
Variational Recurrent Models for Solving
Partially Observable Control Tasks

著者（英） Dongqi Han, Kenji Doya, Jun Tani
year 2019-09-26
出版者 ICLR 2020
権利 @ 2020 The Author(s).
URL http://id.nii.ac.jp/1394/00001577/

Published as a conference paper at ICLR 2020

VARIATIONAL RECURRENT MODELS FOR SOLVING
PARTIALLY OBSERVABLE CONTROL TASKS

Dongqi Han
Cognitive Neurorobotics Research Unit
Okinawa Institute of Science and Technology
Okinawa, Japan
dongqi.han@oist.jp

Kenji Doya
Neural Computation Unit
Okinawa Institute of Science and Technology
Okinawa, Japan
doya@oist.jp

Jun Tani∗
Cognitive Neurorobotics Research Unit
Okinawa Institute of Science and Technology
Okinawa, Japan
jun.tani@oist.jp

ABSTRACT

In partially observable (PO) environments, deep reinforcement learning (RL) agents
often suffer from unsatisfactory performance, since two problems need to be tackled
together: how to extract information from the raw observations to solve the task,
and how to improve the policy. In this study, we propose an RL algorithm for
solving PO tasks. Our method comprises two parts: a variational recurrent model
(VRM) for modeling the environment, and an RL controller that has access to both
the environment and the VRM. The proposed algorithm was tested in two types
of PO robotic control tasks, those in which either coordinates or velocities were
not observable and those that require long-term memorization. Our experiments
show that the proposed algorithm achieved better data efficiency and/or learned
more optimal policy than other alternative approaches in tasks in which unobserved
states cannot be inferred from raw observations in a simple manner1.

1 INTRODUCTION

Model-free deep reinforcement learning (RL) algorithms have been developed to solve difficult
control and decision-making tasks by self-exploration (Sutton & Barto, 1998; Mnih et al., 2015;
Silver et al., 2016). While various kinds of fully observable environments have been well investigated,
recently, partially observable (PO) environments (Hafner et al., 2018; Igl et al., 2018; Lee et al., 2019;
Jaderberg et al., 2019) have commanded greater attention, since real-world applications often need to
tackle incomplete information and a non-trivial solution is highly desirable.

There are many types of PO tasks; however, those that can be solved by taking the history of
observations into account are more common. These tasks are often encountered in real life, such
as videos games that require memorization of previous events (Kapturowski et al., 2018; Jaderberg
et al., 2019) and robotic control using real-time images as input (Hafner et al., 2018; Lee et al.,
2019). While humans are good at solving these tasks by extracting crucial information from the past
observations, deep RL agents often have difficulty acquiring satisfactory policy and achieving good
data efficiency, compared to those in fully observable tasks (Hafner et al., 2018; Lee et al., 2019).

For solving such PO tasks, several categories of methods have been proposed. One simple, straight-
forward solution is to include a history of raw observations in the current “observation” (McCallum,
1993; Lee et al., 2019). Unfortunately, this method can be impractical when decision-making requires
a long-term memory because dimension of observation become unacceptably large if a long history
is included.

∗Corresponding author.
1Codes are available at https://github.com/oist-cnru/Variational-Recurrent-Models.

1

https://github.com/oist-cnru/Variational-Recurrent-Models

Published as a conference paper at ICLR 2020

Another category is based on model-free RL methods with recurrent neural networks (RNN) as func-
tion approximators (Schmidhuber, 1990; 1991; Igl et al., 2018; Kapturowski et al., 2018; Jaderberg
et al., 2019), which is usually more tractable to implement. In this case, RNNs need to tackle two
problems simultaneously (Lee et al., 2019): learning representation (encoded by hidden states of
the RNN) of the underlying states of the environment from the state-transition data, and learning
to maximize returns using the learned representation. As most RL algorithms use a bootstrapping
strategy to learn the expected return and to improve the policy (Sutton & Barto, 1998), it is challenging
to train the RNN stably and efficiently, since RNNs are relatively more difficult to train (Pascanu
et al., 2013) than feedforward neural networks.

The third category considers learning a model of the environment and estimating a belief state,
extracted from a sequence of state-transitions (Kaelbling et al., 1998; Ha & Schmidhuber, 2018;
Lee et al., 2019). The belief state is an agent-estimated variable encoding underlying states of the
environment that determines state-transitions and rewards. Perfectly-estimated belief states can
thus be taken as “observations” of an RL agent that contains complete information for solving the
task. Therefore, solving a PO task is segregated into a representation learning problem and a fully
observable RL problem. Since fully observable RL problems have been well explored by the RL
community, the critical challenge here is how to estimate the belief state.

In this study, we developed a variational recurrent model (VRM) that models sequential observations
and rewards using a latent stochastic variable. The VRM is an extension of the variational recurrent
neural network (VRNN) model (Chung et al., 2015) that takes actions into account. Our approach
falls into the third category by taking the internal states of the VRM together with raw observations
as the belief state. We then propose an algorithm to solve PO tasks by training the VRM and a
feed-forward RL controller network, respectively. The algorithm can be applied in an end-to-end
manner, without fine tuning of a hyperparameters.

We then experimentally evaluated the proposed algorithm in various PO versions of robotic control
tasks. The agents showed substantial policy improvement in all tasks, and in some tasks the algorithm
performed essentially as in fully observable cases. In particular, our algorithm demonstrates greater
performance compared to alternative approaches in environments where only velocity information is
observable or in which long-term memorization is needed.

2 RELATED WORK

Typical model-based RL approaches utilize learned models for dreaming, i.e. generating state-
transition data for training the agent (Deisenroth & Rasmussen, 2011; Ha & Schmidhuber, 2018;
Kaiser et al., 2019) or for planning of future state-transitions (Watter et al., 2015; Hafner et al.,
2018; Ke et al., 2019). This usually requires a well-designed and finely tuned model so that its
predictions are accurate and robust. In our case, we do not use VRMs for dreaming and planning,
but for auto-encoding state-transitions. Actually, PO tasks can be solved without requiring VRMs to
predict accurately (see Appendix E). This distinguishes our algorithm from typical model-based RL
methods.

