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We propose and investigate a pump-probe spectroscopy scheme to unveil the time-resolved dynamics of
fermionic or bosonic impurities immersed in a harmonically trapped Bose-Einstein condensate. In this scheme
a pump pulse initially transfers the impurities from a noninteracting to a resonantly interacting spin state and,
after a finite time in which the system evolves freely, the probe pulse reverses this transition. This directly
allows us to monitor the nonequilibrium dynamics of the impurities as the dynamical formation of coherent
attractive or repulsive Bose polarons and signatures of their induced interactions are imprinted in the probe
spectra. We show that for interspecies repulsions exceeding the intraspecies ones a temporal orthogonality
catastrophe occurs, followed by enhanced energy redistribution processes, independently of the impurity’s flavor.
This phenomenon takes place over the characteristic trap timescales. For much longer timescales a steady state
is reached characterized by substantial losses of coherence of the impurities. This steady state is related to
eigenstate thermalization and it is demonstrated to be independent of the system’s characteristics.

DOI: 10.1103/PhysRevResearch.2.033380

I. INTRODUCTION

Time-resolved spectroscopy is an established technique
for the characterization of the dynamical response of a wide
range of physical systems [1]. The general idea underlying a
pump-probe spectroscopy (PPS) scheme is that a pump pulse
prepares a nonstationary state of the system under consid-
eration, which is then interrogated by a time-delayed probe
pulse. This allows for simultaneous spectral and temporal
resolution of the induced dynamical processes, exposing the
energy redistribution of the selectively triggered excitations
[2,3], in sharp contrast to time-independent spectroscopic
techniques like injection spectroscopy [4–7]. Applications of
the PPS protocol range from two- and three-level atomic
systems [8–14] to the ultrafast dynamics of photoexcited
quantum materials [15–22]. Such a time-domain analysis has
been proven to be a powerful tool for resolving the ultrafast
molecular dynamics allowing, for instance, for a coherent
control of bound excited-state dimers over long timescales
[23,24]. PPS has also been utilized for studying the pair-
correlation dynamics of ultracold Bose gases [25], offering
a potential connection between ultrafast and ultracold physics
[24,26].

Operating in the ultracold regime, in this work we propose
a PPS scheme as a toolkit for investigating in a time-resolved
manner the impurity problem and the related formation of
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and interactions between quasiparticles [27–64]. Understand-
ing the physics of quasiparticles is important beyond cold
atom settings in semiconducting [65] and superconducting
devices [66]. Additionally, interactions among quasiparticles
in liquid helium mixtures [67,68] and cuprates [69,70] are
considered to be responsible for conventional and high-Tc

superconductivity [71–77]. Here we consider a Bose-Einstein
condensate (BEC) with one or two impurities of either bosonic
or fermionic nature immersed into it and track the emergent
Bose polaron formation [42–61] with a PPS radiofrequency
protocol analogous to the one used in the experiment of
Ref. [78]. This allows us to probe and control the coherence
properties of the quasiparticles. Our results pave the way for
transferring the knowledge regarding the ultrafast dynamics
of condensed matter systems [79–82] to the ultracold atomic
realm.

In our investigation, an intense pump pulse transfers the
initially free bosonic or fermionic impurities to an attractively
or repulsively interacting state with the environment. After a
variable dark time, during which the system evolves freely,
a probe pulse of weaker intensity is applied, which deexcites
the impurities. As the formation of well-defined attractive and
repulsive Bose polarons in this many-body (MB) system is
captured in the probe spectrum, this process allows us to mon-
itor the dynamics. In systems where the interaction strength
between the impurity and the background is not larger than
the interaction strength within the background gas, polaronic
excitations can have long lifetimes. However, beyond that
limit substantial losses of coherence occur with a temporal
orthogonality catastrophe (TOC) [59–61,83] being imprinted
in the probe spectrum. The TOC emerges due to the relaxation
of the quasiparticles into energetically lower-lying, phase-
separated states. This process is independent of the number of
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the impurities or their statistics. Remarkably, for timescales
longer than the characteristic confinement one, the probe
spectrum unveils evidence toward eigenstate thermalization
[84–87], where the impurities reside in an incoherent state
characterized by a large effective temperature. This relaxation
dynamics [88,89] is found to be independent of the size of
the bath, the number and nature of the impurities, and their
interaction strengths and mass.

Our work is structured as follows. Section II introduces
the setup under consideration and briefly comments on the
employed variational approach to tackle the nonequilibrium
dynamics of Bose polarons. In Sec. III we discuss the uti-
lized PPS scheme and demonstrate the resulting Bose po-
laron spectrum for short and long evolution times with a
particular focus on the impurity-impurity–induced interac-
tions, coherence properties, and thermalization processes. In
Sec. IV we elaborate on the emergent energy redistribution
processes, while in order to gain further insights into the
spectroscopically observed relaxation dynamics we invoke
in Sec. V the eigenstate thermalization hypothesis (ETH).
We summarize our results and provide an outlook including
future perspectives in Sec. VI. Appendix A presents in detail
the used radiofrequency spectroscopy scheme and Appendix
B explicates briefly the predictions of a Ramsey protocol
for strong impurity-medium interactions. The dimensional
reduction of our MB Hamiltonian from three to one dimension
(3D to 1D) is showcased in Appendix C. Finally, Appendix
D deals with the variational method employed herein so as
to simulate the PPS protocol and Appendix E delineates the
convergence of the presented results.

II. MODEL SETUP

Our model is a highly particle imbalanced mixture. It con-
sists of NI = 1, 2 bosonic or fermionic impurities (I) having a
spin-1/2 degree of freedom [90] being immersed in a bosonic
bath of NB = 100 structureless bosons (B). The mixture is
assumed to be mass balanced, mB = mI ≡ m (unless stated
otherwise), while both species are harmonically confined in
the same one-dimensional potential. Details of the dimen-
sional reduction of our system are discussed in Appendix C.
The MB Hamiltonian reads

Ĥ = Ĥ0
B + ĤBB + ∑

a=↑,↓

(
Ĥ0

a + Ĥaa
) + Ĥ↑↓ + ĤBI + Ĥβ

S . (1)

Here Ĥ0
B = ∫

dx�̂†
B(x)(− h̄2

2mB

d2

dx2 + 1
2 mBω2x2)�̂B(x), and

Ĥ0
a = ∫

dx�̂†
a (x)(− h̄2

2mI

d2

dx2 + 1
2 mIω

2x2)�̂a(x) denote the
noninteracting Hamiltonian of the BEC and the impurities,
respectively, while a ∈ {↑,↓}. Additionally, �̂B(x) [�̂a(x)] is
the field operator of the BEC (spin-a impurities). We further
consider that the dominant interaction is an s-wave one
since we operate in the ultracold regime. As such both intra-
(gBB, gII ) and interspecies (gBI ) interactions are adequately
described by a contact potential [91], see also Appendix C.
Furthermore, ĤBB = (gBB/2)

∫
dx�̂†

B(x)�̂†
B(x)�̂B(x)�̂B(x)

and Ĥaa′ = gII
∫

dx�̂†
a (x)�̂†

a′ (x)�̂a′ (x)�̂a(x), with a, a′ ∈
{↑,↓}, correspond to the contact intraspecies interaction
terms of the bosonic bath and the impurities, respectively.
Note that only the spin-↑ component of the impurities

interacts with the BEC while the spin-↓ one is
noninteracting. The relevant interspecies interaction term
reads ĤBI = gBI

∫
dx�̂†

B(x)�̂†
↑(x)�̂↑(x)�̂B(x). Finally,

Ĥβ
S = h̄�

β

R0
2 Ŝx − h̄�β

2 Ŝz, with �
β

R0 and �β = νβ − ν0

referring to the bare Rabi frequency and the detuning
of the radiofrequency pulse when the bosonic bath
is absent, see Appendix A for further details. Here
β ∈ {pump, probe, dark}. Moreover, the total spin operators
are given by Ŝi = ∫

dx
∑

ab �̂a(x)σ i
ab�̂b(x), with σ i

ab denoting
the Pauli matrix i ∈ {x, y, z}.

It is worth mentioning at this point that the one-
dimensional description adopted holds under the condi-

tions kBT
h̄ω

� h̄2

m [ρ (1)
B (x = 0)]2 ≈ 34/3

16 ( α2
⊥N2

B
aBBα

)2/3 and NBaBBα⊥
α2 �

1 [92,93]. In these expressions, aBB is the three-dimensional
s-wave scattering length between the particles of the medium,
and α = √

h̄/(mω) and α⊥ = √
h̄/(mω⊥) correspond to the

axial and transversal length scales. ρ
(1)
B (x = 0) is the ini-

tial one-body density of the environment at x = 0, kB is
the Boltzmann constant, and T refers to the temperature of
the bosonic bath. To provide a concrete example, assuming
ω ≈ 2π × 100 Hz and considering a 87Rb gas with gBB =
0.5

√
(h̄3ω)/(m) ≈ 3.55 × 10−38 Jm our 1D setting can be

realized for transverse frequencies ω⊥ ≈ 2π × 5.1 kHz. Ac-
cordingly, the 1D treatment is valid since NBaBBα⊥/α2 ≈
0.07 � 1 and temperature effects are negligible for kBT �
316h̄ω ≈ 1.5 μK.

