Though, more recently, some of us were involved in 
developing a BRST invariant formulation of the GZ procedure, see for instance [29,30]. Doing so, the Gribov mass gained a BRST invariant 
status and as such it explicitly enters the BRST cohomology of physical operators.

If such massive Gribov parameter would also be there in the topological case, it could influence the constrained cohomology construc-
tion and, potentially, invalidate the algebraic identification of the Donaldson polynomials from a BRST perspective, i.e., the spectrum might 
change and be no longer of a topological nature. The main result of our paper will be to show that, precisely because of the topological 
nature of the action, the dynamical resolution of the Gribov problem becomes trivial at the end of the day, a fact made clear by a dynam-
ically enforced vanishing of the Gribov parameter. In such case, the topological version of the GZ action reduces to the original one and 
we are back at the Baulieu-Singer-et al construction.

1.1. The BRST symmetry and gauge fixing

The manifold we construct the theory on is a four-dimensional spacetime which is assumed to be Euclidean and flat. Following the 
Baulieu-Singer approach [15], the topological action S0[A] in four-dimensional space-time,1

S0[A] = 1

2

∫
d4x F a

μν F̃ a
μν , (1.1)

where A ≡ Aa
μ is the gauge field, F a

μν = ∂μ Aa
ν − ∂ν Aa

μ + g f abc Ab
μ Ac

ν is the field strength, with F̃ a
μν = 1

2 εμναβ F a
αβ being its dual, has a 

reducible gauge symmetry to be fixed, these are:
(i) the gauge field symmetry,

δAa
μ = Dab

μ ωb + αa
μ ; (1.2)

(ii) the topological parameter symmetry,

δαa
μ = Dab

μ λb ; (1.3)

For later usage, let us notice that, a fortiori, the field strength itself transforms as2

δF a
μν = −g f abcωb F c

μν + Dab[μαb
ν] ; (1.4)

where Dab
μ ≡ δab∂μ − g f abc Ac

μ is the covariant derivative in the adjoint representation of the Lie group G , g is the coupling constant, f abc

are the structure constants of the gauge group and ωa , αa
μ and λa are the infinitesimal G-valued gauge parameters. The first parameter 

reflects the usual Yang-Mills symmetry of S[A], whereas the second one is associated to the fact that S[A] is a topological invariant.

1 S0[A] is the Pontryagin action, S0[A] = 32π2n, in which n is the winding number that labels topologically inequivalent field configurations [31].
2 The antisymmetrization index notation here employed means that, for a generic tensor, S[μν] = Sμν − Sνμ .
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Said otherwise, the transformation (1.2) actually consists of 2 parts: the standard local gauge symmetry variation and a “topological 
shift”, expressing that the theory is essentially invariant under arbitrary variations of the gauge field, see also [16], where this shift was 
directly expressed in terms of a Grassmann quantity ψμ . As we wish to preserve the bosonic nature of the classical symmetries, we may 
write for this shift δshi f t Aμ = εψμ ≡ αμ with ε a Grassmann constant.

The invariances (1.2)-(1.3) constitute a typical example of a reducible gauge symmetry, which BRST quantization requires a certain care, 
in particular the introduction of “ghosts of ghosts”, see [18,32]. Given the freedom in ω, αμ and λ, we need 3 sets of gauge conditions, 
to be specified soon hereafter. Following the BRST quantization procedure, the gauge parameters present in the gauge transformations 
(1.2)-(1.3) are promoted to ghost fields: ωa → ca , αa

μ → ψa
μ , and λa → φa; ca is the well-known Faddeev-Popov (FP) ghost; ψa

μ is a 
topological fermionic ghost; and φa is a bosonic ghost. The corresponding BRST transformations are

sAa
μ = −Dab

μ cb + ψa
μ,

sca = g

2
f abccbcc + φa,

sψa
μ = g f abccbψc

μ + Dab
μ φb,

sφa = g f abccbφc, (1.5)

from which one can easily check the nilpotency of the BRST operator, i.e., s2 = 0, thus defining the cohomology of the theory.
In order to fix the gauge symmetries we define the following set of BRST doublets:

sc̄a = ba , sba = 0 ,

sχ̄a
μν = Ba

μν , sBa
μν = 0 ,

sφ̄a = η̄a , sη̄a = 0 , (1.6)

where χ̄a
μν and Ba

μν are (anti-)self-dual fields according to the (negative) positive sign in (1.9). Working in the (anti-)self-dual Landau 
gauges (ASDL) amounts to considering the constraints [17]

∂μ Aa
μ = 0 , (1.7)

∂μψa
μ = 0 , (1.8)

F a
μν ± F̃ a

μν = 0 . (1.9)

Beyond the gauge fixing of the topological ghost (1.8), we must interpret the requirement of two extra gauge fixings due to the fact 
that the gauge field possesses two independent gauge symmetries. In this sense the condition (1.7) fixes the usual Yang-Mills symmetry 
δAa

μ = Dab
μ ωb , and the second one, (1.9), the topological shift δAa

μ = αa
μ . The (anti-)self-dual condition for the field strength is convenient 

to identify the well-known observables of topological theories in four dimensions (see [14]) known as Donaldson polynomials [1], that are 
described in terms of the instantons — in which we are interested in here. This condition on Fμν (1.9), which is indirectly a condition on 
the gauge field as Fμν only depends on Aa

μ , corresponds to the gauge fixing of the field strength itself, because F a
μν also transforms as 

a gauge field, cf. (1.4). The first gauge condition on Aa
μ fixes the information about its divergence while the second one restricts its curl 

freedom, in such a way that, from the point of view of the four-dimensional Helmholtz theorem [33], the gauge field is well-defined—
disregarding the Gribov copies for a moment.

The complete gauge-fixed action in the (A)SDL gauges then takes the form

S[�] = S0[A] + S g f [�] , (1.10)

for all fields � ≡ {A, ψ, c, φ, ̄c, b, φ̄, η̄, χ̄ , B}, where

S g f [�] = s

∫
d4z

[
c̄a∂μ Aa

μ + 1

2
χ̄a

μν

(
F a
μν ± F̃ a

μν

)
+ φ̄a∂μψa

μ

]
=

∫
d4z

[
ba∂μ Aa

μ + 1

2
Ba

μν

(
F a
μν ± F̃ a

μν

)
+ (

η̄a − c̄a) ∂μψa
μ + c̄a∂μDab

μ cb+

− 1

2
g f abcχ̄a

μνcb
(

F c
μν ± F̃ c

μν

)
− χ̄a

μν

(
δμαδνβ ± 1

2
εμναβ

)
Dab

α ψb
β + φ̄a∂μDab

μ φb+

+ g f abcφ̄a∂μ

(
cbψc

μ

)
+ α

2
baba + β

4
Ba

μν Ba
μν

]
. (1.11)

The last two terms, which are BRST trivial, were added for later computational convenience; it is understood that, at the end, the limits 
β → 0, α → 0 must be taken. We relied on the standard BRST quantization lore here [18,34], but it can be easily checked that upon 
integration over the various multipliers/auxiliary fields, the gauge fixing conditions are retrieved under the form of appropriate δ-functions 
and corresponding Jacobians,3 representing the “unities” of the textbook Faddeev-Popov quantization procedure, at least for the here 
considered Landau gauge. The BRST method is however more convenient and more general than the Faddeev-Popov procedure. Indeed, 
not every gauge fixing needs to be of the “unity type”, a famous example being the non-linear gauges of the Baulieu–Thierry-Mieg type 
[35].