The work our method most closely resembles is known as stochastic latent actor-critic (SLAC, Lee
et al. (2019)), in which a latent variable model is trained and uses the latent state as the belief state
for the critic. SLAC showed promising results using pixels-based robotic control tasks, in which
velocity information needs to be inferred from third-person images of the robot. Here we consider
more general PO environments in which the reward may depend on a long history of inputs, e.g., in a
snooker game one has to remember which ball was potted previously. The actor network of SLAC
did not take advantage of the latent variable, but instead used some steps of raw observations as input,
which creates problems in achieving long-term memorization of reward-related state-transitions.
Furthermore, SLAC did not include raw observations in the input of the critic, which may complicate
training the critic before the model converges.

2

Published as a conference paper at ICLR 2020

3 BACKGROUND

3.1 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

The scope of problems we study can be formulated into a framework known as partially observable
Markov decision processes (POMDP) (Kaelbling et al., 1998). POMDPs are used to describe decision
or control problems in which a part of underlying states of the environment, which determine
state-transitions and rewards, cannot be directly observed by an agent.

A POMDP is usually defined as a 7-tuple (S,A, T,R,X, O, γ), in which S is a set of states, A is a
set of actions, and T : S× A→ p(S) is the state-transition probability function that determines the
distribution of the next state given current state and action. The reward function R : S × A → R
decides the reward during a state-transition, which can also be probabilistic. Moreover, X is a set of
observations, and observations are determined by the observation probability function O : S× A→
p(X). By defining a POMDP, the goal is to maximize expected discounted future rewards

∑
t γ

trt
by learning a good strategy to select actions (policy function).

Our algorithm was designed for general POMDP problems by learning the representation of underly-
ing states st ∈ S via modeling observation-transitions and reward functions. However, it is expected
to work in PO tasks in which st or p(st) can be (at least partially) estimated from the history of
observations x1:t.

3.2 VARIATIONAL RECURRENT NEURAL NETWORKS

To model general state-transitions that can be stochastic and complicated, we employ a modified
version of the VRNN (Chung et al., 2015). The VRNN was developed as a recurrent version of the
variational auto-encoder (VAE, Kingma & Welling (2013)), composed of a variational generation
model and a variational inference model. It is a recurrent latent variable model that can learn to
encode and predict complicated sequential observations xt with a stochastic latent variable zt.

The generation model predicts future observations given the its internal states,

zt ∼ N
(
µp,t, diag(σ2

p,t)
)
,
[
µp,t,σ

2
p,t

]
= fprior(dt−1),

xt|zt ∼ N
(
µy,t, diag(σ2

y,t)
)
,
[
µy,t,σ

2
y,t

]
= fdecoder(zt,dt−1), (1)

where fs are parameterized mappings, such as feed-forward neural networks, and dt is the state
variable of the RNN, which is recurrently updated by

dt = fRNN(dt−1; zt,xt). (2)

The inference model approximates the latent variable zt given xt and dt.

zt|xt ∼ N
(
µz,t, diag(σ2

z,t)
)
, where

[
µz,t,σ

2
z,t

]
= fencoder(xt,dt−1). (3)

For sequential data that contain T time steps, learning is conducted by maximizing the evidence
lower bound ELBO, like that in a VEA (Kingma & Welling, 2013), where

ELBO =

T∑
t

[−DKL(q(zt|z1:t−1,x1:t)||p(zt|z1:t−1,x1:t−1))]

+Eq(zt|x1:t,z1:t−1) [log (p(xt|z1:t,x1:t−1))] , (4)

where p and q are parameterized PDFs of zt by the generative model and the inference model,
respectively. In a POMDP, a VRNN can be used to model the environment and to represent underlying
states in its state variable dt. Thus an RL agent can benefit from a well-learned VRNN model since
dt provides additional information about the environment beyond the current raw observation xt.

3.3 SOFT ACTOR CRITIC

Soft actor-critic (SAC) is a state-of-the-art model-free RL that uses experience replay for dynamic
programming, which been tested on various robotic control tasks and that shows promising perfor-
mance (Haarnoja et al., 2018a;b). A SAC agent learns to maximize reinforcement returns as well as
entropy of its policy, so as to obtain more rewards while keeping actions sufficiently stochastic.

3

Published as a conference paper at ICLR 2020

(a) (b) Generative model Inference model(c)

Figure 1: Diagrams of the proposed algorithm. (a) Overview. (b, c) The generative model and the
inference model of a VRM.

A typical SAC implementation can be described as follows. The state value function V (s), the
state-action value function Q(s,a) and the policy function π(a|s) are parameterized by neural
networks, indicated by ψ, λ, η, respectively. Also, an entropy coefficient factor (also known as the
temperature parameter), denoted by α, is learned to control the degree of stochasticity of the policy.
The parameters are learned by simultaneously minimizing the following loss functions.

JV (ψ) = Est∼B
[

1

2

(
Vψ(st)− Eat∼πη [Qλ(st,at)− α log πη(at|st)]

)2]
, (5)

JQ(λ) = E(st,at)∼B

[
1

2

(
Qλ(st,at)−

(
r(st,at) + γEst+1∼B [Vψ(st+1)]

))2]
, (6)

Jπ(η) = Est∼B
[
Eaη(st)∼πη(st) [α log πη (aη(st)|st)−Qλ(st,aη(st))]

]
, (7)

J(α) = Est∼B
[
Ea∼πη(st) [−α log πη(a|st)− αHtar]

]
, (8)

where B is the replay buffer from which st is sampled, andHtar is the target entropy. To compute
the gradient of Jπ(η) (Equation. 7), the reparameterization trick (Kingma & Welling, 2013) is used
on action, indicated by aη(st). Reparameterization of action is not required in minimizing J(α)
(Equation. 8) since log πη(a|st) does not depends on α.