To access the time-resolved spectral response of bosonic
and fermionic impurities immersed in the BEC bath the
multilayer multiconfiguration time-dependent Hartree method
for atomic mixtures is utilized [94–96]. The latter is a nonper-
turbative approach that uses a variationally optimized time-
dependent basis which spans the optimal subspace of the
Hilbert space at each time instant and allows for tackling
all interatomic correlations [59]. In particular, the MB wave
function is expressed as a truncated Schmidt decomposition
using D species functions for each component [Eq. (D1) in
Appendix D]. Next, each of these species functions is ex-
panded in a basis of dB and dI single-particle functions for the
BEC background and the impurities, respectively [Eq. (D2)].
These single-particle functions utilize a time-independent
primitive basis that is a tensor product of basis states regard-
ing the spatial and the spin degrees of freedom [Eq. (D3)].
Then, by following a variational principle, we arrive at a set
of coupled nonlinear integrodifferential equations of motion
[94–96]. A detailed description of our MB variational ap-
proach and the ingredients of our numerical simulations are
provided in Appendices D and E, respectively.

III. PUMP-PROBE SPECTROSCOPY SCHEME

We prepare the multicomponent system in its ground state
with fixed gBB and gII = 0. The impurities are in their spin-
↓ state and thus 〈ĤBI〉 = 0. To trigger the dynamics, an
intense, �

pump
R0 = 10ω  ω, rectangular pump pulse drives

the noninteracting spin-↓ impurities to their interacting with
the bath spin-↑ state for −te < t < 0 (where te denotes the
exposure time) [Fig. 1(a)]. The condition �

pump
R0  ω ensures

that the duration of the pump pulse is much smaller than the
time interval in which the polarons form. Accordingly, the
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FIG. 1. (a) Schematic illustration of the PPS pulse sequences used. (b) Spectral response of the pump pulse 〈N̂↑(t = 0)〉/NI versus its

detuning �pump for gBB = 0.5
√

h̄3ω/m, NB = 100, NI = 1 and varying gBI . Vertical dashed lines indicate the resonant detunings �+. [(c)–(k)]
Time-resolved probe spectra at different gBI , bosonic (B) or fermionic (F) impurity numbers NI = 1, 2 with gII = 0, and for various short dark
times, td (see legend). In all cases insets illustrate the spatiotemporal evolution of the impurity’s one-body density and dashed lines mark the
instants for which the probe spectrum is provided.

polaron formation can only occur after the termination of the
pump pulse and therefore it can be captured by the subsequent
probe pulse. To ensure the resonance condition of the pump
pulse, namely �pump = �+, and to optimize te = π/�

pump
R ,

the fraction of impurity atoms that have been successfully
transferred to the spin-↑ state, 〈N↑(t = 0)〉/NI , is monitored
for variable �pump. The resulting pump spectrum features a
coherent atomic resonance [34,36,39,57,78] at �pump = �+.
The latter, for NI = 1 and gBI = ±0.5, 1.5

√
h̄3ω/m, is clearly

visible in Fig. 1(b). Notice also that secondary peaks pos-
sessing an intensity of the order of 12% with respect to the
dominant ones also emerge due to the rectangular shape of
the pump pulse (see also Appendix A).

After the initial pump sequence the remaining population
of the spin-↓ state is annihilated by employing an optical
blast that projects the impurities to the |↑〉 state (as described
in Appendix A) and subsequently the spin-↑ atoms are left
to evolve for fixed gBI and �dark

R0 = 0 but variable dark time
td . The polaronic states can form within 0 � t � td while at
t = td a probe pulse is applied. This pulse is characterized by
�

probe
R0 = ω � �

pump
R0 so as to enhance the spectral resolution

of the signal obtained by the fraction of impurity atoms
transferred to the spin-↓ state, 〈N↓(td )〉/NI for variable �probe.
For the same reason the duration of the probe pulse is fixed to
t ′
e = π/�

probe
R , where �

probe
R is the resonant Rabi frequency of

the probe pulse at �probe = �+, td = 0, and NI = 1.
Concluding within the PPS scheme, polaronic states can

be identified in the probe spectrum as well-defined peaks with
amplitude 〈N̂↓(td )〉/NI < 1. For our purposes (accounting for
the finite fidelity resulting after the probe pulse) we employ
the criterion 〈N̂↓(td )〉/NI < 0.96 in order to identify the pola-
ronic resonances. Interestingly, a peak with 〈N̂↓(td )〉/NI ≈ 1
does not correspond to a polaron as it implies that the accessed
MB state is equivalent to a noninteracting state. Accordingly,
the peaks exactly at td = 0 and 〈N̂↓(td )〉/NI ≈ 1, that will
appear later, do not indicate the formation of polarons. No-

tice that polaronic peaks with 〈N̂↓(td )〉/NI < 1 can occur for
strong impurity-BEC interactions gBI > gBB, even for td = 0,
demonstrating fast energy transfer to the polaronic states for
td < (�probe

R0 )−1.

A. Short-time dynamics of Bose polarons

The short-time (t ∼ ω−1) dynamics of few, NI = 1, 2,
fermionic or bosonic impurities with gII = 0 immersed in
a BEC bath of NB = 100 atoms is captured by the probe
spectra for distinct attractive [Figs. 1(c)–1(e)] and repulsive
[Figs. 1(f)–1(k)] interspecies interactions gBI . Focusing on the
attractive side, a well-defined polaron at td = 0 with central
peak location at �+ = −8.7ω [Fig. 1(c)], �+,B = −8.9ω

[Fig. 1(d)], and �+,F = −8.6ω [Fig. 1(e)] is identified in the
cases of NI = 1 and NI = 2 bosonic and fermionic impurities
respectively. These polarons show a nonsizeable shift for all
the different evolution times td as long as NI = 1. However,
a clear shift can be inferred for NI = 2 [Fig. 1(d)]. This
shift, being of about 10%, is a consequence of the energy
redistribution between the bosonic impurities and the BEC
as demonstrated in Ref. [57] and it is further related to
the fact that for gBI < 0 attractive induced interactions are
significantly enhanced [57]. Additionally, due to the pro-
nounced induced interactions a collisional broadening [97]
of the spectral line is clearly observed for td = 1, 11ω−1.
Indeed, since the two-body state of the impurities evolves
rapidly during the probe sequence the spectral resolution of
the measurement decreases, giving rise to a wide background
in the PPS spectrum for −10 < �probe/ω < 2. The imprint
of induced interactions in the spatiotemporal evolution of the
one-body density is the dephasing of the breathing oscillations
[hardly visible in the inset of Fig. 1(d)] within the time interval
10 < ωtd < 15, which is absent for the single impurity [see
the inset in Fig. 1(c)]. In contrast to the above dynamics,
the time-resolved evolution of fermionic impurities closely
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resembles the single impurity one with the two fermions
undergoing at short times a coherent breathing motion, as is
evident in the inset of Fig. 1(e). This latter result can be easily
understood by the fact that attractive induced-interactions
between fermionic impurities are known to be suppressed,
providing in turn a nonsizeable shift of the respective atomic
peak resonance captured by the probe spectra [36,39].

Switching to repulsive interactions, the dynamical evolu-
tion of the system changes dramatically. Independently of fla-
vor and concentration the motion of the impurities, as detected
by the one-body density evolution for gBI = 0.5

