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Neurons are highly polarized cells with an elongated axon that extends far away
from the cell body. To maintain their homeostasis, neurons rely extensively on
axonal transport of membranous organelles and other molecular complexes. Axonal
transport allows for spatio-temporal activation and modulation of numerous molecular
cascades, thus playing a central role in the establishment of neuronal polarity, axonal
growth and stabilization, and synapses formation. Anterograde and retrograde axonal
transport are supported by various molecular motors, such as kinesins and dynein,
and a complex microtubule network. In this review article, we will primarily discuss
the molecular mechanisms underlying anterograde axonal transport and its role in
neuronal development and maturation, including the establishment of functional synaptic
connections. We will then provide an overview of the molecular and cellular perturbations
that affect axonal transport and are often associated with axonal degeneration. Lastly,
we will relate our current understanding of the role of axonal trafficking concerning
anterograde trafficking of mRNA and its involvement in the maintenance of the axonal
compartment and disease.

Keywords: kinesin, intracellular transport, axon growth, synaptogenesis, neurodegeneration, local translation,
liquid phase separation

INTRODUCTION

From the discovery of kinesin-1 (Vale et al., 1985) and cytoplasmic dynein (Paschal et al.,
1987) in the late 20th century and their initial characterization as anterograde and retrograde
motors, respectively (Hirokawa et al., 1990, 1991), substantial effort has been made to decipher
their role in neuronal development, connectivity, and synaptogenesis. Since neurons are highly
polarized cells with a heavily arborized dendritic network and an elongated axon that can
extend over a meter away from their soma, they rely extensively on efficient intracellular
transport for the targeting and sorting of proteins and organelles from the soma to their neurite
network, where the transfer of information between presynaptic neurons and postsynaptic
cells occurs (Südhof, 2018). The somatodendritic and axonal domains have distinct traffic
properties and show selectivity towards specific populations of carrier vesicles (Farías et al.,
2015). Indeed most somatodendritic vesicles fail to enter the axonal compartment at the
level of the axon initial segment (AIS), a highly ordered specialized region of the proximal
axon, which acts as a barrier to the diffusion of proteins and lipids between the two compartments
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(Farías et al., 2015). Long-range trafficking is largely performed
by several motor proteins of the kinesin superfamily and
cytoplasmic dynein (Hirokawa and Tanaka, 2015; Reck-Peterson
et al., 2018). Kinesins mostly deliver their cargoes toward the
periphery, while dynein moves in the opposite direction toward
the center of the cell (Figure 1A).

Intracellular transport is a fundamental mechanism
underlying a variety of neuronal processes, including the
establishment of cell polarity, axon growth or regeneration,
synaptogenesis, and synaptic transmission and plasticity. Thus,
axonal transport has been extensively studied in the past
decades. Although the biochemical mechanisms of molecular
motors-based transport are well understood, many of the
regulatory pathways remain poorly understood, particularly
in connection with pathology. It is not surprising to observe
that axonal transport perturbations are often associated
with severe neurodegenerative pathologies, though whether
they are the direct cause or the result of these pathologies
remains an open question. Indeed, the nervous system can be
affected by a variety of adult-onset neurodegenerative diseases,
which are characterized by early synaptic deficit and neurite
dysfunction, a phenomenon referred to as ‘‘dying back’’ (Brady
and Morfini, 2017). Thus, axonal homeostasis is often affected
well before degenerative symptoms can manifest themselves
at the level of the neuronal soma. Several pieces of evidence
have shown a correlation between mutation of components of
the transport machinery (microtubule, molecular motors, and
molecular adaptors) and the genesis of neurodevelopmental
and neurodegenerative diseases (Maday et al., 2014; Beijer et al.,
2019; Sleigh et al., 2019). Also, impairment of axonal transport
has been reported in a multitude of neurological disorders that
are not directly linked to mutations of proteins belonging to the
transport machinery (Sleigh et al., 2019).

Some cargoes are transported along axons anterogradely,
some retrogradely and some bidirectionally. Synaptic vesicles,
neurofilaments (NFs), and cytosolic proteins are examples of
cargoes transported in anterograde fashion while signaling
endosomes, autophagosomes, and injury signals are transported
retrogradely (Olenick and Holzbaur, 2019). Mitochondria,
certain endosomal populations, lysosomes, and mRNAs are
transported in a bi-directional manner (Olenick and Holzbaur,
2019). Adaptor proteins selectively recruit molecular motors
to specific cargoes targeting them to different transport
pathways, which are often interdependent if not convergent
(Jean and Kiger, 2012). Interestingly, the aforementioned routes
of cargo transport in axons are also taken advantage of by
external pathogens such as viruses (Taylor and Enquist, 2015).
Even though the two routes are often interdependent as
previously mentioned, we will concentrate on the mechanisms
of anterograde axonal transport of membrane-bound and
membrane-less organelles in neuronal physiology, focusing on
several key aspects of axonal growth and synaptogenesis, and
other cellular mechanisms such as local mRNA translation
and liquid phase separation (LPS) that are likely to be
fundamental actors in the regulation of axonal homeostasis
and functions. We will also address the links between axonal
transport dysfunctions and neurodegeneration, focusing on few