SAC was originally developed for fully observable environments; thus, the raw observation at the
current step xt was used as network input. In this work, we apply SAC in PO tasks by including the
state variable dt of the VRNN in the input of function approximators of both the actor and the critic.

4 METHODS

4.1 VARIATIONAL RECURRENT STATE-TRANSITION MODELS

An overall diagram of the proposed algorithm is summarized in Fig. 1(a), while a more detailed
computational graph is plotted in Fig. 2. We extend the original VRNN model (Chung et al., 2015) to
the proposed VRM model by adding action feedback, i.e., actions taken by the agent are used in the
inference model and the generative model. Also, since we are modeling state-transition and reward
functions, we include the reward rt−1 in the current raw observation xt for convenience. Thus, we
have the inference model (Fig. 1(c)), denoted by φ, as

zφ,t|xt ∼ N
(
µφ,t, diag(σ2

φ,t)
)
, where

[
µφ,t,σ

2
φ,t

]
= φ(xt,dt−1,at−1), (9)

The generative model (Fig. 1(b)), denoted by θ here, is

zt ∼ N
(
µθ,t, diag(σ2

θ,t)
)
,
[
µθ,t,σ

2
θ,t

]
= θprior(dt−1,at−1),

xt|zt ∼ N
(
µx,t, diag(σ2

x,t)
)
,
[
µx,t,σ

2
x,t

]
= θdecoder(zt,dt−1). (10)

For building recurrent connections, the choice of RNN types is not limited. In our study, the long-
short term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is used since it works well in general
cases. So we have dt = LSTM(dt−1; zt,xt).

4

Published as a conference paper at ICLR 2020

(c)

(a) (b)
Deterministic

node

Stochastic
node

Generative
model

Inference
model

RL controller
network

Interacting
with the

environment

Error back-
propagation

RL controller Excecution phase

Learning phase

Figure 2: Computation graph of the proposed algorithm. (a) The RL controller. (b) The execution
phase. (c) The learning phase of a VRM. a: action; z: latent variable; d: RNN state variable; x: raw
observation (including reward); Q: state-action value function; V : state value function. A bar on a
variable means that it is the actual value from the replay buffer or the environment. Each stochastic
variable follows a parameterized diagonal Gaussian distribution.

As in training a VRNN, the VRM is trained by maximizing an evidence lower bound (Fig. 1(c))

ELBO =
∑
t

{
Eqφ [log pθ(xt|z1:t,x1:t−1)]

−DKL [qφ(zt|z1:t−1, x̄1:t, ā1:t)||pθ(zt|z1:t−1, x̄1:t−1, ā1:t)]} . (11)
In practice, the first term Eqφ [log pθ(xt|z1:t,x1:t−1)] can be obtained by unrolling the RNN using
the inference model (Fig. 1(c)) with sampled sequences of xt. Since qφ and pθ are parameterized
Gaussian distributions, the KL-divergence term can be analytically expressed as

DKL [qφ(zt)||pθ(zt)] = log
σφ,t
σθ,t

+
(µφ,t − µθ,t)2 + σ2

φ,t

2σ2
θ,t

− 1

2
(12)

For computation efficiency in experience replay, we train a VRM by sampling minibatchs of truncated
sequences of fixed length, instead of whole episodes. Details are found in Appendix A.1.

Since training of a VRM is segregated from training of the RL controllers, there are several strategies
for conducting them in parallel. For the RL controller, we adopted a smooth update strategy as in
Haarnoja et al. (2018a), i.e., performing one time of experience replay every n steps. To train the
VRM, one can also conduct smooth update. However, in that case, RL suffers from instability of
the representation of underlying states in the VRM before it converges. Also, stochasticity of RNN
state variables d can be meaninglessly high at early stage of training, which may create problems
in RL. Another strategy is to pre-train the VRM for abundant epochs only before RL starts, which
unfortunately, can fail if novel observations from the environment appear after some degree of policy
improvement. Moreover, if pre-training and smooth update are both applied to the VRM, RL may
suffer from a large representation shift of the belief state.

To resolve this conflict, we propose using two VRMs, which we call the first-impression model and
the keep-learning model, respectively. As the names suggest, we pre-train the first-impression model
and stop updating it when RL controllers and the keep-learning model start smooth updates. Then we
take state variables from both VRMs, together with raw observations, as input for the RL controller.
We found that this method yields better overall performance than using a single VRM (Appendix C).

5

Published as a conference paper at ICLR 2020

Algorithm 1 Variational Recurrent Models with Soft Actor Critic
Initialize the first-impression VRMMf and the keep-learning VRMMk, the RL controller C, and
the replay buffer D, global step t← 0.
repeat

Initialize an episode, assignM with zero initial states.
while episode not terminated do

Sample an action at from π(at|dt,xt) and execute at, t← t+ 1.
Record (xt,at, donet) into B.
Compute 1-step forward of both VRMs using inference models.
if t == step start RL then

For N epochs, sample a minibatch of samples from B to updateMf (Eq. 11).
end if
if t > step start RL and mod(t, train interval KLV RM) == 0 then

Sample a minibatch of samples from B to updateMk (Eq. 5, 6, 7, 8) .
end if
if t > step start RL and mod(t, train interval RL) == 0 then

Sample a minibatch of samples from B to updateR (Eq. 11) .
end if

end while
until training stopped

4.2 REINFORCEMENT LEARNING CONTROLLERS

As shown in Fig. 1(a), we use multi-layer perceptrons (MLP) as function approximators for V , Q,
respectively. Inputs for the Qt network are (xt,dt,at), and Vt is mapped from (xt,dt). Following
Haarnoja et al. (2018a), we use two Q networks λ1 and λ2 and compute Q = min(Qλ1 , Qλ2) in
Eq. 5 and 7 for better performance and stability. Furthermore, we also used a target value network for
computing V in Eq. 6 as in Haarnoja et al. (2018a). The policy function πη follows a parameterized
Gaussian distribution N (µη(dt,xt), diag (ση(dt,xt))) where µη and ση are also MLPs.