3 See Appendix B for some details.
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The action (1.11) enjoys a rich set of Ward identities, including the vector supersymmetry4 [17]. One can also prove that the gauge field 
propagator vanishes to all orders in perturbation theory [36], and, consequently, that the theory is completely free of radiative corrections. 
In other words, that the theory is tree-level exact [37].

From the action (1.11), the χ̄ equation of motion gives

�ab±,μνβψb
β = 0 , (1.12)

with

�ab±,μνβ = (δμαδνβ − δναδμβ ± εμναβ)Dab
α , (1.13)

while the η̄ equation of motion gives

∂μψa
μ = 0 . (1.14)

The two last equations are precisely the two equations concerning the infinitesimal instanton moduli. We obtain here the same situation 
as present in the Witten version of the theory, see [13]; the only difference is the gauge choice. If we want to reproduce exactly the 
Witten equations, we should use the gauge constraint Dab

μ ψa
μ = 0, instead of the Landau one. As this is a gauge condition anyhow, physics 

should not depend on it. The reason to prefer the Landau gauge is the associated larger symmetry content, in particular the vector 
supersymmetry, as it was originally noticed in [17]. Anyway, the relation is the same, that is, n = d(M) the number of solutions at the 
instanton moduli space of the equations (1.15)-(1.16). Indeed, for instanton solutions in the vicinity of Aa

μ , that is, Aa
μ + δAa

μ , we get from 
(1.9) the condition

�
ab,
±,μνβδAb

β = 0 , (1.15)

while the Landau gauge imposes

∂μδAa
μ = 0 . (1.16)

Here, d(M) is the dimension of the moduli space M.5

As we shall discuss later, the aforementioned tree-level exactness persists when the Gribov gauge fixing ambiguity is dealt with à la 
Gribov-Zwanziger [22,26,27], thereby indicating that the Gribov copies are inoffensive for this type of topological theory. This then also 
shows that the algebraic setup of [16] remains valid, even when Gribov copies are taken into account. Before doing so, let us first briefly 
discuss the Gribov problem.

2. Gribov ambiguities

To write down the conditions for the existence of Gribov copies, i.e., the possibility of having multiple solutions to the gauge fixing 
constraints, we start with the gauge field. Let A′a

μ differ from Aa
μ – which satisfies the Landau gauge condition, by assumption – by a pure 

infinitesimal gauge transformation, i.e., A′a
μ = Aa

μ + δAa
μ; the gauge transformed field will be a copy of Aa

μ if the following is satisfied

∂μ A′a
μ = 0 , (2.1)

which amounts to

∂μDab
μ ωb + ∂μαa

μ = 0 . (2.2)

Notice that, by virtue of the condition (1.8), which is equivalent to saying that ∂μαa
μ = 0, see below eq. (1.4), the second term in the above 

equation actually drops out, but we will keep it for now, so that at later stage, it will become clear why the condition (1.8) is such a 
convenient one.

Similarly, the gauge condition (1.8) features infinitesimal copies if

∂μDab
μ λb = 0 . (2.3)

In the current context, there is the possibility for the field strength gauge condition F a
μν to have copies as well. This is a novelty introduced 

by the topological model, insofar as, in the usual Yang-Mills theory, F a
μν is completely defined by the first constraint on Aa

μ (1.7), while in 
the topological case there is another independent gauge ambiguity involving Aa

μ , which is reflected in the behavior of the field strength 
that also transforms as a gauge field (1.4), as we discussed above. From the (anti-)self-dual gauge fixing (1.9), the new condition is obtained 
as follows

F ′a
μν ± F̃ ′a

μν = F a
μν ± F̃ a

μν , (2.4)

so that a copy is possible when

Dab[μαb
ν] ± εμναβ Dab

α αb
β = 0 . (2.5)

4 It should be understood that the vector supersymmetry is present for α = β = 0.
5 For a thorough analysis of d(M) and its relation with the first Pontryagin number of the bundle E (p1(E)), Euler characteristic (χ(M)) and signature (σ(M)) of the 

manifold M , according to the gauge group, see [38]. For the SU (2) group, for instance, d(M) = 8p1 − 3
2 (χ + σ).
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In summary, the conditions for the existence of infinitesimal Gribov copies for the three local gauge parameters of the model are

∂μDab
μ ωb + ∂μαa

μ = 0 , (2.6)

∂μDab
μ λb = 0 , (2.7)

Dab[μαb
ν] ± εμναβ Dab

α αb
β = 0 . (2.8)

We must verify if the system of equations (2.6)-(2.8) allows for (normalizable) zero modes. If we set αμ = 0, the third equation trivializes, 
while the first two reduce to

∂μDab
μ ωb = 0 , (2.9)

∂μDab
μ λb = 0 , (2.10)

which shows that there is a sector for a particular configuration of the gauge parameters in which the usual Gribov copies are present. 
Indeed, these two copies equations are identical to the one which characterizes the infinitesimal Gribov problem in Yang-Mills theories in 
the Landau gauge [22,24–27,39,40].

Analyzing the third equation separately, we can easily check that this equation also allows for zero modes. For h(x) ∈ G , we know that 
h−1∂μh belongs to the Lie algebra defined by the gauge group G , i.e., h−1∂μh(x) = [h−1∂μh]a(x)T a where [h−1∂μh]a is a scalar function 
for each μ (and a) and T a are the generators of the Lie algebra. Moreover, it is well-known that for a pure gauge configuration

Fμν(h−1∂h) = 0 , (2.11)

where Fμν = F a
μν T a . So if we set αa

μ = Dab
μ [h−1∂h]b , by using

[Dμ, Dν ] = Fμν , (2.12)

we will get in both terms of (2.8) the expression (2.11), which shows in a simple way that (2.8) admits zero modes as well.
In the following, we discuss the relevance of these copies in view of the instanton properties of the moduli space and develop a 

strategy to eliminate them from the path integration.

3. Elimination of the copies

In order to eliminate the ambiguities related to the infinitesimal Gribov copies, we can start by eliminating the Gribov copies present 
in the sector αa

μ = 0. For that, according to equations (2.9) and (2.10), we shall implement the usual Gribov-Zwanziger restriction to the 
region � defined as [22,26]

� = {Aa
μ; ∂μ Aa

μ = 0, Mab > 0} , (3.1)

wherein

Mab(x, y) = −δ(x − y)∂μDab
μ = −δ(x − y)(∂2δab − f abc Ac

μ∂μ) , (3.2)

with ∂μDab
μ depending on y. In a few words, one imposes that the real eigenvalues of the Hermitian operator −∂μ Dab

μ ≡ −∂ D are positive. 
At its boundary, ∂�, the FP operator acquires its first vanishing eigenvalues. This imposition eliminates the infinitesimal copies generated 
by the first two equations, viz. (2.6) and (2.7).