√
h̄3ω/m, is

apparently qualitatively similar [insets in Figs. 1(f)–1(h)].
From the very early stages of the nonequilibrium dynamics
the density filamentizes with recurrences of an almost central
density peak occurring at the collision points, i.e., around
td ≈ 16ω−1 and td ≈ 19ω−1 for the bosonic and fermionic
impurities, respectively [Fig. 1(g) and Fig. 1(h)]. However,
in all three cases a clean quasiparticle peak is monitored in
the respective probe spectra indicating the existence of well-
defined polarons for t ∼ ω−1. The dominant peak location
appears to be shifted for td �= 0 when compared to �+, while
an overall broadening of the spectrum is also inferred. The
observed shift depends strongly on the impurity’s nature and
it is measured to be of about 10% for bosonic but dropping
down to almost 5% for fermionic impurities [Figs. 1(g) and
1(h)]. Interestingly, the difference in the spectrum between
the NI = 1 and the NI = 2 bosonic case [compare Figs. 1(f)
and 1(g)] is negligible, suggesting that attractive induced
interactions cannot be directly unveiled by the observed shift.
A result that complements earlier predictions indicating that
attractive induced interactions are suppressed in the repul-
sive regime [60,98]. Indeed, for gBI > 0 the density of the
BEC is less distorted compared to gBI < 0 [60,61]. Accord-
ingly, the impurities are less attracted to these distortions
and consequently to each other. In turn, by inspecting the
oscillatory tail of the probe spectra for gBI > 0 interference
phenomena associated with the filamentation process can be
identified. Indeed, already from the single impurity [Fig. 1(f)]
the amplitude, A(�probe), of the secondary peak appearing
in the spectra, e.g., at td = 8ω−1, A(�probe ≈ 4.6ω) = 0.352
is comparable with the dominant one A(�probe ≈ 7.5ω) =
0.755. Notice that the intensity ratio of the secondary to
the dominant peak is larger that 12% and thus cannot be
attributed to the rectangular shape of the probe pulse. The
latter, directly reflects the coherence between the filaments
formed in the one-body density (see Discussion). However,
as the number of impurities increases significant losses of
coherence take place. Indeed, the secondary peak at td =
8ω−1 [td = 9ω−1] has A(�probe ≈ 4.6ω) = 0.266 [A(�probe ≈
3.6ω) = 0.245] for NI = 2 bosonic (fermionic) impurities
while is drastically reduced at later td [Figs. 1(g) and 1(h)].
These losses of coherence are an indirect manifestation of
the presence of weak attractive induced interactions which we
cannot probe via the shift of the spectral peaks.

Our PPS data demonstrate that well-defined quasiparticles
cease to exist for gBI � 1.5

√
h̄3ω/m signaling their TOC

[Figs. 1(i)–1(k)] [57]. Evidently, at td = 0 a predominant peak
centered at �+ = 26.7ω can be discerned in the single impu-
rity probe spectrum [Fig. 1(i)], giving its place to a double
humped structure with averaged location at �+,B = 26.8ω for

FIG. 2. [(a) and (b)] One-body coherence g(1)
↑ (x, x′; td ) at dif-

ferent times td (see legend). [(c) and (d)] Time-averaged one-body
coherence ḡ(1)

↑ (x, x′) at distinct gBI . (e) Temporal evolution of the

variance �ḡ(1)
↑ for different settings (see legend).

the two bosonic impurities [Fig. 1(j)] and to a slightly shifted
but significantly broadened peak at �+,F = 25.6ω for the
fermionic ones [Fig. 1(k)]. The latter broadening is attributed
to the fermion statistics. Indeed, fermionic impurities occupy
higher momenta and as such couple stronger to the BEC
excitations. However, at td = 2ω deformation of the central
peak is present and a highly oscillatory tail is seen in all
cases. To appreciate the aforementioned degree of coherence
already indicated by the probe spectra we next invoke the
spatial first-order coherence function,

g(1)
σ (x, x′; t ) = ρ (1)

σ (x, x′; t )√
ρ

(1)
σ (x; t )ρ (1)

σ (x′; t )
. (2)

Here ρ (1)
σ (x, x′; t ) = 〈�(t )|�̂†

σ (x)�̂σ (x′)|�(t )〉 is the σ -
species (σ = B,↑,↓) one-body reduced density matrix,
|�(t )〉 is the MB wave function, and ρ (1)

σ (x; t ) is the one-body
density, see also Appendix D. Importantly, |g(1)

σ (x, x′; t )| ∈
[0, 1] indicates the spatially resolved deviation of a MB
wave function from a corresponding product state. Specif-
ically, if |g(1)

σ (x, x′; t )| = 1, then the system is termed
fully coherent;, otherwise, coherence losses occur, signify-
ing the buildup of correlations [60,99]. Indeed, the instan-
taneous |g(1)

↑ (x, x′; td = 2ω)| for gBI = 1.5
√

h̄3ω/m clearly
dictates that the quasiparticle remains adequately coherent
since, e.g., |g(1)

↑ (x = −5
√

h̄/mω, x′ = 5
√

h̄/mω; td = 2ω)| ≈
0.96 [Fig. 2(a)]. Finally, notice that for td > 6ω any quasi-
particle notion is lost as detected by the probe spectra.
This outcome, being consistent with recent works [39,57],
is also supported by the diffusive behavior of the corre-
sponding one-body density evolution [insets in Figs. 1(i)–
1(k)]. In contrast, a peak corresponding to free parti-
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FIG. 3. [(a)–(i)] Probe spectra for different gBI , NI , and impurity
flavors at various dark times td deep in the evolution (see legend).
The remaining system parameters are the same as in Fig. 1.

cles �probe = 0 emanates in the PPS spectrum, referring
to a phase separation between the impurity and the BEC. It
is also worth mentioning that by employing a corresponding
Ramsey scheme (see the discussion in Appendix B) it is not
possible to conclude the emergence of the TOC within the
same time interval since the structure factor is still finite and
drops close to zero for substantially longer evolution times.

B. Long-time Bose polaron dynamics

Next let us study the evolution of the system at longer
times, 100 < ωtd < 300. Note that for a typical axial con-
finement ω ≈ 2π × 100 Hz, the interval 100 < td < 300 cor-
responds to 0.16 < td < 0.48 s. As time evolves one expects
that significant losses of coherence signaling the buildup of
correlations will take place in the MB evolution of the system
[Fig. 2(b)]. A powerful asset of exposing the latter is the
temporal average

ḡ(1)
↑ (x, x′) = lim

T →∞
1

T

∫ T

0
dtg(1)

↑ (x, x′; t ), (3)

which depends solely on the eigenstate properties of the
interacting system [100]. This allows us to infer the relax-
ation tendency of the impurities in the framework of the
ETH [84,86], see also the discussion in Sec. V. Evidently,
ḡ(1)

↑ (x, x′) reveals that for gBI = 0.5
√

h̄3ω/m the impurity is

largely coherent [Fig. 2(c)] while at gBI = 1.5
√

h̄3ω/m any
coherence property is lost [Fig. 2(d)]. This outcome is further
supported by the time-resolved probe spectra illustrated for
longer times in Figs. 3(a)–3(i). A strong suppression of the
interaction shift with respect to �+ is found to persist at long
times, which, together with the weakly fluctuating amplitude
A(�probe ≈ �+) observed in the course of time, verifies the
longevity of coherent single and two polarons irrespectively
of their flavor and for both attractive and moderate repulsive
gBI = ±0.5

√
h̄3ω/m [Figs. 3(a)–3(f)]. Alterations come into

play for gBI > gBB, where, as per our discussion above, losses
of coherence, as captured by g(1)

↑ (x, x′; td ), become significant
and the polaron picture breaks down. Here a two-humped
distribution appears in our probe spectra independently of

the number of the impurities and their nature. The most
pronounced feature of Figs. 3(g)–3(i) is the peak located at
�probe = 0. The latter findings suggest that a relaxed state is
reached characterized by incoherent impurities being unpre-
dicted so far.

Indeed, by fitting ḡ(1)
↑ (x, x′) to the corresponding prediction

of the NI -particle Gibbs ensemble we obtain large effective
temperatures. These refer to kBTeff = 8.45h̄ω for NI = 1 and
kBTeff = 8.58h̄ω (kBTeff = 5.89h̄ω) in the case of two bosons
(fermions) showcasing their tendency to approach an incoher-
ent thermalized state, see also our detailed discussion in Secs.
V and IV. Notice that the initial state of fermions involves
higher momenta than bosons, while the critical velocity of
the BEC is the same [101–103]. Therefore, fermions couple
stronger to the BEC excitations losing a larger portion of their
energy, implying a smaller Teff . Further evidences supporting
the observed thermalization [88,89] are provided by the tem-
poral evolution of the variance,

�ḡ(1)
↑ = 1

T S

∫
S

dxdx′
∫

dt
[
g(1)

I (x, x′; t ) − ḡ(1)
I (x, x′)

]2
, (4)

with S denoting the relevant spatial region in which the
impurities reside and �ḡ(1)

↑ ∈ (0, 1). Remarkably a tendency

toward thermalization is seen [Fig. 2(e)], with �ḡ(1)
↑ saturating

at long times irrespectively of the size of the BEC cloud and
whether one or two, noninteracting or interacting, impurities
are present and what their nature is.

IV. IMPURITY-MEDIUM INTERACTION ENERGY

To further support the thermalization tendency of the
multicomponent system for strong impurity-BEC interactions
at longer times of the nonequilibrium dynamics, we next
inspect the behavior of the interspecies interaction energy.
The latter quantity is defined as 〈ĤBI (t )〉 ≡ 〈�(t )|ĤBI |�(t )〉,
where the operator of the interspecies interactions is ĤBI =
gBI

∫
dx �̂

†
B(x)�̂†

↑(x)�̂↑(x)�̂B(x). Also, �̂σ (x) and �̂†
σ (x) de-

note the σ -species field operator that annihilates and creates,
respectively, a σ -species particle at position x.