neurodegenerative diseases as an example of how defects in
anterograde axonal transport can result in neurodegeneration.
Though outside of the scope of this review, an extensive wealth
of evidence links neurodegeneration and retrograde axonal
transport. For extensive coverage of these pathologies and their
link to intracellular transport please refer to these comprehensive
reviews (Schiavo et al., 2013; De Vos and Hafezparast, 2017;
Beijer et al., 2019). We will also briefly discuss the contribution
of the cytoskeleton as a necessary platform to facilitate long-range
trafficking of mitochondria, which, while moving bidirectionally,
need to be addressed as they represent the main source of energy
for intracellular transport.

CYTOSKELETAL ELEMENTS OF AXONAL
TRANSPORT

Due to their extremely polarized morphology and their status
of postmitotic cells, neurons need to maintain a solid structural
cytoskeleton, which is composed of microtubules (MTs),
intermediate filaments, and actin filaments. This structure is
fundamental to neuronal function and its disruption is associated
with neurodegeneration (Beijer et al., 2019).

Active axonal transport of proteins and membranous
organelles takes place along MTs (Weisenberg, 1972; Desai and
Mitchison, 1997), upon which molecular motors of the kinesin
superfamily (Vale et al., 1985; Hirokawa et al., 1989; Lawrence
et al., 2004), and cytoplasmic dynein (Paschal and Vallee, 1987;
Reck-Peterson et al., 2018) are loaded (Figure 1A). Axonal MTs
are longitudinally aligned with their growing plus-end directed
towards the axon tip; a large number of kinesins are moving
from MT minus to plus-end in a processive manner, while
dynein goes in the opposite direction (Howard et al., 1989; Wang
et al., 2015). In addition to MTs, NFs are the most abundant
cytoskeletal component in axons and control axonal diameter
(Grant and Pant, 2000). NFs are formed by neurofilament light
(NF-L), medium (NF-M), and heavy (NF-H) chains, apart from
the peripheral nervous system, where they contain peripherin
as well (Grant and Pant, 2000). While kinesins and dynein
are MT associated motors, a third family of molecular motors,
myosins, is reliant on actin filaments (Xiao et al., 2016; Beijer
et al., 2019). Interestingly, Myosin Va can couple MT and Actin
filament-based transport via its interaction with Kinesin heavy
chain and NF-L, thus helping to regulate the cargo distribution
across the cytoskeleton (Cao et al., 2004; Rao et al., 2011).

Neuropathologies Related to Cytoskeletal
Defects
In light of their essential structural function in axons, NFs are
critical for axonal transport. NF-L in particular has been shown
to regulate NF integrity and their axonal transport (Yates et al.,
2009). Not surprisingly, alteration of cytoskeletal elements has
been described in several neurodegenerative diseases, where
either cytoskeletal proteins or their adaptor/regulators are
mutated (Beijer et al., 2019). Perhaps one of the best examples
of such pathologies is the Charcot-Marie-Tooth disease
(CMT), which is the most common hereditary neuropathy,
characterized by distal muscular atrophy and sensory loss
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FIGURE 1 | (A) Microtubule (MT)-based transport machinery. Schematic representation showing how different molecular motors move along MTs toward MT
plus-end (kinesins) or MT minus-end (dynein). Kinesins and dyneins motor domain bind to MT through their globular head domains which hydrolyze ATP during
movement. Anterograde or retrograde cargoes bind to the tail domain of the motor either directly or through light/intermediate chains or adaptors. (B)
Kinesin-mediated anterograde transport during axon elongation and synaptogenesis. Anterograde microtubule-dependent movements of membranous organelles
and RNA granules are supported by various plus-end-directed kinesin motors. Organelles such as mitochondria, vesicles, RNA are transported from the soma
toward axon tip during axonal growth and synapse formation. In the absence of motor activity, some kinesins also contribute to MT depolymerization during growth
cone retraction.
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(Züchner and Vance, 2006). CMT subtype E (CMT2E) is
associated with mutations affecting the integrity of the neuronal
cytoskeleton, where mutant NF-L disrupts neurofilament
assembly and axonal transport (Jordanova et al., 2003; Lancaster
et al., 2018), which in turn perturbs mitochondrial distribution,
determining their accumulation within cell bodies and proximal
axons (Brownlees et al., 2002). A recessive nonsense mutation
was identified in an early-onset CMT patient, which causes a
nearly total loss of NF-L mRNA and the subsequent depletion
of NF-L protein in patient’s cultured neurons (Sainio et al.,
2018). Mutations of different functional NF-L domains were
also shown to have different effects on filament assembly, with
the Q333P mutation leading to reduced NF dimerization (Gentil
et al., 2013), while the P8L mutation of the head domain affects
NF-L phosphorylation, resulting in the destabilization of NF
complexes (Brownlees et al., 2002).