Notice that we tacitly remained silent here about “large” Gribov copies, that are not related to FP zero modes. To deal with those, a 
further restriction to a subregion of � would be necessary, viz. the fundamental modular region � that is related to global minima of the 
minimizing functional minu∈SU(N)

∫
d4xAu

μ Au
μ , whereas � is related to local minima. We will have nothing more to say about this [40]. As 

of now, it is completely unknown how to restrict in practice to � that lacks a simple description as � in terms of (3.1). At best, we can 
refer to [41] where some partial argument—for standard Yang-Mills gauge theories—was provided that averaging over gauge configurations 
restricted to � or � give coinciding expectation values for the observables of Yang-Mills theories.

In the case with αa
μ �= 0 we can decompose αa

μ according to the Helmholtz decomposition [33]. Since we are working in flat Euclidean 
space, for αa

μ(x) fields sufficiently smooth6 that fall off as 1
r or faster at infinity, we may rely on a generalization of the Helmholtz theorem 

by which we can write the four-vector αa
μ(x) as

αa
μ(x) = −∂μ

⎡⎢⎣∫
V ′

4

∂ ′
να

a
ν(x′)

4π2 R2(x, x′)
d4x′ −

∮
�′

αa
ν(x′)n′

ν

4π2 R2(x, x′)
d�′

⎤⎥⎦

− ∂β

⎡⎢⎣∫
V ′

4

∂ ′
βαa

μ(x′) − ∂ ′
μαa

β(x′)
4π2 R2(x, x′)

d4x′ +
∮
�′

αa
β(x′)n′

μ − αa
μ(x′)n′

β

4π2 R2(x, x′)
d�′

⎤⎥⎦ , (3.3)

6 Here the term “sufficiently smooth” means functions that are at least C2, i.e., twice continuously differentiable functions on the closure of the four-dimensional volume 
V 4.
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with R2(x, x′) = |x − x′|2, and n′
μ is the four-vector outward unit normal of the three-surface �′ which encloses the four-volume V ′

4, �′
itself being sufficiently smooth. Thus, eliminating the surface integrals for vanishing fields on the boundary according to the conditions 
above, we conclude that we can split αa

μ(x) into its longitudinal and transverse parts in the form

αa
μ = ∂μφa + ∂β T a

βμ , (3.4)

where φa is a scalar field, and T a
βμ is an antisymmetric tensor given, respectively, by

φa = −
∫
V ′

4

∂ ′
να

a
ν(x′)

4π2 R2(x, x′)
d4x′ , (3.5)

and

T a
βμ = −

∫
V ′

4

∂ ′
βαa

μ(x′) − ∂ ′
μαa

β(x′)
4π2 R2(x, x′)

d4x′ . (3.6)

The divergence of the second term in (3.4) vanishes. Therefore,

∂μαa
μ = ∂2φa, where ∂μ∂μ ≡ ∂2. (3.7)

Returning to the copy equation (2.6), in principle if one chooses e.g. φ = − ∂μ

∂2 Dμω, then this equation (2.6) has a solution. This would 
imply, in general, that all Gribov copies that exist in Yang-Mills theories are removed, but it is logically possible to generate new ones 
with a non-vanishing topological shift. But now comes the fact that so far, we did not use yet the second gauge condition (1.8). Doing 
so, the gauge condition for αμ (or ψμ) demands that it must be transverse, which allows just for trivial φ (i.e., ψμ must be transverse). 
Thence, the usual Gribov restriction also eliminates the copies related to the gauge transformation of the topological parameter.

It remains to deal with eq. (2.8), the third copy equation, at a first glance, the condition −∂ D > 0 does not tell anything about the 
instantons. We could think about an analogous procedure to eliminate the copies arising from the third equation (2.8). Rewriting eq. (2.8)
as

i�ab±,μνβαb
β = 0 , (3.8)

we could employ the extra Gribov-like restriction i�ab±,μνβ ≡ i�± > 0, i.e., we would impose positive eigenvalues for the operator i�± . 
However, let us now motivate why this third restriction is not necessary.

Firstly, we recall that Witten noted that the partition function Z of his topological theory is independent of changes of the coupling 
constant g2 (as long as g2 �= 0). He used this liberty to compute the observables in the weak coupling limit, g2 → 0, from which he 
obtained the Donaldson polynomials. The evaluation of Z in the weak coupling limit means that the theory is dominated by the classical 
minima. These minima correspond to the (anti-)instanton configurations F a

μν = ± F̃ a
μν , where the “+” sign corresponds to instanton, and 

“−” to anti-instanton solutions. Once it was proven that the observables of the Witten and Baulieu-Singer theories are the same (see for 
instance [21]), we should then consider the instanton characterization not as a gauge fixing condition, but as a physical requirement in 
order to obtain the correct degrees of freedom that correspond to the description of all global observables. This was also stressed in [14]: 
condition (1.9) does not completely fix the gauge, on purpose, to be left with the finite set of degrees of freedom describing the instantons, 
the latter being exactly the kernel of (1.9). In fact, the (bosonic) “zero modes of the 3rd kind” will be exactly canceled in computations 
against fermionic zero modes, related to the χ̄ -equation of motion, see again [14]. Precisely, the Atiyah-Singer index theorem [42] counts 
the number of solutions of (1.15) and (1.16), which gives the correct dimension of the instanton moduli space, in complete harmony with 
instanton conformal properties [43,44]. In this sense, the structure of (1.15) and (1.16), and therefore of (3.8), are protected by the Atiyah-
Singer theorem and its direct correspondence with the conformal properties of instanton configurations, indicating that no extra physical 
restrictions on the eigenvalues of i�± need to be introduced.

However, one might question whether the restriction of the gauge fields to the Gribov region does not hamper the fact that we wish 
to “preserve” the instantons, as just motivated. In the case of the simplest SU (2) instanton, we can provide an affirmative answer to 
this, inspired by the observations of [45]. Indeed, in this case the instanton field with winding number 1 is given by the expression (see 
e.g. [46])

A(i)a
μ = 1

g

2

r2 + λ2
rνζ a

νμ , (3.9)

where λ denotes the “size” of the instanton, while the real constant antisymmetric matrices ζ a are the ’t Hooft tensors that obey the 
algebra[

ζ a, ζ b
]

= 2 f abcζ c ,

{ζ a, ζ b} = −δab . (3.10)

As we can see,

∂μ Aa
μ

(i) = 0 , (3.11)

which means that the (regular) instanton field is transverse and in the Landau gauge. From the latter transversality of the instanton field, 
the eigenvalue equation for the FP operator (3.2),
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Mab(A(i))φa = −ω2φa, (3.12)

takes the form

∂2φa + f abc 2

r2 + λ2
rμζ a

νμ∂νφc = −ω2φa. (3.13)

We immediately notice that this instanton has three trivial constant zero-modes. The other zero modes (thus giving ω = 0) of eq. (3.13)
were explicitly constructed in [45]. This means that the instanton belongs to the Gribov horizon ∂�.