The time evolution of 〈ĤBI (t )〉 /NI is illustrated in Fig. 4
upon considering a pumping that drives the atoms to the
spin-↑ state with gBI = 1.5

√
h̄3ω/m. Specifically, we consider

different settings consisting of NI = 1, NI = 2 spin-polarized
bosons or fermions as well as a few-body system contain-
ing NB = 10 bosons and NI = 2 noninteracting impurities.
In all cases we observe that 〈ĤBI (t )〉 /NI decreases up to
t = 100ω−1 while for later times, and in particular for t >

200ω−1, it shows a saturation trend to a certain value de-
pending on both NI and NB. Recall that this saturation effect
allowed for the derivation of Eq. (11) within the ETH scheme.
Notice also that the saturation value of 〈ĤBI (t )〉 /NI is smaller
for the few-body system (NB = 10, NI = 2) while for the
NB = 100 setups 〈ĤBI (t )〉 /NI acquires its smaller value for
two fermionic impurities and takes almost the same value for
NI = 1 and NI = 2 noninteracting bosonic impurities. Finally,
let us note that the overall decreasing behavior of 〈ĤBI (t )〉 /NI

suggests a transfer of energy from the impurities to the
bosonic gas as it has been also demonstrated in Refs. [59,61].
This energy transfer process, identified by the decreasing rate
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FIG. 4. Evolution of the impurity-BEC interaction energy per
impurity particle applying a pump pulse to drive the impurities to the
spin-↑ state with gBI = 1.5

√
h̄3ω/m for a single (NI = 1) and two

(NI = 2) bosonic or fermionic impurities and also for a few-body
bath consisting of NB = 10 particles (see legend). In all cases gBB =
0.5

√
h̄3ω/m and gII = 0.

of 〈ĤBI (t )〉 /NI , seems to be enhanced for NB = 10 while for
the NB = 100 case it is more pronounced for the fermionic im-
purities. We remark that a saturation trend at long timescales
being in turn suggestive of the thermalization tendency of
the system occurs also for other observables. These include,
for instance, the dynamical structure factor (Appendix B) as
well as entropic measures [104,105] such as the von-Neumann
entropy [61,99,106] quantifying the degree of entanglement
(results not shown for brevity).

V. CHARACTERIZATION OF THE
RELAXATION DYNAMICS

We next explicate our method for characterizing the re-
laxation dynamics occurring in our setup during the hold
time td . To achieve this, we employ the ETH [84,86]. Within
this framework it is assumed that after a quench, the finite
subsystems of a larger extended system relax to a steady
state reminiscent of thermal equilibrium. Here, by fitting the
time-averaged one-body density of the impurities to a thermal
equilibrium one, we show that this thermalization process
explains the relaxed state of the impurities emanating for long
times after the orthogonality catastrophe of the polarons.

The relaxation of an isolated (closed) system is understood
in terms of the principle of local equivalence [107]. Within
this framework as the thermodynamical limit is approached,
i.e., the system size tends to infinity, the reduced density
matrices of the involved few-particle subsystems at long times
can be calculated in terms of the density matrix of a (gener-
alized) Gibbs ensemble at thermal equilibrium. Indeed, if the
only conserved quantity of the Hamiltonian is the total energy,
then it can be shown that these reduced density matrices can
be calculated in terms of the equilibrium density matrix within
the Gibbs ensemble

ρ̂Gibbs = 1

Z
e− Ĥ

kBTeff . (5)

In Eq. (5) Z is the partition function stemming from the
normalization of the density matrix, i.e., Tr[ρ̂Gibbs] = 1. Ĥ
refers to the MB Hamiltonian and Teff , kB correspond to the ef-
fective temperature and the Boltzmann constant, respectively.
Of course, our setup exhibits also other conserved quantities
than the total energy. Below we resort to the approximation
of no further symmetries as it is the only case that explicit
results showing the relaxation dynamics of the system are
available within ETH [107]. As we shall show later on,
the aforementioned choice leads to an excellent agreement
between our numerical findings and the relevant estimates
provided by applying Eq. (5). Within this approximation the
effective temperature, Teff , is fixed by the conserved value of
the energy per particle in the thermodynamic limit (TL),

lim
BEC→TL

Tr
[|�(0)〉〈�(0)|Ĥ]

NB
= lim

BEC→TL

Tr
[
ρ̂GibbsĤ

]
NB

. (6)

Here BEC → TL is defined as the limit where NB → ∞,
gBB → 0, NBgBB = const, and gBI/gBB = const. Notice, how-
ever, that Eqs. (5) and (6), are impractical for calculations
since the eigenvalues and eigenstates of the full interacting
Hamiltonian, Ĥ , are required for the evaluation of the Gibbs
ensemble of the (NB + NI ) MB ensemble which are difficult
if not impossible to obtain. For this reason, we simplify
the above-mentioned set of equations so as to obtain ex-
plicit results which can be subsequently compared with those
obtained by the time evolution of the (NB + NI ) MB sys-
tem within the multilayer multiconfiguration time-dependent
Hartree (ML-MCTDHX) approach.

Since we intend to employ the thermodynamic limit where
the MF Gross-Pitaevskii treatment of the BEC is exact in the
weak interaction limit [92], it is reasonable to assume that
the corresponding density operator of the Gibbs ensemble
acquires the product form ρ̂Gibbs = ρ̂

(NB )
B;Gibbs ⊗ ρ̂

(NI )
↑;Gibbs. Recall

that during the dark time all of the impurities are in their
spin-↑ state. In this case, the form of ρ̂↑;Gibbs is similar to
Eq. (5), namely

ρ̂
(NI )
↑;Gibbs = 1

Z↑
e− Ĥeff↑

kBTeff , (7)

where H eff
I is an effective Hamiltonian that acts only on the

impurity. Equation (7) greatly simplifies the description of our
system, since the density matrix of the impurity depends only
on the eigenvectors and eigenvalues of an NI -body effective
Hamiltonian. To proceed further we specify the form of Ĥ eff

↑ .
Within a zeroth-order approximation we assume that the BEC
acts solely as a potential barrier for the impurities, and as
consequence their effective Hamiltonian reads

Ĥ eff
↑ (t ) = −

NI∑
i=1

h̄2

2mI

d2

dx2
i

+ 1

2
mIω

2x2
i + gBIρ

(1)
B (xi; t ). (8)

Notice that this approximation for the effective potential is
a simplification of the impurity problem. First, it neglects,
among others, the renormalization of the impurity’s mass,
mI → meff

I , due to the presence of the BEC [59]. Second,
the presence of induced interactions between the impurities
cannot be captured [60].

The time dependence of the Hamiltonian of Eq. (8)
implies a nonstationary state for the impurities. However,
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it is well known that following an interaction quench
the density of the BEC is only slightly perturbed by
the motion of the impurities [59–61]. The latter jus-
tifies the substitution of the effective Hamiltonian by
its time-averaged value ˆ̄H eff

↑ = limT →∞ 1
T

∫
dtĤ eff

↑ (t ), since

ρ
(1)
B (xi; t ) ≈ limT →∞ 1

T

∫ T
0 dtρ (1)

B (xi; t ) for the density of the
bath. By incorporating the above-mentioned approximations
we obtain explicit forms for the one-body density of the
impurity within the Gibbs ensemble, namely

ρ
(1)
I;Gibbs(x, x′; Teff ) =

∞∑
i=1

ni(Teff )φi(x)φ∗
i (x′). (9)

Here ni(Teff ) is the distribution function of the NI particles and
φi refers to the eigenstates of ˆ̄H eff

↑ . Due to the small number
of impurities considered herein (NI = 1, 2) both the fermionic
and the bosonic impurities do not follow the appropriate,
for NI → ∞, Fermi-Dirac or Bose-Einstein distributions. In-
stead, it can be shown that the relevant distribution in the
case of a single particle or two bosons is the Boltzmann
distribution,

ni(Teff ) = Z (1)−1 exp

(
− εi

kBTeff

)
, (10)

with εi being the eigenvalues of ˆ̄H eff
↑ and Z (1) =∑∞

i=1 exp(− εi
kBTeff

). For two fermions the corresponding dis-
tribution reads

ni(Teff ) =
[

Z (2) − e
−εi

kBTeff (Z (1) − e
−εi

kBTeff )

Z (1) − e
−εi

kBTeff

e
εi

kBTeff + 1

]−1

,

(11)
where Z (2) = ∑∞

i=1 e− εi
kBTeff [Z (1) − e− εi

kBTeff ]. Note also that
the one-body density of the impurity, Eq. (9), depends only
on a single parameter, namely the effective temperature, Teff .