NF-H mutations have also been implicated in CMT. A
frameshift variant of NF-H leading to the translation of the
3′UTR has been described in families affected by CMT (Rebelo
et al., 2016) and shown to result in prominent intracellular
protein aggregation, affecting motor neuron viability (Rebelo
et al., 2016). These aggregates are recognized by the autophagic
pathway, triggering caspase 3 activation, and apoptosis
(Jacquier et al., 2017).

While CMT has been associated with direct mutations of
cytoskeletal proteins, disruption of MTs can also occur indirectly
as a consequence of the mutation of partner proteins that act as
MT adaptors and/or interactors. Indeed, mutations of the small
heat shock protein HSPB1 and HSPB8 cause distal hereditary
motor neuropathy (dHMN) and CMT, and are associated with
cytoskeletal abnormality (d’Ydewalle et al., 2011; Irobi et al.,
2012; Bouhy et al., 2018). S135F and P182L mutations of
HSPB1 were shown to decrease acetylated α-tubulin abundance,
severely affecting axonal transport (d’Ydewalle et al., 2011).
Furthermore, HSPB1-P182L mutation affects the assembly and
transport of NFs, leading to the formation of intracellular
aggregates, which include NF-M (Ackerley et al., 2006).

Though the list of neuronal pathologies displaying
cytoskeletal defects is constantly growing, we would like
to discuss briefly two additional diseases, as an example of
pathologies where alteration of cytoskeletal elements is a
hallmark of the disease.

Hereditary spastic paraplegia (HSP) is a pathology that leads
to axonal degeneration in the corticospinal tracts and, to a lesser
extent, in the dorsal column fibers (Shribman et al., 2019). HSP
displays perhaps one of the strongest examples of the correlation
between defective axonal transport and neurodegeneration
(Dion et al., 2009) since most of the genes implicated in HSP
encode for proteins that are engaged in intracellular trafficking.
The most prevalent form of autosomal dominant HSP stems
from point mutation or deletion in the SPG4 gene encoding
spastin, a protein involved in MT severing (Roll-Mecak and
Vale, 2008). Spastin deletion in mice resulted in defective axonal
trafficking, manifested as the accumulation of organelles and
NF into focal swellings found exclusively in axonal regions
that exhibited fast transition between MT stabilization states
(Tarrade et al., 2006). Furthermore, spastin mutants fail to sever

MTs, leading to the mislocalization of intracellular organelles
(McDermott et al., 2003). A spastin isoform has also been shown
to significantly impair fast axonal transport (Solowska et al.,
2008) via the activation of kinases and phosphatases that play
a major role in regulating motor proteins binding to MT and
cargoes (Leo et al., 2017). Alteration of MT bundling could also
contribute to the disease since spastin was described to be able to
bundle MTs in vitro (Salinas et al., 2007).

Interestingly, NFs are used as a clinical biomarker in a
sporadic and clinical trial for several neurodegenerative diseases,
including ALS (Loeffler et al., 2020). Indeed, accumulation of
intermediate filament proteins including peripherin is a common
pathological feature in both sporadic and familial ALS (Figlewicz
et al., 1994; Tomkins et al., 1998; Al-Chalabi et al., 1999;
Gros-Louis et al., 2004). NF-H side arm phosphorylation has
been reported to slow down the axonal transport of NF by
increasing its pausing (Ackerley et al., 2003). Alteration in the
stoichiometry of NF subunits has been linked to ALS, while NF
side arm phosphorylation is induced by excitotoxic glutamate-
mediated activation of JNK, p38 and CDK-p25 kinase (Bajaj
and Miller, 1997; Ackerley et al., 2000, 2004). Overexpression
of NF-H, NF-L, or peripherin in mice recapitulated the disease
pathological features (Collard et al., 1995; Millecamps et al.,
2006). Also, TAR DNA-binding protein 43 (TDP-43), one of the
key proteins identified in ALS patients neuronal inclusions, can
interact with the neuronal cytoskeleton (reviewed in Oberstadt
et al., 2018; Hergesheimer et al., 2019), has been shown to alter
the stability of NF-L mRNA when mutated (Volkening et al.,
2009; Prasad et al., 2019) and impair trafficking and anterograde
transport of messenger ribonucleoprotein (mRNP) granules
(Alami et al., 2014). Furthermore, loss of function mutations in
tubulin alpha 4A protein (TUBA4A) that disrupt MT stability
and diminish their repolymerization have been documented in
familial ALS cases (Smith et al., 2014), though their impact on
axonal trafficking has not been fully elucidated yet. However,
since MT stability is central to axonal trafficking, it is likely to
be detrimental.