There is no strict proof that all instantons (with higher winding number) belong to the first Gribov region, but to the best of our 
knowledge, in the cases investigated in literature, topological Yang-Mills solutions (instanton, monopole, vortex) always belong to it—see 
again [45], or [47] for an example in the Maximal Abelian gauge. Let us also refer to [48], where it was discussed that for instantons a 
whole family of Gribov copies does exist.

The consequence of such rich zero-mode spectrum to our problem is immediate. If we consider the Gribov restriction, −∂ D > 0, for a 
generic gauge field in order to eliminate the Gribov copies in the first two copies equations, (2.6) and (2.7), the instantons belongs to the 
boundary of the first Gribov region, ∂� (where −∂ D becomes zero) and are as such not eliminated from the game. One notes this property 
by the fact that the instantons are transverse, and the spectrum of the FP operator evaluated for an instanton displays zero modes. From 
the point of view of gauge copies under −∂ D ≥ 0, the gauge fields obeying the (anti-)self dual condition F = ± F̃ are well-defined. The 
solutions to F = ± F̃ are elements of ∂�.

The Gribov problem can also be directly understood from the partition function related to the action (1.10). We use the expression 
(B.10), inserted into (B.1). We can then also integrate out the c and c̄ to get the Faddeev-Popov determinant det(−∂ D). Doing so, we arrive 
at the following partition function

Z =
∫

DADψ δ(∂ A)det(−∂ D)δ(F ± F̃ )δ(∂ψ)det(�±)exp {−S0[A]} . (3.14)

Consider now (normalizable) zero modes ξ1 and ξ2 of the Faddeev-Popov operator,

∂μDab
μ ξb

1 = ∂μDab
μ ξb

2 = 0, (3.15)

and consider the following field variations (see of course (1.2)-(1.3))

δ̂Aa
μ = Dab

μ ξb
1 + α̂a

μ ,

δ̂α̂a
μ = Dab

μ ξb
2 , (3.16)

where α̂a
μ is subject to ∂μα̂a

μ = 0. First of all, setting A′ = A + δ̂A, we have ∂ A′ = 0, so the δ-function in (3.14) is δ̂-invariant. The 
associated Jacobian is trivial, i.e. the integration measure does not change. Indeed, the shift over α̂ is irrelevant for the Jacobian, while for 
the first piece, we may use the classical argument as why the integration measure over a gauge field is gauge invariant, this mainly by 
virtue of the anti-symmetry of the f abc , see e.g. [49]. The classical action S0[A] is also invariant under (3.16) as this is a special case of 
(1.2)-(1.3). Moreover, if F ± F̃ = 0, then also F ′ ± F̃ ′ = 0 as δ̂F a

μν = −g f abcξb F c
μν . Nextly, as it is known, the Faddeev-Popov determinant 

is (perturbatively) gauge invariant under Aμ → Aμ + Dμω, see e.g. [50]. More precisely, one has �[A] ≡ [det(−∂ D)]−1 = ∫
Dg δ(∂ Ag)

where g is a generic SU(N) transformation. It is then easy to show that �[A g′ ] = �[A]. Indeed, as ∂α̂ = 0, the previous argument is 
unaffected by the extra shift over α̂ defining δ̂A. Overall, the det(−∂ D) will thus be untouched by the transformation generated by (3.16). 
To establish full invariance of Z , we just need to show that also det(�±) has a trivial variation. That this is the case can be realized from 
writing7

1 = det(�±)

∫
DU δ(F U ± F̃ U ) , (3.17)

where U is a generic transformation generated by the infinitesimal topological shift δshi f t A = ζ for arbitrary ζ . From this, the (perturbative) 
invariance of det(�±) under this topological shift follows from the invariance of the measure. A fortiori, det(�±) will then also be 
δ̂-invariant which is just a special case upon setting ζ = Dξ1 + α̂.

Eventually, we thus see that even after gauge fixing, the zero modes of the Faddeev-Popov operator, (3.15), induce still an overcounting 
of the relevant degrees of freedom, encoded in the δ̂-invariance of the gauge fixed partition function (3.14). The foregoing reasoning also 
shows why it is sufficient to restrict to the “standard” Gribov horizon known from usual Yang-Mills theories, given the form of the residual 
δ̂-invariance.

Summing up, the only requirement to eliminate all (infinitesimal) gauge ambiguities is then the introduction of the Gribov horizon as it 
commonly done for usual Yang-Mills theories.8 Then it remains to prove in the following section that also this restriction to the standard 
Gribov horizon eventually becomes trivial at the dynamical level.

7 This is completely analogous to the Faddeev-Popov “unity trick” and the proof that the corresponding determinant is perturbatively gauge invariant.
8 Although all points discussed here indicate a similar behavior for a generic SU (N) instanton field with an arbitrary winding number, a possible analytical treatment of 

such instantons will not be considered in this paper.
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4. The Gribov gap equation and its triviality

We have mentioned that the tree-level exactness of the topological theory in the (A)SDL gauges [37] suggests that the Gribov copies 
present in our model should be inoffensive. Due to the absence of radiative corrections, the tree-level propagator of the FP ghost field in 
momentum space obtained from the total action (1.10),

〈c̄acb〉0 (p) = δab 1

p2
, (4.1)

will be valid to all orders in perturbation theory. From the expression above, one sees that the FP operator will be positive definite at the 
quantum level, consistent with the inverse of the FP propagator being positive, i.e., we are inside the first Gribov region, in such a way 
that the Gribov restriction to the path integral seems to be redundant. The origin of such behavior is the impossibility of closing loops in 
Feynman diagrams, as due to the vertex structures, at least one gauge field propagator is required to close loops, but 〈Aa

μ(x)Ab
ν(y)〉 = 0 to 

all orders for this gauge choice [37,51]. We point out that the same argument holds for the analysis of the third Gribov equation (2.8) and 
the propagator 〈χ̄a

μνψb
α〉0(p).

Originally, the no-pole condition was achieved by treating the gauge field as an external source. Its quantum properties must be 
computed when the gauge field is integrated over. If we admit the Gribov copies to play a role in this case, we should consider that 
the introduction of the term that implements the restriction to the Gribov region might allow for radiative corrections, e.g. from a non-
vanishing gauge propagator arising from the extra Gribov term (a metric dependent term) in the action. This might perturb the original 
cohomology arguments and, consequently, compromise the global properties of the topological theory at certain energy scale, this through 
the elimination of Gribov ambiguities. Taking into account the reasons discussed above, such behavior is highly unexpected. We will now 
show this in detail, first at one loop, afterwards we will generalize to all orders.

4.1. No-pole condition at one-loop

As discussed, all infinitesimal Gribov copies in the topological theory in (A)SDL gauges for the SU (2) instanton are eliminated through 
the implementation of the restriction to the well-known Gribov region denoted by � (3.1), commonly performed in usual Yang-Mills 
theories in Landau gauge. Following the Gribov approach, this restriction is achieved via the introduction of a form factor V (�) in the 
generating function Z [ J ], in such a way that the integration domain is limited by �. The original generating functional

Zo[ J ] = N
∫

D� e−S−∫
d4x J� , (4.2)

is restricted to

Z [ J ] = N
∫
�

D� e−S−∫
d4x J� = N

∫
D�V (�) e−S−∫

d4x J� , (4.3)

where N = Z [0]−1 is the normalization factor, D� denotes the integration measure for all fields, i.e., D� = DADψDcDφDc̄DbDφ̄Dη̄
Dχ̄DB , while J� = J i�i denotes the coupling of each field �i with its respective external source J i .