As shown earlier, the one-body density matrix
of the impurities, ρ

(1)
↑ (x, x′; t ), saturates to its time-

averaged value, i.e., ρ
(1)
↑ (x, x′; t → ∞) ≈ ρ̄

(1)
I (x, x′) =

limT →∞ 1
T

∫ T
0 dtρ (1)

↑ (x, x′; t ), for long hold times, as it
is evident in the relaxation dynamics of �ḡ(1) [see also
Fig. 2(e)]. In order to facilitate the comparison of our results
to the ETH prediction [Eq. (9)] we fit the averaged one-body
density matrix, ρ̄

(1)
↑ (x, x′), obtained within ML-MCTDHX

to the corresponding Gibbs ensemble, ρ
(1)
↑;Gibbs(x, x′; Teff ),

and extract the value of Teff . Our results for the best-fitted
parameters are shown in Fig. 5. We remark that the fitting is
performed on the level of ρ̄

(1)
↑ (x, x′), while only the diagonal

ρ̄
(1)
↑ (x) ≡ ρ̄

(1)
↑ (x, x) is presented in Fig. 5 in order to enhance

the visibility of the obtained results. By comparing the
time-averaged one-body density and the fitted Gibbs ensemble
prediction a very good agreement is observed for both one
[Fig. 5(a)] and two impurities of either bosonic [Fig. 5(b)]
or fermionic [Fig. 5(c)] nature. This result holds equally
also in the case of mass-imbalanced mixtures composed,
for instance, of heavy bosonic impurities, mI = 133/78mB

[see, e.g., Fig. 5(d)]. The above findings indicate that despite
the employed approximations the ETH scheme is able to
capture the main features exhibited by the relaxed state of the
impurities within our correlated MB system.

-10 0 10 -10 0 100
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0.1

0.15

0.2

0.25
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0.08
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0.04

ML-MCTDHX Gibbs Ensemble

FIG. 5. The time-averaged one-body density, ρ̄
(1)
↑ (x), within the

MB approach (light blue lines) compared to the best fit of the ETH
model, ρ (1)

↑;Gibbs(x; teff ) (dark red lines). Our results refer to (a) NI = 1,
(b) NI = 2 bosonic, and (c) NI = 2 fermionic mass-balanced, mI =
mB impurities. (d) Corresponds to the case of NI = 2 heavy, mI =
(133/78)mB, bosonic impurities.

Regarding the effective temperature we find rather large
values of Teff for one and two bosonic impurities that is of
the order of Teff ≈ 8h̄ω/kB. While for two fermions and two
heavier bosonic impurities the temperature is slightly smaller,
possessing values of the order of Teff ≈ 6h̄ω/kB. These large
values of the effective temperature are indicative of the in-
coherent character of the impurities after the probe pulse
[see also Fig. 2(d)]. To advance further the correspondence
between the ETH model and the correlated MB results we
estimate the effective temperature of the relaxed state by
expressing Eq. (6) only in terms of the impurity’s degrees
of freedom. Notice that the energy of the impurity is not
conserved during the MB evolution of our system due to the
presence of energy exchange processes between the impurity
and the bath. However, as evidenced in Fig. 4, the energy
of the impurities saturates for large times (see also Sec. IV).
Indeed, by taking advantage of this observation we can cast
Eq. (6) in the form

Ē↑ = lim
T →∞

1

T

∫ T

0
dt 〈�(t )|Ĥ − Ĥ0

B − ĤBB|�(t )〉

= Tr
[
ρ̂

(NI )
↑;Gibbs

ˆ̄H eff
↑

]
, (12)

where Ē↑ is the time-averaged impurity energy. In the case
of a single impurity, Eq. (12) gives an estimation for the
effective temperature of Teff = 8.56h̄ω/kB which is in good
agreement with the effective temperature obtained by fitting
Teff = 8.45h̄ω/kB. Note also here that the effective Hamil-
tonian of Eq. (8) is known to overestimate the zero-point
energy of the impurity since it neglects its dressing by the
excitations of the BEC [59]. This in turn explains the higher
Teff obtained via Eq. (12). In contrast, in the case of two
impurities the related estimates for Teff are much higher than
the ones obtained by the fitting of ρ̄

(1)
↑ (x, x′). Specifically,

Eq. (12) yields Teff = 10.28h̄ω/kB and Teff = 6.89h̄ω/kB for
the two bosonic and the two fermionic impurities, respec-
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tively. The observed discrepancy is attributed to the presence
of induced interactions between the impurities that are more
prevalent in the case of bosonic impurities than fermionic ones
[60]. However, their effect is neglected within the effective
Hamiltonian of Eq. (8).

VI. CONCLUSIONS

We have developed a PPS scheme to study the time-
resolved dynamics of fermionic and bosonic impurities im-
mersed in a harmonically confined BEC. Coherence proper-
ties and induced interactions are encoded in the probe spectra
for both attractive and repulsive interactions. Moreover, long-
lived attractive and repulsive polarons exist up to gBI ≈ gBB.
For gBI > gBB, with the dynamics being dominated by energy
redistribution processes, a rather rapid temporal orthogonality
catastrophe occurs. To explicitly showcase that energy redis-
tribution processes take place we have discussed the behavior
of the corresponding interspecies interaction energy which
decreases for short evolution times and thus captures the
energy transfer from the impurities to the environment. Fur-
thermore, it shows a saturation tendency for large evolution
times, a behavior that is indicative of a relaxation process
of the impurities. Indeed, at longer times (td > 100ω−1),
where any coherence information is lost, a thermalized state
is reached. To further characterize the aforementioned relax-
ation dynamics we have resorted to an effective ETH model
which has enabled us to identify that for strong interspecies
couplings and long evolution times the impurities acquire an
effective temperature. This effective temperature is found to
be smaller for the fermionic impurities than the bosonic ones.
Importantly, we have found that the thermalization process is
independent of the size of the bath and the impurity concen-
tration, the interacting nature of the impurities as well as their
flavor and mass.

It would be intriguing to utilize PPS at finite temperature
[108,109] and also in higher dimensions to explore the time-
resolved formation of quasiparticles. As further perspectives,
PPS could be exploited to unravel recondensation dynamics
[110,111] in excited bands of optical lattices and the dynamics
of vibrational states of ultra-long-range Rydberg molecules
[112,113] to infer their lifetime.
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APPENDIX A: DETAILS OF THE REVERSE
RADIOFREQUENCY SPECTROSCOPY

Let us elaborate on the model that allows for the simulation
of the MB dynamics under the influence of radiofrequency
fields [5,36]. This model has been employed in the main
text for the characterization of the coherence properties of
polaronic quasiparticles in the context of PPS.

In our case few atomic impurities are immersed in a
BEC environment close to an interspecies magnetic Feshbach
resonance [114]. The case of bosonic impurities possessing
equal mass to the BEC atoms can be realized by employing
different hyperfine states of a particular isotope, e.g., 85Rb
or 87Rb. For fermionic impurities the equal-mass scenario
occurs approximately, e.g., for 173Yb impurities immersed in
a 174Yb BEC with mass ratio of mB/mI ≈ 1.006. Different
masses for the impurities and the BEC atoms can be realized
by invoking different atomic species, e.g., considering 87Rb
and 133Cs [115]. Typically broad Feshbach resonances occur
at magnetic fields of the order of 800G [114], referring to a
regime where the atoms experience a sizable Zeeman shift.
This sizable Zeeman shift allows us to address selectively
the distinct mF transitions provided that the intensity of the
radiofrequency pulse results in a Rabi frequency �R much
smaller than the Zeeman splitting of the involved hyperfine
levels. The latter is typically of the order of a few tenths of
MHz. This large splitting of the different mF levels implies
that magnetic phenomena such as spin-exchange interactions
can be safely neglected for these values of the magnetic field,
see also Appendix C.

In this work we consider two hyperfine levels of the
impurity atoms, denoted as |↑〉 and |↓〉. These states can be
identified and resonantly coupled for a frequency ν0, cor-
responding to the Zeeman splitting between the two levels,
when a BEC environment is absent. Due to the harmonic
confinement of the atoms each of the hyperfine levels is
further divided into states of different atomic motion. The
average spacing between these sublevels is of the order of
the harmonic trap frequency, h̄ω lying within the range of a
few tenths of h × Hz to a few h × kHz in typical ultracold
atom experiments [78,117]. In the vicinity of a Feshbach
resonance the energy of these sublevels strongly depends on
the interspecies interaction strength, gBI , between the impurity
atoms in the resonantly interacting hyperfine state and their
BEC environment. Accordingly, the energy of each motional
state shifts by �+(gBI ) from the corresponding noninteracting
one. As is also made obvious within the main text [see
Fig. 1(b)] this shift is of the order of ω to ∼10ω. There-
fore, due to the separation of the different involved energy
scales it suffices to treat the impurities as two-level atoms.
Furthermore, even for �

β

R0 � �+ ∼ kHz where the regime
of strong intense pulses is accessed, �

β

R0 � ν0 ∼ 10 MHz,
allowing us to invoke the rotating wave approximation. Notice
here that β ∈ {pump, probe, dark}. Within this approximation
and in the interaction picture of the |↑〉 ↔ |↓〉 transition,
the Hamiltonian for the internal state of the impurities reads

ĤS = − h̄�β

2 Ŝz + h̄�
β

R0
2 Ŝx, which is exactly the form employed

in Eq. (1) of the main text. �
β

R0 and �β = νβ − ν
β

0 refer
respectively to the (bare) Rabi frequency and the detuning
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FIG. 6. (a) Schematic illustration of the employed PPS pulse
sequences. The involved spin configuration at each state of the
dynamics is also provided. (b) Expected time evolution of the pop-
ulation of spin-↑ atoms during the PPS sequence. The inset depicts
the evolution of 〈N̂↑(t )〉/NI during the application of the optical burst
pulse (blue line) and the approximation of employing the projection
operator P̂ at t = 0 (dark red line).

with respect to the resonance of the |↑〉 ↔ |↓〉 transition
at gBI = 0. We remark that the |↑〉 and |↓〉 states in the
Schrödinger and interaction pictures are equivalent, so our
conclusions are invariant under this frame transformation
[118].