In the execution phase (Fig. 1(b)), observation and reward xt = (Xt, rt−1) are received as VRM
inputs to compute internal states dt using inference models. Then, the agent selects an action,
sampled from πη(at|dt,xt), to interact with the environment.

To train RL networks, we first sample sequences of steps from the replay buffer as minibatches; thus,
dt can be computed by the inference models using recorded observations x̄t and actions āt (See
Appendix A.1.2). Then RL networks are updated by minimizing the loss functions with gradient
descent. Gradients stop at dt so that training of RL networks does not involve updating VRMs.

5 RESULTS

To empirically evaluate our algorithm, we performed experiments in a range of (partially observable)
continuous control tasks and compared it to the following alternative algorithms. The overall
procedure is summarized in Algorithm 1. For the RL controllers, we adopted hyperparameters from
the original SAC implementation (Haarnoja et al., 2018b). Both the keep-learning and first-impression
VRMs were trained using learning rate 0.0008. We pre-trained the first-impression VRM for 5,000
epochs, and updated the keep-learning VRM every 5 steps. Batches of size 4, each containing a
sequence of 64 steps, were used for training both the VRMs and the RL controllers. All tasks used
the same hyperparameters (Appendix A.1).

• SAC-MLP: The vanilla soft actor-critic implementation (Haarnoja et al., 2018a;b), in which
each function is approximated by a 2-layer MLP taking raw observations as input.
• SAC-LSTM: Soft actor-critic with recurrent networks as function approximators, where

raw observations are processed through an LSTM layer followed by 2 layers of MLPs. This
allows the agent to make decisions based on the whole history of raw observations. In
this case, the network has to conduct representation learning and dynamic programming
collectively. Our algorithm is compared with SAC-LSTM to demonstrate the effect of
separating representation learning from dynamic programming.

6

Published as a conference paper at ICLR 2020

Pendulum

0 50 100
thousand steps

-1500

-1000

-500

av
er

ag
e

re
tu

rn

Pendulum - velocities only

0 50 100
thousand steps

-1500

-1000

-500

av
er

ag
e

re
tu

rn

Pendulum - no velocities

0 50 100
thousand steps

-1500

-1000

-500

av
er

ag
e

re
tu

rn

CartPole

0 100 200 300
thousand steps

0

500

1000
av

er
ag

e
re

tu
rn

CartPole - velocities only

0 100 200 300
thousand steps

0

500

1000

av
er

ag
e

re
tu

rn

CartPole - no velocities

0 100 200 300
thousand steps

0

500

1000

av
er

ag
e

re
tu

rn

Ours
SAC-LSTM
SAC-MLP
SLAC

Pendulum

CartPole

Figure 3: Learning curves of the classic control tasks. Shaded areas indicate S.E.M..

• SLAC: The stochastic latent actor-critic algorithm introduced in Lee et al. (2019), which
is a state-of-the-art RL algorithm for solving POMDP tasks. It was shown that SLAC
outperformed other model-based and model-free algorithms, such as (Igl et al., 2018; Hafner
et al., 2018), in robotic control tasks with third-person image of the robot as observation2.

Note that in our algorithm, we apply pre-training of the first-impression model. For a fair comparison,
we also perform pre-training for the alternative algorithm with the same epochs. For SAC-MLP and
SAC-LSTM, pre-training is conducted on RL networks; while for SLAC, its model is pre-trained.

5.1 PARTIALLY OBSERVABLE CLASSIC CONTROL TASKS

The Pendlum and CartPole (Barto et al., 1983) tasks are the classic control tasks for evaluating RL
algorithms (Fig. 3, Left). The CartPole task requires learning of a policy that prevents the pole from
falling down and keeps the cart from running away by applying a (1-dimensional) force to the cart, in
which observable information is the coordinate of the cart, the angle of the pole, and their derivatives
w.r.t time (i.e., velocities). For the Pendulum task, the agent needs to learn a policy to swing an
inverse-pendulum up and to maintain it at the highest position in order to obtain more rewards.

We are interested in classic control tasks because they are relatively easy to solve when fully
observable, and thus the PO cases can highlight the representation learning problem. Experiments
were performed in these two tasks, as well as their PO versions, in which either velocities cannot be
observed or only velocities can be observed. The latter case is meaningful in real-life applications
because an agent may not be able to perceive its own position, but can estimate its speed.

As expected, SAC-MLP failed to solve the PO tasks (Fig. 3). While our algorithm succeeded in
learning to solve all these tasks, SAC-LSTM showed poorer performance in some of them. In
particular, in the pendulum task with only angular velocity observable, SAC-LSTM may suffer from
the periodicity of the angle. SLAC performed well in the CartPole tasks, but showed less satisfactory
sample efficiency in the Pendulum tasks.

5.2 PARTIALLY OBSERVABLE ROBOTIC CONTROL TASKS

To examine performance of the proposed algorithm in more challenging control tasks with higher
degrees of freedom (DOF), we also evaluated performance of the proposed algorithm in the OpenAI
Roboschool environments (Brockman et al., 2016). The Roboschool environments include a number

2SLAC was developed for pixel observations. To compare it with our algorithm, we made some modifications
of its implementation (see Appendix A.2.3). Nonetheless, we expect the comparison can demonstrate the effect
of the key differences as aforementioned in Section 2.