In the Yang-Mills theory, the form factor V (�) is obtained from the no-pole condition for the FP propagator, since the imposition 
Mab > 0 is equivalent to forbidding the existence of poles in the FP propagator [22,52]. In the topological case, see action (1.11), the 
operator Mab = −∂μDab

μ appears twice: in the FP ghost-anti-ghost quadratic term (treating Aa
μ as an external source), c̄∂ Dc, as usual, but 

also in the bosonic ghost-anti-ghost term, φ̄∂ Dφ. By applying the Gribov semi-classical method we shall see that, at one-loop order, the 
no-pole condition in the topological theory takes the same form as for the standard Yang-Mills case.

For this purpose, we have only to analyze the vertices present in the total action (1.10), and apply the Feynman rules for the diagrams 
up to the order g2, once we are considering the one-loop order. We should then verify which diagrams could be constructed with an 
incoming c̄-leg (φ̄-leg), and an outgoing c-leg (φ-leg), whereby the gauge fields work as external sources. Let us start with the FP ghost 
propagator.

(i) FP ghost propagator. Using the following notation for the ghost propagator at one-loop with A as an external source,

〈c̄a(k)cb(p)〉 = δ(p + k)Gab(k2, A) = δ(p + k)δab 1

k2 [1 + σ(k, A)] , (4.4)

our aim is to calculate σ(k, A), which represents the loop correction to the tree-level part 1/k2. Firstly, we must note that the FP anti-
ghost, c̄, only propagates to c and ψ through the propagators 〈c̄c〉0 and 〈c̄ψ〉0 at the tree-level, respectively. Therefore, if we start with 
an incoming c̄, we can propagate it to the vertices (a) φ̄cψ , (b) χ̄∂ Aψ , (c) χ̄c A, (d) χ̄c A A, or (e) c̄ Ac. The first one does not produce 
external A-legs. If we propagate c̄ to the vertex (b) through 〈c̄ψ〉0, we will get an external A-leg, and an internal χ̄ -leg. Since χ̄ only 
propagates to ψ through 〈χ̄ψ〉0, we could only connect at one-loop order the vertex (b) to another vertex χ̄∂ Aψ , producing one more 
time an external A-leg, and an internal χ̄ , in such a way that we cannot generate an outgoing c. For the vertices (c) and (d), we fall 
back to the same situation: we generate external A-legs, but always accompanied by the internal χ̄ -leg that never propagates to c in the 
end. We conclude that the only possibility to get an outgoing c from c̄ with only external A-legs is to construct the diagram by using the 
vertex (e).9 Namely, for

G(k2, A) = 1

N2 − 1
δabG(k2, A)ab , (4.5)

9 We remark that the whole argument can be made easier by a redefinition η̄ �→ η̄ + c̄ in the action (1.10) in order to eliminate the η̄ψ mixing term.
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we construct the diagrams

Gab(k2, A) = ca cb + ca cb

k,μ

k p

k − p

+ ca cb

k,μ l, ν

k pk + p′
−p′ p′ + k − q

. (4.6)

The possible diagrams are reduced to the same diagrams of the standard Yang-Mills theory. We conclude that the no-pole condition for 
the FP ghost propagator in this topological model gives the same result of the one found for Yang-Mills theory. The Feynman rule for 
the vertex c̄a∂μ Ak

μcb is given by ikμ f akb , where the incoming momentum kμ stems from c̄. Hereafter, just to remember, these diagrams 
represent, in d dimensions, the three integrals below

I1 = δab(2π)dδ(k − q)
1

k2
, (4.7)

I2 = g
1

k2

1

p2
f akbipμ Ak

μ(k − p) , (4.8)

I3 = g2
∫

dd p′

(2π)d

1

k2

1

(p′ + k)2

1

p2
f akc i

(
p′ + kμ

)
Ak

μ(−p′) f c�biqν A�
ν(p′ + k − q) . (4.9)

As it is known [22,39], we must disregard I2. Due to the vertex and propagator structure of the total action (1.10), there is no way to close 
loops from the second diagram after integrating over the gauge field. Replacing (4.7) and (4.9) into G(k2, A) (4.5) yields

G(k2, A) = 1

k2
+ Ng2

k4
(
N2 − 1

)
V

∫
ddq

(2π)d
Aa

μ(−q)Aa
ν

(k − q)μqν

(k − q)2
, (4.10)

therefore, from (4.4),

σ(k, A) = Ng2

k2
(
N2 − 1

)
V

∫
ddq

(2π)d
Aa

μ(−q)Aa
ν

(k − q)μqν

(k − q)2
, (4.11)

wherein V is the infinite volume factor, and N = 2 as we are working with SU (2). For small σ(k2, A), the Born approximation may be 
employed,

G(k2, A) ∼ 1

k2

1

1 − σ(k, A)
, (4.12)

the no-pole condition that corresponds to the restriction of the domain to the Gribov region reads

σ(k, A) < 1 . (4.13)

As σ(k, A) decreases for increasing k2 (see [53]), the condition above is equivalent to imposing

σ(0, A) < 1 , (4.14)

where, taking the limit k2 → 0 in (4.11),

σ(0, A) = g2N

4V (N2 − 1)

∫
d4q

(2π)4

Aa
λ(q)Aa

λ(−q)

q2
, (4.15)

which defines the form factor V (�) as the theta function10

V (�) = �(1 − σ(0, A)) , (4.16)

or, using the Heaviside expression,

V (�) =
+i∞+ε∫

−i∞+ε

dξ2

2π iξ2
eξ2(1−σ (0,A)) . (4.17)

We should then introduce this factor into the path integral in order to implement the elimination of the gauge copies. We must do the 
same procedure to eliminate possible copies in the bosonic ghost propagator, but as we will see now, the no-pole condition (4.14) for the 
bosonic ghost is valid for both, the FP and bosonic ghosts.

(ii) Bosonic ghost propagator. The proof of the last statement is immediate. The bosonic anti-ghost field φ̄ only propagates to φ through 
〈φ̄φ〉0, thus an incoming φ̄, we can only connect to the vertex φ̄ Aφ. Aftermath, the construction of the Feynman diagrams up to g2 order 

10 �(x) = 1 if x > 0, �(x) = 0 if x < 0.
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with A fields as external sources takes the same form of the FP case, see (4.6), only replacing c̄ by φ̄, and c by φ. The Feynman rules are 
exactly the same, consequently the no-pole condition for the bosonic ghost generates the same expression for σ(k, A), and the condition 
(4.14) is valid for the FP and bosonic ghost sectors.

In a few words, although the complex structure of the total action (1.10), in which there are two ghosts sectors to implement the 
no-pole condition, for the FP ghost sector and the bosonic one, the elimination of all Gribov copies in the topological Yang-Mills in the 
(A)SDL gauges for SU (2) instantons is achieved by introducing in the path integral a form factor V (�) (4.17) which is identical to the one 
obtained in the usual Yang-Mills theory in the Landau gauge.