To populate the polaronic states we employ a pump pulse
of rectangular shape as depicted in Fig. 6(a). The system
is initialized in the noninteracting ground state where the
impurity atoms are spin polarized in their |↓〉 state. The
pump pulse is characterized by frequency νpump, and a de-
tuning �pump is employed. This pulse is further characterized
by an exposure time te and a bare Rabi-frequency �

pump
R0 .

Different realizations utilize different detunings �pump and
exposure times te but the same �

pump
R0 . In the duration of

the pulse the system undergoes Rabi oscillations which for
strong-enough pulses �

pump
R0  ω are well characterized by a

Rabi frequency �R(�pump) =
√

(�pump
R+ )2 + (�pump − �+)2,

where �
pump
R+ and �+ are the corresponding resonance values.

By fitting the spectroscopic signal, which is the fraction of
atoms transferred to the |↑〉 hyperfine state, to the theoretical
line shape for rectangular pulses reading

〈N̂↑(t )〉
NI

=
[

�
pump
R+

�
pump
R (�pump)

]2

sin2

[
�

pump
R (�pump)te

2

]
, (A1)

these resonance values of �
pump
R+ and �+ can be obtained.

Note here that the line shape [Eq. (A1)] exhibits an infinite
sequence of peaks at the locations, �

pump
n , n = 0,±1, . . . ,

given by the solutions of

�
pump
R (�pump)te

2
= tan

[
�

pump
R (�pump)te

2

]
(A2)

for �pump. Solving numerically Eq. (A2) we can identify
the location of the three first peaks at positions �

pump
0 =

�+ and �
pump
±1 ≈ �+ ± �

pump
R+

√
( 8.9868
�

pump
R+ te

)2 − 1. Their corre-

sponding amplitudes read A0 = sin2( 1
2�

pump
R+ te) and A±1 ≈

0.01179(�pump
R+ te)2. In order to achieve a high spectroscopic

signal, 〈N̂↑(td )〉 /NI , we set the exposure time to te = π/�
pump
R+

(to the obtained fitting accuracy) ensuring that A0 ≈ 1. This
choice implies that the peaks at �

pump
±1 are clearly imprinted

in the obtained spectrum possessing an amplitude A±1 ≈
0.116438. Indeed, these side peaks can be clearly identified
in Fig. 1(b).

To infer about the coherence properties of the polaronic
states we employ PPS, see Fig. 6(a). Initially, we prepare the
system in the same noninteracting ground state as in the previ-
ously examined protocol and apply a rectangular π pulse, with
�

pump
R0 = 10ω and te = π/�

pump
R+ on a polaronic resonance

where we have identified the resonant �
pump
R+ and �

pump
+ as

explained above. This sequence transfers the atoms from the
ground state to the polaronic state in a very efficient manner,
see Fig. 6(b). Then the impurity atoms are projected to the
spin-↑ state by employing an optical burst transition on the
lowest hyperfine state | ↓〉 to an available P electronic level at
t = 0 which essentially ejects all the spin-↓ atoms from the
trap. This procedure has been simulated by the application of
the operator ĤP = −ih̄�

∫
dx �̂

†
↓(x)�̂↓(x) over a short time

interval tb. We can numerically verify that for large � > 100ω

and small tb � ω−1 (corresponding to the experimentally
relevant values) the action of ĤP to the state after the pump
pulse is equivalent to the projection of the impurity to the
spin-↑ configuration. For this reason and for computational
simplicity we employ the state |�(t = 0+)〉 = P̂|�(t=0− )〉

||P̂|�(t=0− )〉|| as
an initial state for the subsequent time evolution t > 0. Note
that this sequence for �

pump
R � ω is approximately equivalent

to an interaction quench, as the pump-pulse has almost no
spectral selectivity due to the pronounced power broadening
of the radiofrequency transition, as �

pump
R ∼ �

pump
+ and the

fact that the out-of-equilibrium dynamics is effectively frozen
due to the small timescale te = π/�

pump
R � ω−1. Indeed,

these properties of the pump-pulse have been verified numer-
ically for the selected parameters �

pump
R0 and �pump as the MB

state after this pulse is found to possess a fidelity in excess of
90% to the initial one.

After the pump sequence is completed we let the system
evolve in the absence of radiofrequency fields, �dark

R0 = 0, for
a dark time, td . Finally, we apply a second probe π pulse with
a smaller �

probe
R0 = 1ω to the first one and varying �

probe
+ to

transfer the atoms from the polaronic to the initial ground
state. The employed spectroscopic signal is the fraction of
atoms that have been deexcited by the probe pulse (recall that
within our scheme all of the particles are at td in the spin-↑
state) divided by the total number of impurities, 〈N↓(td )〉

NI
. Note

that a smaller �
probe
R0 , when compared to �

pump
R0 , is employed

in order to reduce the power broadening during the probe
sequence and subsequently increase the resolution in terms
of detuning. However, this value cannot be arbitrarily lowered
since for decreasing probe intensities the frequency resolution
is increased at the expense of lower temporal resolution.
For such low intensities the motional state of the spin-↑
impurities is significantly altered during the application of the
probe pulse. As a heuristic argument the relation δνδt ≈ 1
that connects the temporal (δt) and spectral (δν) resolution
is commonly employed [119]. The value of �

probe
R0 = 1ω is

selected within this work as it consists an adequate trade-off
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between the spectral and the temporal resolution. Finally, due
to the rectangular shape of the probe pulse the exhibited line
shape of 〈N̂I (td )〉

NI
is given by Eq. (A1) as long as the impurity is

coherent, i.e., |g(1)(x, x′; td )| ≈ 1. Accordingly, in our analysis
we attribute all fringes appearing in the spectra to the line
shape of a single resonance if the ratio of the amplitude of
two neighboring peaks satisfies An+1

An
< 0.12.

APPENDIX B: COMPARISON WITH
RAMSEY SPECTROSCOPY

Next we demonstrate the advantage of utilizing the
PPS scheme in comparison to Ramsey spectroscopy. In
particular, we explicitly showcase the differences between
the predictions of the PPS and the Ramsey schemes for
intriguing phenomena exhibited by our system including
the TOC and the thermalization process. To achieve this
comparison we have simulated the Ramsey response of our
system following the scheme described in Refs. [59,60]. The
main facet of this Ramsey protocol is that by applying an
intense radiofrequency pulse to the initially noninteracting
with the bath spin-↓ impurities we transfer them into a
superposition state |↑〉+|↓〉√

2
, where the state |↑〉 interacts

with the bosonic medium. Thus, the time-evolved MB wave
function, e.g., of a single impurity is given by |�(t )〉 =
(1/

√
2)e−iĤRt/h̄ |�0

BI〉 |↑〉 + (1/
√

2)e−iE0t/h̄ |�0
BI〉 |↓〉. Here

ĤR = Ĥ0
B + ĤBB + Ĥ0

↑ + Ĥ0
↓ + ĤBI as introduced in

Sec. II, |�0
BI〉 is the spatial part of the initial MB wave

function (see also Appendix D), and E0 refers to the
corresponding eigenenergy. In this protocol the structure
factor, |S(t )| = | 〈�0

BI |eiE0t/h̄e−iĤRt/h̄|�0
BI〉 |, of the system is

monitored by inspecting the magnitude of the impuritys’ spin
| 〈Ŝ(t )〉 |.