7

Published as a conference paper at ICLR 2020

RoboschoolHopper

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

Ours
SAC-LSTM
SAC-MLP
SLAC

RoboschoolHopper - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - velocities only

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - no velocities

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolAnt

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolHopper

RoboschoolWalker2d

RoboschoolAnt

Figure 4: Learning curves of the robotic control tasks, plotted in the same way as in Fig. 3.

of continuous robotic control tasks, such as teaching a multiple-joint robot to walk as fast as possible
without falling down (Fig. 4, Left). The original Roboschool environments are nearly fully observable
since observations include the robot’s coordinates and (trigonometric functions of) joint angles, as
well as (angular and coordinate) velocities. As in the PO classic control tasks, we also performed
experiments in the PO versions of the Roboschool environments.

Using our algorithm, experimental results (Fig. 4) demonstrated substantial policy improvement in
all PO tasks (visualization of the trained agents is in Appendix D). In some PO cases, the agents
achieved comparable performance to that in fully observable cases. For tasks with unobserved
velocities, our algorithm performed similarly to SAC-LSTM. This is because velocities can be simply
estimated by one-step differences in robot coordinates and joint angles, which eases representation
learning. However, in environments where only velocities can be observed, our algorithm significantly
outperformed SAC-LSTM, presumably because SAC-LSTM is less efficient at encoding underlying
states from velocity observations. Also, we found that learning of a SLAC agent was unstable, i.e., it
sometimes could acquire a near-optimal policy, but often its policy converged to a poor one. Thus,
average performance of SLAC was less promising than ours in most of the PO robotic control tasks.

5.3 LONG-TERM MEMORIZATION TASKS

Another common type of PO task requires long-term memorization of past events. To solve these
tasks, an agent needs to learn to extract and to remember critical information from the whole history
of raw observations. Therefore, we also examined our algorithm and other alternatives in a long-term
memorization task known as the sequential target reaching task (Han et al., 2019), in which a robot
agent needs to reach 3 different targets in a certain sequence (Fig. 5, Left). The robot can control its
two wheels to move or turn, and will get one-step small, medium, and large rewards when it reaches
the first, second, and third targets, respectively, in the correct sequence. The robot senses distances
and angles from the 3 targets, but does not receive any signal indicating which target to reach. In each
episode, the robot’s initial position and those of the three targets are randomly initialized. In order to
obtain rewards, the agent needs to infer the current correct target using historical observations.

We found that agents using our algorithm achieved almost 100% success rate (reaching 3 targets in
the correct sequence within maximum steps). SAC-LSTM also achieved similar success rate after
convergence, but spent more training steps learning to encode underlying goal-related information

8

Published as a conference paper at ICLR 2020

Sequential target reaching task

0 50 100 150 200 250
thousand steps

0

20

40

60

80

100

su
cc

es
s

ra
te

 (%
) Ours

SAC-LSTM
SAC-MLP
SLAC

-1 -0.5 0 0.5 1
0

20

40

60

80

100
Sequential ball touching task

Sequential target reaching task

Figure 5: Learning curves of the sequential target reaching task.

from sequential observations. Also, SLAC struggled hard to solve this task since its actor only
received a limited steps of observations, making it difficult to infer the correct target.

5.4 CONVERGENCE OF THE KEEP-LEARNING VRM

One of the most concerned problems of our algorithm is that input of the RL controllers can
experience representation change, because the keep-learning model is not guaranteed to converge if
novel observation appears due to improved policy (e.g. for a hopper robot, “in-the-air” state can only
happen after it learns to hop). To empirically investigate how convergence of the keep-learning VRM
affect policy improvement, we plot the loss functions (negative ELBOs) of the the keep-learning
VRM for 3 example tasks (Fig. 6). For a simpler task (CartPole), the policy was already near optimal
before the VRM fully converged. We also saw that the policy was gradually improved after the VRM
mostly converged (RoboschoolAnt - no velocities), and that the policy and the VRM were being
improved in parallel (RoboschoolAnt - velocities only).

The results suggested that policy could be improved with sufficient sample efficiency even the
keep-learning VRM did not converge. This can be explained by that the RL controller also extract
information from the first-impression model and the raw observations, which did not experience
representation change during RL. Indeed, our ablation study showed performance degradation in
many tasks without the first-impression VRM (Appendix C).

RoboschoolAnt - no veolocities

0 500 1000
thousand steps

0

500

1000

av
er

ag
e

re
tu

rn

-2

-1

0

1

ne
ga

tiv
e

EL
BO

CartPole

0 100 200 300 400
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

-4

-3

-2

-1

0

ne
ga

tiv
e

EL
BO

RoboschoolHopper - veolocities only

0 500 1000
thousand steps

500

1000

1500

2000

av
er

ag
e

re
tu

rn

-2

-1

0

ne
ga

tiv
e

EL
BO

Figure 6: Example tasks showing relationship between average return of the agent and negative
ELBO (loss function, dashed) of the keep-learning VRM.

6 DISCUSSION

In this paper, we proposed a variational recurrent model for learning to represent underlying states of
PO environments and the corresponding algorithm for solving POMDPs. Our experimental results
demonstrate effectiveness of the proposed algorithm in tasks in which underlying states cannot be
simply inferred using a short sequence of observations. Our work can be considered an attempt to
understand how RL benefits from stochastic Bayesian inference of state-transitions, which actually
happens in the brain (Funamizu et al., 2016), but has been considered less often in RL studies.

We used stochastic models in this work which we actually found perform better than deterministic
ones, even through the environments we used are deterministic (Appendix C). The VRNN can

9

Published as a conference paper at ICLR 2020

be replaced with other alternatives (Bayer & Osendorfer, 2014; Goyal et al., 2017) to potentially
improve performance, although developing model architecture is beyond the scope of the current
study. Moreover, a recent study (Ahmadi & Tani, 2019) showed a novel way of inference using
back-propagation of prediction errors, which may also benefit our future studies.