4.2. Gap equation at one-loop

From (1.10), (4.3) and (4.17), the generating functional for the first Gribov region takes the form

Z = N

∫
DAa

μD�′
∫

dξ2

2πξ2i
exp{ξ2 − S − ξ2σ(0, A)}. (4.18)

in which �′ denotes all fields except the gauge field. The effective potential, �, is defined as usual by

e−� = e−V ε = Z , (4.19)

where ε represents the vacuum energy.
In order to calculate � at one-loop order, �(1) = V ε(1) , we must select only the quadratic part of the total action S (here σ(0, A) is 

already quadratic as it was only calculated up to one-loop order), namely,

e−V ε(1) = Zquad , (4.20)

whereby, using (4.15),

e−�(1) =
∫

DAa
μD�′e−Squad[�]. (4.21)

After integrating out the auxiliary fields ba , Ba
μν , and all other fields except Aa

μ , we get the quadratic action for the gauge field

Squad[A] =
∫

d4 p Aa
μ(p)

[
4

β
p2δμν −

(
4

β
− 1

α

)
pμpν

]
Aa

ν(−p) + rest . (4.22)

Taking into account all quadratic terms,

Zquad = N

∫
DAa

μ

∫
dξ2

2πξ i
exp

{
ξ2 − ln ξ − 1

2

∫
d4k

(2π)4
Aa

μ(k)Q μν(k, ξ)δab Ab
ν(−k) + rest

}
, (4.23)

wherein

Q μν(k, ξ) =
[

4

β
k2 + ξ2 g2N

2V (N2 − 1)k2

]
δμν +

(
1

α
− 4

β

)
kμkν . (4.24)

Therefore,

Zquad = N

∫
dξ

2π i
e[ f (ξ)+rest′] , (4.25)

where,

f (ξ) = ξ2 − 1

V
ln ξ + ln[(det Q μνδab)−

1
2 ] = ξ2 − 1

V
ln ξ − 1

2
ln det[Q μνδab] . (4.26)

We also changed the variable ξ2 → ξ2 V to pull out explicitly the volume factor here, to make clear that the action is an extensive quantity 
(∼ V ).

Calculating the determinant, we find

ln det[Q μνδab] = (N2 − 1)(d − 1)
∑

k

ln

(
β A + 4k4

βk2

)
+ (N2 − 1)

∑
k

ln

(
k2

α
+ A

k2

)
, (4.27)

where

A = ξ2 g2N

2(N2 − 1)
, (4.28)

and k refers to momenta in Fourier space. Working out the last term of (4.27), we get∑
k

ln

(
k2

α
+ A

k2

)
=

∑
k

ln

(
k4

α
+ A

)
−

∑
k

ln k2 , (4.29)

Taking the thermodynamic limit and employing dimensional regularization, the last term vanishes. Therefore
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∑
k

ln

(
k2

α
+ A

k2

)
= V

∫
ddk

(2π)d
ln

(
k2

√
α

+ i
√

A

)
+ V

∫
ddk

(2π)d
ln

(
k2

√
α

− i
√

A

)
∼ α

d
4 . (4.30)

In the limit α → 0, this term also vanishes. In the end,

ln det[Q μνδab] = (N2 − 1)(d − 1)

∫
ddk

(2π)d
ln

(
ξ2 g2N

2(N2 − 1)k2
+ 4k2

β

)
, (4.31)

which could be rewritten as

ln det[Q μνδab] = (N2 − 1)(d − 1)

[∫
ddk

(2π)d
ln

(
βξ2 g2N + 4k2

)
−

∫
ddk

(2π)d
ln

(
2β(N2 − 1)k2

)]
. (4.32)

In dimensional regularization, not only the last term is zero, but also the first one, as we should still take the limit β → 0. We conclude 
that

f (ξ) = ξ2 , (4.33)

as we work in the thermodynamic limit, V → ∞. The gap equation, viz. the equation for the critical point for a saddle point evaluation, 
thus gives the trivial solution

ξ = 0 , (4.34)

to f ′(ξ) = 0. So, up to leading order, the no-pole condition does not change the partition function at all, see (4.18) in conjunction with 
(4.34).

4.3. Extension to all orders

Let us now extend the result (4.34) and prove that is valid to all orders in perturbation theory. Therefore, we will rely on the local 
version of the horizon function. Following the steps of [26,27], the restriction to the region � to all orders is given by considering the 
following partition function,

Z =
∫

D�e−S+γ 4 H(A)−4V γ 4(N2−1) , (4.35)

where S is defined in (1.10) and H(A) is the Zwanziger horizon function,

H(A) = g2
∫

d4xd4 y f abc Ab
μ(x)

[
M−1]ad

(x, y) f dec Ae
μ(y). (4.36)

Notice that H(A) reduces to g2 N
V

∫
ddxAa

μ(x) 1
∂2 Aa

μ(x) at lowest order, in fact recovering σ(0, A) of the no-pole condition at one-loop 
(4.15).11 In the all-order Gribov-Zwanziger formalism, the �-function is also replaced by a δ-function in the thermodynamic limit [26,27], 
V → ∞, as we have made explicit before.

The non-local horizon function H(A) can be equivalently written in a local form through a pair of bosonic auxiliary fields (ϕ̄, ϕ)ab
μ and 

a pair of anticommuting fields (ω̄, ω)ab
μ [27]. In the current case, it means replacing the exponent of (4.35) by the local action

Sloc = S −
∫

d4x
(
ϕ̄ac

μ Mab(A)ϕbc
μ − ω̄ac

μ Mab(A)ωbc
μ + γ 2 g f abc Aa

μ(ϕ + ϕ̄)bc
μ

)
. (4.37)

In the local formulation, the gap equation reads [27]

∂ε

∂γ 2
= 0 . (4.38)

This relation connects the semi-classical method characterized by the no-pole ghost condition with the Zwanziger horizon function. Indeed, 
for the reader’s belief, let us analyze the leading order limit.

At one-loop order, the geometric interpretation of thermodynamic limit is very simple: the Gribov no-pole condition (4.14), replacing 
Aa

μ(k)√
k2

by xa
μ−→

k
≡ x−→

k
, could be written as

1

V

∑
−→
k

x−→
k

x−−→
k

< r2 , (4.39)

where r2 = 4(N2−1)

g2 . The expression above can be interpreted as an hypersphere in an infinite dimensional space. As it is well-known for 
hyperspheres, as the dimension grows, the volume of a hypersphere is getting more and more concentrated on the boundary, i.e., on the 
hypersurface defined, in our case, by the ellipsoid

11 About the exact equivalence between the no-pole ghost condition and the Zwanziger function, see for instance [54,55].
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1

V

∑
−→
k

x−→
k

x−−→
k

= r2 , (4.40)

which means that the �-function that represents (4.39) could effectively be replaced by a δ-function in the thermodynamic limit. The 
collapse of the �-function into the δ-function is then expressed by

+i∞+ε∫
−i∞+ε

dξ2

2π iξ2
eξ2(1−σ (0,A)) →

+i∞+ε∫
−i∞+ε

dξ2

2π i
eξ2(1−σ (0,A)) =

+∞∫
−∞

dξ2

2π
eiξ2(1−σ (0,A)) , (4.41)

after a Wick rotation. In practice we just canceled the ξ2 in the denominator, responsible for the second term in (4.26). The behavior of ξ , 
in turn, is only determined by the gap equation (4.40). The vacuum energy can be computed from the ln det originating from the action 
(4.37), leading to exactly the same result as in the previous subsection, upon identifying ξ2 and γ 4.