According to our discussion in Sec. III it becomes apparent
that time-dependent phenomena such as the TOC and the
consecutive thermalization of the impurities can be clearly
tracked in an experimentally relevant fashion via employing
the temporarily resolved PPS scheme. Indeed, Figs. 1(i)–1(k)
in the main text reveal that TOC takes place already for td =
2ω−1, with the presence of quasifree impurities at �probe ≈ 0
being also readily imprinted in the probe spectrum. On the
contrary, the only information that Ramsey spectroscopy con-
veys is the value of the structure factor, |S(t )|. Importantly, it
does not deliver any further insights about the physical origin
of its decreasing tendency and thus the underlying physical
processes, see in particular Figs. 7(a) and 7(b). Indeed, for
t < 10ω−1 |S(t )| oscillates having a minimum value of 0.4
when gBI = 1.5

√
h̄3ω/m and thus does not provide any clear

signature for the emergence of the TOC identified using PPS.
Along the same lines for gBI = 1.5

√
h̄3ω/m > gBB, namely

after the TOC manifests itself, a thermalization tendency is
clearly imprinted in the probe spectrum [see Figs. 3(g)–3(i)]
with a predominant peak appearing at �probe ≈ 0. In other
words, the dynamics after the decay of the strongly (gBI >

gBB) repulsive Bose polarons leads to a quasistationary state
of the MB system with respect to the energy redistribution
among the different dynamical modes, providing this way
strong evidences toward a thermalized state. This mechanism
cannot be even suggested by invoking the contrast com-

1086420
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FIG. 7. (a) Time evolution of the structure factor of one im-
purity at different impurity-BEC interaction strengths (see legend).
(b) Dynamics of the structure factor depicted in (a) of one impurity
for gBI = 1.5

√
h̄3ω/m over a longer timescale. The bosonic bath

contains NB = 100 bosons. The system is initialized in its ground
state with gBI = 0.

puted within the above-discussed Ramsey scheme. Indeed, the
Ramsey scheme only indicates the tendency toward thermal-
ization due to the decreasing behavior of the structure factor
which, however, fluctuates within the depicted time interval.

APPENDIX C: DIMENSIONAL REDUCTION OF THE
MANY-BODY HAMILTONIAN FROM THREE TO

ONE DIMENSIONS

We consider an ensemble of confined ultracold atoms in
three different hyperfine states, denoted as B, ↑, and ↓. State
B is occupied by bosonic bath particles and the ↑ and ↓
states constitute a pseudo-spin-1/2 subsystem. We assume
that state B belongs to a different manifold of hyperfine
states with respect to the total angular-momentum quantum
number, F , than the other two pseudospin states. The system
is optically trapped and therefore all of the above hyperfine
states experience the same confinement.

The ab initio Hamiltonian of this multicomponent system
reads Ĥ = Ĥ0 + ĤSD + ĤI. The spin-independent part Ĥ0 is
given by

Ĥ0 =
∫

d3r
∑

σ∈{B,↑,↓}
ψ̂†

σ (r)

[
− h̄2

2m
∇2 + V0(r)

]
ψ̂σ (r), (C1)

where m is the mass of the chemical element and V0(r) refers
to the confining potential.

By imposing a homogeneous magnetic field, along the z-
direction, the energy of the magnetic sublevels characterized
by different mF shift due to the Zeeman effect. Accordingly,
the state-dependent part of the Hamiltonian is expressed as

ĤSD = EBN̂B + E↑ + E↓
2

N̂I

+ E↑ − E↓
2

∑
α,β∈{↑,↓}

∫
d3r ψ̂†

α (r)σ z
αβψ̂β (r). (C2)

033380-10



PUMP-PROBE SPECTROSCOPY OF BOSE POLARONS: … PHYSICAL REVIEW RESEARCH 2, 033380 (2020)

where σ z
αβ corresponds to the spin-z Pauli matrix and Eσ

is the energy of the atomic state of species σ ∈ {B,↑,↓}.
The typical energy difference between hyperfine levels pos-
sessing different F is of the order of several h × GHz. In
particular, for 87Rb the hyperfine splitting between the two
lowest hyperfine manifolds F = 1 and F = 2 is EF=2 −
EF=1 ≈ h × 6.83 GHz [116]. Additionally, the amplitude of
the Zeeman energy shifts is also of the order of h× MHz/G.
For instance, in 87Rb this amplitude is of the order of ∼0.7 h×
MHz/G [116]. Furthermore, in the same species quadratic
Zeeman shifts that lead to a nonequidistant distribution of
magnetic sublevels possessing an amplitude of several h ×
MHz can be observed already for magnetic fields of the order
of ∼10 G [116]. Typical ultracold atom experiments involve
interaction energies ranging from hundreds of h × Hz to a
few h × kHz generating this way interaction energy shifts
and spin-exchange processes characterized by energies of the
same order of magnitude. Therefore, except for the case where
the magnetic field applied is of the order of few Gauss, the
spin-exchanging collisions are strongly suppressed [120].

Operating in the ultracold limit dominated by s-wave scat-
tering [92] the interaction Hamiltonian can be expressed as
[121]

ĤI =
∑
σ,σ ′

4π h̄2aσσ ′

m

∫
d3r ψ̂†

σ (r)ψ̂†
σ ′ (r)ψ̂σ ′ (r)ψ̂σ (r). (C3)

The scattering lengths aσσ ′ , with σ ′ ∈ {B,↑,↓}, can be tuned
via a Fano-Feshbach resonance between two distinct hyper-
fine levels [114].

In order to effectively reduce the dimensionality of the
above system from 3D to 1D a strong confinement along the
two perpendicular spatial directions is usually employed [93].
Then the confining potential reads

V0(r) = 1
2 mω2x2 + 1

2 mω2
⊥(y2 + z2), (C4)

where ω⊥  ω holds for the transverse and longitudinal
trapping frequencies. Note that the potential of Eq. (C4) can
be realized either by a single optical dipole trap [120] or
by applying a deep two-dimensional optical lattice potential
[42,122]. To access the 1D regime, the frequency of the trans-
verse confinement ω⊥ has to be selected such that the excited
states of the harmonic trap along the transverse directions
(y, z) are not populated. The condition for a 1D BEC is
well known [93] and reads NBaBBα⊥/α2 � 1, where α⊥ =√

h̄/mω⊥ and α = √
h̄/mω. In the few atom case, referring to

the impurity species, a sufficient condition for accessing the
1D limit is ω⊥  Nω [123]. Indeed, under this assumption it
is known that even in the strong interaction limit the system
behaves as a Tonks-Girardeau gas of hard-core bosons sharing
some characteristics with a gas of free fermions of the same
particle number [124,125]. Properties of such fermionized 1D
bosons have been probed experimentally in Refs. [126,127].

Accordingly, the corresponding 3D field operators can be
expressed in terms of 1D ones as follows:

ψ̂†
σ (r) =

√
mω⊥
π h̄

e− mω⊥
2h̄ (y2+z2 )ψ̂†

σ (x). (C5)

By employing Eq. (C5) we can then evaluate straightfor-
wardly the reduced 1D effective Hamiltonian for Ĥ0 + ĤSD

which takes the form

Ĥ0 + ĤSD = E↑ − E↓
h̄

Ŝz +
∑

σ∈{B,↑,↓}

∫
dx ψ̂†

σ (x)

×
(

− h̄2

2m

d2

dx2
+ 1

2
mω2x2

)
ψ̂σ (x). (C6)

Here all terms contributing to the total energy shift for con-
stant NI and NB are dropped while the Ŝz operator reads

Ŝz = h̄

2

∫
dx [ψ̂†

↑(x)ψ̂↑(x) − ψ̂
†
↓(x)ψ̂↓(x)]. (C7)

The dimensional reduction of ĤI is, however, more com-
plicated. In particular, the phenomenon of the confinement
induced resonance [91,128] occurs when α⊥ = √

h̄/(mω⊥)
is comparable to aσσ ′ . This implies that the actual 1D cou-

pling constant deviates from gMF
σσ ′ = 2h̄2aσσ ′

ma2
⊥

[93], which is
obtained by evaluating the integrals appearing in Eq. (C3)
along the transverse (y, z) directions. Detailed theoretical
and experimental investigations [91,128] reveal that the 1D
coupling strength gσσ ′ possesses a simple analytical form, i.e.,
gσσ ′ = gMF

σσ ′ (1 − |ζ (1/2)|aσσ ′√
2a⊥

)−1, and the effective 1D interac-
tion Hamiltonian simplifies to

ĤI =
∑
σ,σ ′

gσσ ′

∫
dx ψ̂†

σ (x)ψ̂†
σ ′ (x)ψ̂σ ′ (x)ψ̂σ (x). (C8)

Note here that due to the double counting for intraspecies
interaction terms in Eq. (C8), the parameter gBB appearing in
the latter is two times larger than the corresponding one that
is involved in Eq. (1).

According to the above discussion, for the experimental
implementation of the setup described in the main text the
interaction parameters, gBB, gBI , and gII , used herein are
related to the corresponding 3D scattering lengths as follows:

aσσ ′ = α⊥
2g̃σσ ′√

2|ζ (1/2)|g̃σσ ′ + 8η
. (C9)

Here g̃σσ ′ = gσσ ′/
√

h̄3ω/m refers to the dimensionless inter-
action strength and η = α/α⊥ = √

ω⊥/ω is the aspect ratio.
Furthermore, BECs involving particle numbers of the order
of NB ∼ 100 are already accsessible by current state-of-the-
art experimental settings, e.g., in optical lattice experiments
[42,122]. Finally, it is worth commenting that three-body
recombination processes are highly suppressed for alkali
ultracold atomic vapors, as the one considered herein. For
instance, for a 87Rb BEC and in the presence of three-body
recombination a lifetime of 14.8 s has been reported [129].
Note also that the rate of three-body recombination scales
with the cube of the density and, as a consequence, this effect
is negligible for the mesoscopic system under consideration
which involves low densities.