Many researchers think that there are two distinct systems for model-based and model-free RL in the
brain (Gläscher et al., 2010; Lee et al., 2014) and a number of studies investigated how and when the
brain switches between them (Smittenaar et al., 2013; Lee et al., 2014). However, Stachenfeld et al.
(2017) suggested that the hippocampus can learn a successor representation of the environment that
benefits both model-free and model-based RL, contrary to the aforementioned conventional view. We
further propose another possibility, that a model is learned, but not used for planning or dreaming.
This blurs the distinction between model-based and model-free RL.

ACKNOWLEDGEMENT

This work was supported by Okinawa Institute of Science and Technology Graduate University
funding, and was also partially supported by a Grant-in-Aid for Scientific Research on Innovative
Areas: Elucidation of the Mathematical Basis and Neural Mechanisms of Multi-layer Representation
Learning 16H06563. We would like to thank the lab members in the Cognitive Neurorobotics
Research Unit and the Neural Computation Unit of Okinawa Institute of Science and Technology. In
particular, we would like to thank Ahmadreza Ahmadi for his help during model development. We
also would like to thank Steven Aird for assisting improving the manuscript.

REFERENCES

Ahmadreza Ahmadi and Jun Tani. A novel predictive-coding-inspired variational rnn model for
online prediction and recognition. Neural computation, pp. 1–50, 2019.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics, pp.
834–846, 1983.

Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks. In NIPS 2014
Workshop on Advances in Variational Inference, 2014.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Advances in neural information processing
systems, pp. 2980–2988, 2015.

Ian Danforth. Continuous CartPole for openAI Gym. https://gist.github.com/
iandanforth/e3ffb67cf3623153e968f2afdfb01dc8, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Akihiro Funamizu, Bernd Kuhn, and Kenji Doya. Neural substrate of dynamic Bayesian inference in
the cerebral cortex. Nature neuroscience, 19(12):1682, 2016.

Jan Gläscher, Nathaniel Daw, Peter Dayan, and John P O’Doherty. States versus rewards: dissociable
neural prediction error signals underlying model-based and model-free reinforcement learning.
Neuron, 66(4):585–595, 2010.

Anirudh Goyal Alias Parth Goyal, Alessandro Sordoni, Marc-Alexandre Côté, Nan Rosemary Ke,
and Yoshua Bengio. Z-forcing: Training stochastic recurrent networks. In Advances in neural
information processing systems, pp. 6713–6723, 2017.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, pp. 2450–2462, 2018.

10

https://gist.github.com/iandanforth/e3ffb67cf3623153e968f2afdfb01dc8
https://gist.github.com/iandanforth/e3ffb67cf3623153e968f2afdfb01dc8

Published as a conference paper at ICLR 2020

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1856–1865, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Dongqi Han, Kenji Doya, and Jun Tani. Self-organization of action hierarchy and compositionality
by reinforcement learning with recurrent networks. arXiv preprint arXiv:1901.10113, 2019.

Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control with
recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for pomdps. arXiv preprint arXiv:1806.02426, 2018.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859–865, 2019.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recurrent
experience replay in distributed reinforcement learning. OpenReview, 2018.

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Learning dynamics model in reinforcement learning by incorporating the long
term future. arXiv preprint arXiv:1903.01599, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953, 2019.

Sang Wan Lee, Shinsuke Shimojo, and John P O’Doherty. Neural computations underlying arbitration
between model-based and model-free learning. Neuron, 81(3):687–699, 2014.

Andrew McCallum. Overcoming incomplete perception with utile distinction memory. In Proceedings
of the Tenth International Conference on Machine Learning, pp. 190–196, 1993.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318, 2013.

11

Published as a conference paper at ICLR 2020

Jürgen Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised
neural networks for dynamic reinforcement learning and planning in non-stationary environments.
Institut für Informatik, Technische Universität München. Technical Report FKI-126, 90, 1990.

Jürgen Schmidhuber. Reinforcement learning in Markovian and non-Markovian environments. In
Advances in neural information processing systems, pp. 500–506, 1991.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Peter Smittenaar, Thomas HB FitzGerald, Vincenzo Romei, Nicholas D Wright, and Raymond J
Dolan. Disruption of dorsolateral prefrontal cortex decreases model-based in favor of model-free
control in humans. Neuron, 80(4):914–919, 2013.

Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as a
predictive map. Nature neuroscience, 20(11):1643, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

12

Published as a conference paper at ICLR 2020

A IMPLEMENTATION DETAILS

In this section we describe the details of implementing our algorithm as well as the alternative ones.
Summaries of hyperparameters can be found in Table 1 and 2.

Table 1: Shared hyperparameters for all the algorithms and tasks in the paper, adopted from the
original SAC implementation (Haarnoja et al., 2018b).

Hyperparameter Description Value

γ Discount factor 0.99
step start RL From how many steps to start training the RL controllers 1,000
train interval RL Interval of training the RL controllers 1
lr actor Learning rate for the actor 0.0003
lr critic Learning rate for the critic 0.0003
lr α Learning rate for the entropy coefficient α 0.0003
Htar Target entropy −DOF
optimizer Optimizers for all the networks Adam (Kingma & Ba, 2014)
τ Fraction of updating the target network each gradient step 0.005
policy layers MLP layer sizes for µη and πη 256, 256
value layers MLP layer sizes for Vφ and Qλ 256, 256

Table 2: Hyperparameters for the proposed algorithm.
Hyperparameter Description Value

train times FIVRM Epoches of training the first-impression model. 5,000
train interval KLVRM Interval of training the keep-learning model. 5
lr model Learning rate for the VRMs 0.0008
seq len How many steps in a sampled sequence for each update 64
batch size How many sequences to sample for each update 4