We conclude, without inconsistency between the both methods, that the Gribov copies (still at one-loop so far) are inoffensive to the 
SU (2) topological Yang-Mills theory in the (A)SDL gauges, since the gap equation forbids the introduction of a Gribov massive parameter 
in the thermodynamic limit,

ξσ (0, A) ∼ γ 4
∫

d4kA
1

k2
A → 0 . (4.42)

Finally, let us look to what happens beyond the ln det-level. Then, the vertices of the theory will start to play role. Based on the vertex 
structure of Sloc , it is easy to see that any vacuum diagram beyond one-loop will contain at least one 〈A A〉-propagator. However, by 
inverting the quadratic form in (4.23), this propagator is given by12

Dab
μν = δab

[
β

4

p2(
p4 + βNg2γ 4/2

) (
δμν − pμpν

p2

)
+ α

p2(
p4 + 2αNg2γ 4

) pμpν

p2

]
, (4.43)

i.e.,

〈A A〉 = 0 (4.44)

if we take α, β → 0, irrespective of γ 2. We immediately get that all higher order terms to the vacuum energy vanish, just as the ln det. 
As such, by employing the gap equation (4.38) which is valid to all orders, we can infer that the massive Gribov parameter vanishes to 
all orders in the thermodynamic limit. In this way, the global (topological and cohomological) properties of the original action are not 
violated and we come to the main result of this paper: quantization of the topological theory remains valid as it is, the resolution of 
the infinitesimal (“small”) Gribov copy problem is trivial as the intrinsic topological features of the theory self-consistently forbid the 
introduction of the Gribov mass, the crux of the Gribov-Zwanziger restriction [22,26,27] when it comes to changing the structure of the 
theory.

One might wonder if it actually makes sense to have computed the above effective action by expanding around the trivial A = 0 sector, 
thinking about the importance of the instanton configurations for topological field theories.

Exactly the topological nature of the theory saves the day here. Let us first remark that it is possible to write down a BRST invariant 
version of the Gribov restriction, that is, if γ were to be nonzero, whilst preserving equivalence with the above formalism,13 see [29,30,56]
for details. As already reminded before, the topological partition function does not depend on the coupling g . This can also be shown using 
a BRST cohomological argument, as we reiterate in the next subsection. This means all observables can be computed in the g → 0 limit. 
Expanding around a nontrivial instanton background rather than around A = 0 would lead to corrections of the type e−1/g2

into the 
effective action, but the latter vanish exponentially fast once g → 0 is considered. As such, we can a priori work around A = 0.

This is good news, as explicit instanton computations are usually performed in a background gauge setting, being virtually impossible 
in other gauges such as Landau gauge. The above reasoning prevents us that we should resort to another gauge, such as the background 
Landau gauge, for which the Gribov problem and resolution is a bit different and actually far more complicated, in particular when BRST 
invariance is to be preserved [53,57]. In [57], such computation was presented for a constant temporal background, already complicated 
enough. For an x-dependent instanton background, the methodology of [57] simply looks technically impossible.

4.4. Further evidence

Before ending, we find it instructive to present yet another argument why a null Gribov parameter is also in full accordance with the 
possibility of a vanishing β-function discussed in [51]. Indeed, the variation of the full action with respect to the coupling constant gives 
a BRST-exact term (up to boundary terms),

δg S = s
(
�(−1)

)
, (4.45)

where �(−1) is a polynomial in the fields and parameters, with ghost number equal to minus one. This result is independent of the gauge 
choice. Since the expectation values of BRST exact terms vanish, (4.45) implies that

12 For the reader’s convenience, we have listed all propagators in Appendix A. Moreover, since the proof discussed in this section is based on the absence of radiative 
corrections [37], this appendix is dedicated to the proof that such properties remain valid for the inclusion of the horizon function.
13 In the sense that all correlation functions will be identical.
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δg Z =
〈
s
(
�(−1)

)〉
= 0 , (4.46)

with Z the generating functional. It means that the theory is insensitive to changes of the coupling constant, in other words, that the 
theory has no scale. This can be re-expressed by the theory not having a β-function, which makes impossible the feature of dimensional 

transmutation. Indeed, the Gribov gap equation is nothing but a tool giving γ 2 ∝ �2, � ∼ μe
− 1

β0 g2(μ) being the fundamental scale of the 
theory if μ is the renormalization group scale; a quantity directly related to the β-function [58]. However, in the absence of the latter, it 
holds that � ≡ 0 and a classically massless (or better said scale invariant) theory will remain so at the quantum level. A rather similar 
situation showed up in the super N = 4 Yang-Mills theory which possesses a vanishing β-function. The absence of a renormalization 
group invariant scale makes it impossible to attach a dynamical meaning to the Gribov parameter, in such a way that the restriction to 
the first Gribov region is not required [59].
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Appendix A. Absence of radiative corrections in topological Yang-Mills theories in presence of the Gribov parameter

The proof that topological Yang-Mills theories in the presence of the Gribov-Zwanziger horizon function remain tree-level exact is 
outlined. Along the lines of [37], we need the tree-level propagators in order to show that all n-point functions are tree-level exact. The 
non-vanishing tree-level propagators which are relevant for the present work are computed from (4.37). The results are given by

〈U ab
μ (−k)U cd

ν (k)〉 = − 1

k2
δμνδabcd ,

〈V ab
μ (−k)V cd

ν (k)〉 = − 1

k2
δμνδabcd ,

〈ba(−k)bb(k)〉 = −2Ng2γ 4 1

k4
δab ,

〈Ba
μν(−k)Bb

αβ(k)〉 = −Ng2γ 4 1

k4
δμναβδab ,

〈Aa
μ(−k)bb(k)〉 = −i

kμ

k2
δab ,

〈Aa
μ(−k)Bb

αβ(k)〉 = i
1

k2
�μαβδab ,

〈ba(−k)U bc
μ (k)〉 = i

√
2γ 2 kμ

k4
f abc ,

〈Ba
μν(−k)U bc

α (k)〉 = i
√

2gγ 2 1

k4
�αμν f abc , (A.1)

while the vanishing tree-level propagators are

〈Aa
μ(−k)Ab

ν(k)〉 = 〈Aa
μ(−k)U bc

ν (k)〉 = 〈ba(−k)Bb
μν(k)〉 = 0 ,

〈V ab
μ (−k)Ac

ν(k)〉 = 〈V ab
μ (−k)U cd

ν (k)〉 = 〈V ab
μ (−k)Bc

αβ(k)〉 = 〈V ab
μ (−k)bc(k)〉 = 0 , (A.2)

with

ϕab
μ =

√
2

2
(U + iV )ab

μ ,

ϕ̄ab
μ =

√
2

2
(U − iV )ab

μ , (A.3)