APPENDIX D: THE MANY-BODY VARIATIONAL
METHODOLOGY: ML-MCTDHX

To track the stationary properties and, most importantly,
the MB quantum dynamics of the multicomponent system
addressed in the main text, we resort to the ML-MCTDHX
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[94–96]. It constitutes an ab initio variational method for solv-
ing the time-dependent MB Schrödinger equation of atomic
mixtures possessing either bosonic [57,99,130] or fermionic
[39,106,118,131] spinor components. A major advantage of
this approach is the expansion of the total MB wave function
with respect to a time-dependent and variationally optimized
basis (see below). This allows us to capture all the relevant
inter- and intraspecies correlations of a multicomponent sys-
tem in an efficient manner at each time instant by utilizing a
reduced number of basis states when compared to expansions
relying on a time-independent basis.

The system considered in the main text consists of a
bosonic bath (B) with NB = 100 atoms and either one (NI =
1) or two (NI = 2) impurity (I) atoms. Most importantly, the
impurities being either bosons or fermions possess an internal
pseudospin-1/2 degree of freedom [59,90]. To account for
interspecies correlations, the MB wave function |�(t )〉 is
expressed according to a truncated Schmidt decomposition
[99,130,132] in terms of D different species functions, i.e.,
|�σ

k (t )〉, for each component σ = B, I . We remark that the
time-dependent species functions |�σ

k (t )〉 form an orthonor-
mal Nσ -body wave function set within a subspace of the
σ -species Hilbert space Hσ [94]. Then the MB wave function
|�(t )〉 ansatz reads

|�(t )〉 =
D∑

k=1

√
λk (t )

∣∣�B
k (t )

〉∣∣�I
k (t )

〉
, (D1)

where the time-dependent Schmidt weights λk (t ) are also
known as the natural species populations of the kth species
function and provide information about the degree of entan-
glement between the individual subsystems. For instance, if
two different λk (t ) are nonzero, then |�(t )〉 is a linear super-
position of two states and therefore the system is entangled
[132,133] or interspecies correlated. On the other hand, in the
case of λ1(t ) = 1, λk>1(t ) = 0, the wave function is a direct
product of two states and the system is nonentangled.

Next, in order to include intraspecies correlations into our
MB wave function ansatz, each species function |�σ

k (t )〉 is
further expanded on a time-dependent number-state basis set
|�n(t )〉σ . Namely

∣∣�σ
k (t )

〉 =
∑

�n
Aσ

k;�n(t )|�n(t )〉σ , (D2)

where Aσ
k;�n(t ) denote the underlying time-dependent expan-

sion coefficients. Moreover, each number state |�n(t )〉σ cor-
responds to a permanent for bosons or a determinant for
fermions building on dσ time-dependent variationally op-
timized single-particle functions (SPFs), i.e., |φσ

l (t )〉, with
l = 1, 2, . . . , dσ , being characterized by occupation numbers
�n = (n1, . . . , ndσ ). Additionally, the SPFs are expanded with
respect to a time-independent primitive basis. For the majority
species, this primitive basis corresponds to an M dimensional
discrete variable representation denoted in the following by
{|q〉}. However, for the impurities the primitive basis refers
to the tensor product {|q, s〉} of the discrete variable repre-
sentation basis regarding the spatial degrees of freedom and
the two-dimensional pseudospin-1/2 basis {|↑〉 , |↓〉}. Con-
sequently, each SPF of the impurities acquires the following

0

0.02

0.04

0 100 200 300
0

0.02

0.04

0.06

FIG. 8. Evolution of the one-body coherence absolute deviation
�GC,C′ (t ) between the C = (10; 3; 8) and other orbital configura-
tions C′ = (D; dB; dI ) (see legend) for (a) gBI = 0.5

√
h̄3ω/m and

(b) gBI = 1.5
√

h̄3ω/m. In all cases NB = 100, NI = 2 with gBB =
0.5

√
h̄3ω/m and gII = 0 while initially gBI = 0.

spinor wave function form:

∣∣φI
j (t )

〉 =
M∑
q=1

(
BI

jq↑(t ) |q〉 |↑〉 + BI
jq↓(t ) |q〉 |↓〉 )

. (D3)

Here BI
jq↑(t ) [BI

jq↓(t )] are the time-dependent expansion co-
efficients of the pseudospin-↑ and ↓ respectively, see also
Refs. [59,118].

Having exemplified the MB wave-function ansatz and in
order to address the time evolution of the (NB + NI )-body
wave function |�(t )〉 obeying the Hamiltonian of Eq. (1)
provided in the main text we then numerically solve the
so-called ML-MCTDHX equations of motion [94]. These
equations are determined by following the Dirac-Frenkel
[134,135] variational principle for the generalized ansatz of
Eqs. (D1), (D2), and (D3). In this way, we obtain a set
of D2 linear differential equations of motion for the λk (t )
coefficients coupled to D( (NB+dB−1)!

NB!(dB−1)! + (NI+dI −1)!
NI !(dI −1)! ) nonlinear

integrodifferential equations for the species functions and
dB + dI nonlinear integrodifferential equations for the SPFs.

APPENDIX E: CONVERGENCE OF THE
MANY-BODY SIMULATIONS

The Hilbert space truncation within the ML-MCTDHX
method is determined by the considered orbital configuration
space, i.e., C = (D; dB; dI ). In this notation, D = DB = DI

and dB and dI denote the number of species functions and
SPFs respectively for each species [Eqs. (D1) and (D2)].
Moreover, within our numerical calculations we employ a
primitive basis based on a sine discrete variable represen-
tation for the spatial part of the SPFs with M = 600 grid
points. This sine discrete variable representation intrinsically
introduces hard-wall boundary conditions at both edges of
the numerical grid which in our case are located at x± =
±50

√
h̄/mω. We assured that the location of the hard-wall

boundaries does not impact our findings since no significant
density portion occurs beyond x± = ±20

√
h̄/mω. The eigen-

states of the multicomponent system are obtained by utilizing
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the so-called improved relaxation method [94–96] within
ML-MCTDHX. To address the corresponding nonequilibrium
dynamics, we numerically solve the ML-MCTDHX equa-
tions of motion using the MB wave function [Eq. (D1)]
under the influence of the Hamiltonian (1) of the main
text.

To testify the convergence of the MB results we ensured
that all observables of interest are to a certain level of ac-
curacy insensitive for a varying orbital configuration space,
C = (D; dB; dI ). Note that for the MB simulations discussed
in the main text we relied on the orbital configuration C =
(10; 3; 8). To infer the convergence of our results we exem-
plarily showcase below the behavior of the spatially integrated
one-body coherence function, g(1)(x, x′; t ), for different num-
ber of species and SPFs in the course of time. In particular we
calculate its normalized absolute deviation between the C =
(10; 3; 8) and other orbital configurations C′ = (D; dB; dI ),
namely

�GC,C′ (t ) =
∫

dxdx′∣∣g(1)
C (x, x′; t ) − g(1)

C′ (x, x′; t )
∣∣∫

dxdx′g(1)
C (x, x′; t )

. (E1)

The dynamics of �GC,C′ (t ) is illustrated in Fig. 8 for the mul-
ticomponent bosonic system consisting of NB = 100 atoms
and NI = 2 noninteracting impurities upon considering the
pump spectroscopic sequence introduced in Sec. A from
gBI = 0 either to gBI = 0.5

√
h̄3ω/m [Fig. 8(a)] or toward

gBI = 1.5
√

h̄3ω/m [Fig. 8(b)]. Evidently, a systematic conver-
gence of �GC,C′ (t ) is achieved in both cases. Indeed, closely
inspecting �GC,C′ (t ) for gBI = 0.5

√
h̄3ω/m we observe that

the deviation between the C = (10; 3; 8) and C′ = (10; 4; 6)
[C′ = (10; 3; 10)] orbital configurations remains below 3.8%
(1.2%) in the entire time evolution [Fig. 8(a)]. On the other
hand, for increasing gBI , �GC,C′ (t ) takes larger values as
shown in Fig. 8(b). For instance, at gBI = 1.5

√
h̄3ω/m the rel-

ative error �GC,C′ (t ) with C = (10; 3; 8) and C′ = (10; 4; 6)
[C′ = (10; 3; 10)] becomes at most of the order of 5.2% [3%]
at long evolution times t > 150ω−1. It is also worth mention-
ing at this point that for all other observables and interspecies
interaction strengths discussed in the main text a similar
degree of convergence takes place (results not shown here for
brevity).
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