A.1 THE PROPOSED ALGORITHM

A.1.1 NETWORK ARCHITECTURES

The first-impression model and the keep-learning model adopted the same architecture. Size of d and
z is 256 and 64, respectively. We used one-hidden-layer fully-connected networks with 128 hidden
neurons for the inference models

[
µφ,t,σ

2
φ,t

]
= φ(xt,dt−1,at−1), as well as for

[
µθ,t,σ

2
θ,t

]
=

θprior(dt−1,at−1) in the generative models. For the decoder
[
µx,t,σ

2
x,t

]
= θdecoder(zt,dt−1) in

the generative models, we used 2-layers MLPs with 128 neurons in each layer. The input processing
layer fx is also an one-layer MLP with size-128. For all the Gaussian variables, output functions
for mean are linear and output functions for variance are softplus. Other activation functions of the
VRMs are tanh.

The RL controllers are the same as those in SAC-MLP (Section A.2.1) except that network inputs are
raw observations together with the RNN states from the first-impression model and the keep-learning
model.

A.1.2 INITIAL STATES OF THE VRMS

To train the VRMs, one can use a number of entire episodes as a mini-batch, using zero initial
states, as in Heess et al. (2015). However, when tackling with long episodes (e.g. there can be
1,000 steps in each episode in the robotic control tasks we used) or even infinite-horizon problems,
the computation consumption will be huge in back-propagation through time (BPTT). For better
computation efficiency, we used 4 length-64 sequences for training the RNNs, and applied the burn-in
method for providing the initial states (Kapturowski et al., 2018), or more specifically, unrolling the
RNNs using a portion of the replay sequence (burn-in period, up to 64 steps in our case) from zero

13

Published as a conference paper at ICLR 2020

initial states. We assume that proper initial states can be obtained in this way. This is crucial for the
tasks that require long-term memorization, and is helpful to reduce bias introduces by incorrect initial
states in general cases.

A.2 ALTERNATIVE ALGORITHMS

A.2.1 SAC-MLP

We followed the original implementation of SAC in (Haarnoja et al., 2018a) including hyperparame-
ters. However, we also applied automatic learning of the entropy coefficient α (inverse of the the
reward scale in Haarnoja et al. (2018a)) as introduced by the authors in Haarnoja et al. (2018b) to
avoid tuning the reward scale for each task.

A.2.2 SAC-LSTM

To apply recurrency to SAC’s function approximators, we added an LSTM network with size-256
receiving raw observations as input. The function approximators of actor and critic were the same
as those in SAC except receiving the LSTM’s output as input. The gradients can pass through the
LSTM so that the training of the LSTM and MLPs were synchronized. The training the network also
followed Section A.1.2.

A.2.3 SLAC

We mostly followed the implementation of SLAC explained in the authors’ paper (Lee et al., 2019).
One modification is that since their work was using pixels as observations, convolutional neural
networks (CNN) and transposed CNNs were chosen for input feature extracting and output decoding
layers; in our case, we replaced the CNN and transposed CNNs by 2-layers MLPs with 256 units in
each layer. In addition, the authors set the output variance σ2

y,t for each image pixel as 0.1. However,
σ2
y,t = 0.1 can be too large for joint states/velocities as observations. We found that it will lead to

better performance by setting σy,t as trainable parameters (as that in our algorithm). We also used
a 2-layer MLP with 256 units for approximating σy(xt,dt−1). To avoid network weights being
divergent, all the activation functions of the model were tanh except those for outputs.

B ENVIRONMENTS

For the robotic control tasks and the Pendulum task, we used environments (and modified them
for PO versions) from OpenAI Gym (Brockman et al., 2016). The CartPole environment with a
continuous action space was from Danforth (2018), and the codes for the sequential target reaching
tasks were provided by the authors (Han et al., 2019).

In the no-velocities cases, velocity information was removed from raw observations; while in the
velocities-only cases, only velocity information was retained in raw observations. We summarize key
information of each environment in Table 3.

The performance curves were obtained in evaluation phases in which agents used same policy but did
not update networks or record state-transition data. Each experiment was repeated using 5 different
random seeds.

C ABLATION STUDY

This section demonstrated a ablation study in which we compared the performance of the proposed
algorithm to the same but with some modification:

• With a single VRM. In this case, we used only one VRM and applied both pre-training and
smooth update to it.

• Only first-impression model. In this case, only the first-impression model was used and
pre-trained.

14

Published as a conference paper at ICLR 2020

Table 3: Information of environments we used.
Name dim(X) DOF Maximum steps

Pendulum 3 1 200
Pendulum (velocities only) 1 1 200
Pendulum (no velocities) 2 1 200
CartPole 4 1 1,000
CartPole (velocities only) 2 1 1,000
CartPole (no velocities) 2 1 1,000
RoboschoolHopper 15 3 1,000
RoboschoolHopper (velocities only) 6 3 1,000
RoboschoolHopper (no velocities) 9 3 1,000
RoboschoolWalker2d 22 6 1,000
RoboschoolWalker2d (velocities only) 9 6 1,000
RoboschoolWalker2d (no velocities) 13 6 1,000
RoboschoolAnt 28 8 1,000
RoboschoolAnt (velocities only) 11 8 1,000
RoboschoolAnt (no velocities) 17 8 1,000
Sequential goal reaching task 12 2 128

• Only keep-learning model. In this case, only the keep-learning model was used and
smooth-update was applied.
• Deterministic model. In this case, the first-imporession model and the keep-learning

model were deterministic RNNs which learned to model the state-transitions by minimizing
mean-square error between prediction and observations instead of ELBO. The network
architecture was mostly the same as the VRM expect that the inference model and the
generative model were merged into a deterministic one.

The learning curves are shown in Fig. 7. It can be seen that the proposed algorithm consistently
performed similar as or better than the modified ones.