and U and V being real fields. Moreover,

�αμν = 1

2

(
δαμkν − δανkμ

)
,

δabcd = 1

2

(
δacδbd − δadδbc

)
,

δμναβ = 1 (
δμαδνβ − δμβδνα

)
. (A.4)
2
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The remaining propagators can be found in [36,37]. Hence, if we compare the present situation with the scenario of [37], we have the 
extra non-vanishing propagators given by (A.1) together with four new vertices (see the local action (4.37)), namely: (i) ϕ̄ Aϕ , (ii) ω̄Aω, 
(iii) ω̄ϕc, and (iv) ω̄Aϕc. Again, there is no vertex with b, so we cannot use 〈bb〉 to propagate b to a loop diagram. Using the propagator 
〈B B〉, we can only propagate an external B to the vertex B A A, increasing the number of A fields. This is the same cascade effect that 
occurs with the 〈AB〉 propagator as in [37]. The new vertices (i), (ii) and (iii) have one A-leg. To not produce an internal A-leg we need 
to propagate it to an external field, but again A only propagates through 〈AB〉 and 〈Ab〉, producing only B and b as external legs, since 
the propagators with A and the new fields vanish: 〈Aω〉 = 〈Aω̄〉 = 〈Aϕ〉 = 〈Aϕ̄〉 = 0.

The only possible problematic vertex is (iii), which does not possess A-legs, but we cannot propagate a vertex (iii) to another vertex 
(iii) because ω̄ only propagates to the vertex (ii) through 〈ω̄ω〉; c only propagates to the vertex c̄ Ac through 〈c̄c〉; and ϕ only to vertex (i) 
through 〈ϕ̄ϕ〉, or to external legs B and b through 〈ϕB〉 and 〈ϕb〉, or to the vertex B A A through 〈ϕB〉. In the end, we can only propagate 
the vertex (iii) to vertices with internal A-legs or to external legs B and b. We conclude that all loop diagrams vanish, because we fall 
back to the same situation in which we can only construct a loop diagram with B and b as external legs, in order to avoid internal A-legs, 
but 〈B · · · Bb · · ·b〉 = 〈s(something)〉 = 0, due to BRST cohomology. Otherwise, it is impossible to close non-vanishing loops as we need 
gauge propagators to do it, and 〈A A〉 also vanishes in the presence of the local Gribov terms (4.44).

Appendix B. On-shell gauge fixing

The starting action is (1.11) while the corresponding generating functional reads

Z g f =
∫

D�e−S g f , (B.1)

where D� =DADχ̄DψDc̄DcDφ̄DφDη̄DbDB . Our aim is to show that (B.1) is equivalent to

Z F P =
∫

DADψ det(�±)δ(∂ A)δ(F±)δ(∂ψ) , (B.2)

where F± = F ± F̃ and �± as defined before in (1.13). We suppressed indices in the notation here.
Integration over the auxiliary fields b and B leads to

Z g f =
∫

[D�DbDB]exp

{
−

∫
d4x

[
− 1

2α
(∂ A)2 − 1

4β
F 2±

]
−

∫
d4x

[(
η̄a − c̄a) ∂μψa

μ + c̄a∂μDab
μ cb

− 1

2
g f abcχ̄a

μνcb
(

F c
μν ± F̃ c

μν

)
− χ̄a

μν

(
δμαδνβ ± 1

2
εμναβ

)
Dab

α ψb
β + φ̄a∂μDab

μ φb + g f abcφ̄a∂μ

(
cbψc

μ

)]}
. (B.3)

Some inconvenient terms can be eliminated by the following shifts,

η̄a �−→ η̄a + c̄a ,

φb �−→ φb − g f cde(∂ν Dbc
ν )−1∂μ

(
cdψe

μ

)
,

c̄a �−→ c̄a − 1

2
g f cdeχ̄d

μν(F±)e
μν(∂ν Dca

ν )−1 (B.4)

These transformations are valid perturbatively since −∂ D > 0 [36,37]. Notice also that these shifts generate a trivial Jacobian. Hence,

Z g f =
∫

[D�DbDB]exp

{
−

∫
d4x

[
− 1

2α
(∂ A)2 − 1

4β
F 2±

]
−

∫
d4x

[
η̄a∂μψa

μ + c̄a∂μDab
μ cb

− χ̄a
μν

(
δμαδνβ ± 1

2
εμναβ

)
Dab

α ψb
β + φ̄a∂μDab

μ φb
]}

. (B.5)

Integration over the Faddeev-Popov and bosonic ghosts and the corresponding anti-ghosts leads to canceling contributions,

Z g f =
∫

DADη̄Dχ̄Dψ exp

{
−

∫
d4x

[
− 1

2α
(∂ A)2 − 1

4β
F 2±

]
−

∫
d4x

[
η̄a∂μψa

μ − χ̄a
μν

(
δμαδνβ ± 1

2
εμναβ

)
Dab

α ψb
β

]}
.

(B.6)

Integration over η̄ and χ̄ (see for instance [60]) subsequently leads to

Z g f =
∫

DADψ exp

{
−

∫
d4x

[
− 1

2α
(∂ A)2 − 1

4β
F 2±

]}
δ(∂ψ)δ(�±ψ) , (B.7)

since χ̄a
μν is anti-symmetric, deriving w.r.t. it will automatically anti-symmetrize the operator coupled to it, leading to the earlier intro-

duced operator �± .
From the usual manipulations, the α-term reproduces the usual delta for ∂ A and the β-term a delta for F± ,

Z g f =
∫

DADψ δ(∂ A)δ(F±)δ(∂ψ)δ(�±ψ) . (B.8)

This expression shows that the gauge is fixed as we intended. Particularly, the extra constraint, δ(�±ψ) selects the correct physical 
spectrum, i.e. the instanton modes.
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An alternative and perhaps more insightful computation can be performed as follows. The field χ̄ is anti-symmetric and (anti-)self-
dual. So we can fully anti-symmetrize it. Moreover, we can already use the other constraint δ(∂ψ) to replace ψ with ψ T (transverse) 
in the term χ̄ . . .ψ T . The field χ̄ , as an (anti-)self-dual tensor field, contains 3 degrees of freedom, just as the ψ T . Let us denote it 
by χ̄ind . Hence, we can say we have six Grassmann independent variables, which allows to schematically rewrite (see for instance [61]) 
χ̄ D±ψ T ≡ (χ̄ind, ψ T ) ∗ M ∗ (χ̄ind, ψ T ). This matrix operator M is six-dimensional and so is the Grassmann vector (χ̄ind, ψ T ). Eventually, 
integration over the six-dimensional Grassmann vector leads to

Z g f =
∫

DADψ δ(∂ A)δ(F±)δ(∂ψ)Pfaff(M) , (B.9)

where Pfaff stands for the Pfaffian. From the general relation Pfaff(M) = det1/2(M) = det �± , we finally get

Z g f =
∫

DADψ δ(∂ A)δ(F±)δ(∂ψ)det(�±) . (B.10)

Of course, it is possible to cross from (B.8) to (B.10) by evaluating the last δ-constraint, keeping in mind the other constraints and the 
calculus rules to deal with Grassmann Jacobians [60].
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