D VISUALIZATION OF TRAINED AGENTS

Here we show actual movements of the trained robots in the PO robotic control tasks (Fig. 8). It
can be seen that the robots succeeded in learning to hop or walk, although their policy may be
sub-optimal.

E MODEL ACCURACY

As we discussed in Section 2, our algorithm relies mostly on encoding capacity of models, but does
not require models to make accurate prediction of future observations. Fig. 9 shows open-loop (using
the inference model to compute the latent variable z) and close-loop (purely using the generative
model) prediction of raw observation by the keep-learning models of randomly selected trained agents.
Here we showcase “RoboschoolHopper - velocities only” and “Pendulum - no velocities” because in
these tasks our algorithm achieved similar performance to those in fully-observable versions (Fig. 4),
although the prediction accuracy of the models was imperfect.

F SENSITIVITY TO HYPERPARAMETERS OF THE VRMS

To empirically show how choice of hyperparameters of the VRMs affect RL performance, we
conducted experiments using hyperparameters different from those used in the main study. More
specifically, the learning rate for both VRMs was randomly selected from {0.0004, 0.0006, 0.0008,
0.001} and the sequence length was randomly selected from {16, 32, 64} (the batch size was
256/(sequence length) to ensure that the total number of samples in a batch was 256 which
matched with the alternative approaches). The other hyperparameters were unchanged.

15

Published as a conference paper at ICLR 2020

The results can be checked in Fig 10 for all the environments we used. The overall performance
did not significantly change using different, random hyperparameters of the VRMs, although we
could observe significant performance improvement (e.g. RoboshoolWalker2d) or degradation (e.g.
RoboshoolHopper - velocities only) in a few tasks using different haperparameters. Therefore,
the representation learning part (VRMs) of our algorithm does not suffer from high sensitivity to
hyperparameters. This can be explained by the fact that we do not use a bootstrapping (e.g. the
estimation of targets of value functions depends on the estimation of value functions) (Sutton & Barto,
1998) update rule to train the VRMs.

G SCALABILITY

Table 4 showed scalability of our algorithm and the alternative ones.

Algorithm wall-clock time (100,000 steps) # parameters

Ours 8 hr 2.8M
SAC-MLP 1 hr 0.4M

SAC-LSTM 12 hr 1.1M
SLAC 5 hr 2.8M

Table 4: Wall-clock time and number of parameters of our algorithm and the alternative ones. The
working environment was a desktop computer using Intel i7-6850K CPU and the task is “Velocities-
only RoboschoolHopper”. The wall-clock time include training the first-impression VRM or pre-
trainings.

16

Published as a conference paper at ICLR 2020

Pendulum

0 20 40 60 80
thousand steps

-1400

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

Ours

With a single VRM

Only first-impression VRM

Only keep-learning VRM

Deterministic Model

Pendulum - velocities only

0 20 40 60 80
thousand steps

-1400

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

Pendulum - no velocities

0 20 40 60 80
thousand steps

-1400

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

CartPole

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

CartPole - velocities only

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

CartPole - no velocities

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

RoboschoolHopper

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn
RoboschoolWalker2d - velocities only

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - no velocities

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolAnt

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

Sequential target reaching task

0 50 100 150 200 250
thousand steps

0

20

40

60

80

100

su
cc

es
s

ra
te

 (
%

)

Figure 7: Learning curves of our algorithms and the modified ones.

Figure 8: Robots learned to hop or walk in PO environments using our algorithm. Each panel shows
trajectory of a trained agent (randomly selected) within one episode.

17

Published as a conference paper at ICLR 2020

RoboschoolHopper - velocities only (open loop) RoboschoolHopper - velocities only (close loop)

Pendulum - no velocities (open loop) Pendulum - no velocities (close loop)

Figure 9: Examples of observation predictions by keep-learning VRMs of trained agents.

18

Published as a conference paper at ICLR 2020

Pendulum

0 20 40 60 80 100
thousand steps

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

hyperparameters we used
random hyperparameters

Pendulum - velocities only

0 20 40 60 80 100
thousand steps

-1400

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

Pendulum - no velocities

0 50 100
thousand steps

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

CartPole

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

CartPole - velocities only

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

CartPole - no velocities

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

RoboschoolHopper

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn
RoboschoolHopper - velocities only

0 200 400 600 800 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - no velocities

0 200 400 600 800 1000 1200
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d

0 200 400 600 800 1000 1200
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - velocities only

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - no velocities

0 200 400 600 800 1000 1200
thousand steps

0

500

1000

1500
av

er
ag

e
re

tu
rn

RoboschoolAnt

0 200 400 600 800 1000 1200
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

Sequential target reaching task

0 50 100 150 200 250
thousand steps

0

20

40

60

80

100

su
cc

es
s

ra
te

Figure 10: The learning curves of our algorithm using the hyperparameters for the VRMs used in
the paper (Table 2), and using a range of random hyperparameters (Appendix F). Data are Mean ±
S.E.M., obtained from 20 repeats using different random seeds.

19

	Introduction
	Related Work
	Background
	Partially Observable Markov Decision Processes
	Variational Recurrent Neural Networks
	Soft Actor Critic

	Methods
	Variational Recurrent State-Transition Models
	Reinforcement Learning Controllers

	Results
	Partially Observable Classic Control Tasks
	Partially Observable Robotic Control Tasks
	Long-Term Memorization Tasks
	Convergence of the keep-learning VRM

	Discussion
	Implementation Details
	The Proposed Algorithm
	Network architectures
	Initial states of the VRMs

	Alternative algorithms
	SAC-MLP
	SAC-LSTM
	SLAC

	Environments
	Ablation Study
	Visualization of Trained Agents
	Model Accuracy
	Sensitivity to Hyperparameters of the VRMs
	Scalability