MOLECULAR DRIVERS OF
ANTEROGRADE AXONAL TRANSPORT
AND THEIR ROLE IN
NEURODEGENERATIVE DISEASES

The Kinesin Family of Molecular Motors
A total of 45 genes organized in 15 families are associated
with kinesins (also called KIFs) in the human genome (Miki
et al., 2001; Lawrence et al., 2004; Hirokawa and Tanaka, 2015;
Nabb et al., 2020; Table 1). Kinesin-1, kinesin-2, kinesin-3
and to a lesser extent kinesin-4 subfamily members are
implicated in both fast (50–400 mm/day) and slow (less
than 8 mm/day) axonal transport (Maday et al., 2014). Fast
axonal transport traffics membranous organelles, proteins,
and mRNA granules, while slow axonal transport moves
MT/NF fragments or other cytosolic proteins necessary for the
establishment of neuronal polarity, axon growth and synapse
formation (Hirokawa and Tanaka, 2015; Nabb et al., 2020).
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TABLE 1 | Kinesin superfamily classification.

Kinesin family KIFs Reported axonal
localization

References

Kinesin-1 KIF5A, KIF5B, KIF5C KIF5A, KIF5B, KIF5C (Xia et al., 2003; Colin et al., 2008; Ma et al., 2009; Nakajima et al.,
2012; Su et al., 2013; Campbell et al., 2014; Xiao et al., 2016)

Kinesin-2 KIF3A, KIF3B, KIF3C, KIF17 KIF3A, KIF3B, KIF3C Takeda et al. (2000) and Nishimura T. et al. (2004)
Kinesin-3 KIF1A, KIF1B, KIF1C, KIF13A, KIF13B,

KIF14, KIF16A, KIF16B
KIF1A, KIF1B, KIF3B Okada et al. (1995), Yonekawa et al. (1998), Miller et al. (2005),

Horiguchi et al. (2006), Niwa et al. (2008), Yoshimura et al. (2010),
Lo et al. (2011), Kondo et al. (2012), Bharat et al. (2017), Zhang
et al. (2017) and Stucchi et al. (2018)

Kinesin-4 KIF4A, KIF4B, KIF7, KIF21A, KIF21B,
KIF27

KIF4A, KIF21A, KIF21B Sekine et al. (1994), Midorikawa et al. (2006), Bisbal et al. (2009),
Lee et al. (2012), van der Vaart et al. (2013), Heintz et al. (2014)
and Swarnkar et al. (2018)

Kinesin-5 KIF11 KIF11 Swarnkar et al. (2018)
Kinesin-6 KIF20A, KIF20B, KIF23 KIF20B, KIF23 Lin et al. (2012), Sapir et al. (2013) and McNeely et al. (2017)
Kinesin-7 KIF10
Kinesin-8 KIF18A, KIF18B, KIF19
Kinesin-9 KIF6, KIF9
Kinesin-10 KIF22 KIF22 Park et al. (2016)
Kinesin-11 KIF26A, KIF26B KIF26A Zhou et al. (2009) and Wang et al. (2018)
Kinesin-12 KIF12, KIF15
Kinesin-13 KIF2A, KIF2B, KIF2C, KIF24 KIF2A Morfini et al. (1997), Homma et al. (2003, 2018) and Pfenninger

et al. (2003)
Kinesin-14 KIF25, KIFC1, KIFC2, KIFC3 KIFC1 Muralidharan and Baas (2019)

The members of each family are listed, including KIFs that have been documented in axons (separate columns). References are given for the axonal KIFs.

Plasma membrane proteins generally originated in the rough
endoplasmic reticulum at the level of the neuronal soma,
must also be delivered peripherally by specialized transport
vesicles, and be sorted separately, depending on their axonal or
dendritic localization (Bentley and Banker, 2016; Nabb et al.,
2020). Kinesin complexes are composed of a globular motor
domain, which binds and moves along the MT lattice upon ATP
hydrolysis (Hua et al., 1997; Schnitzer and Block, 1997; Kon et al.,
2005; Wang et al., 2015), and a tail domain that contributes
to the motor auto-inhibition mechanism and the recruitment
of various cargoes either directly or through interaction with
intermediate scaffolding complexes (Hirokawa et al., 2010). It
has been reported that a single cargo could be associated with
several motors proteins and the resulting force produced by the
ratio between plus-end and minus-end directed motors might
determine the final directionality of the movement (Kural et al.,
2005; Hendricks et al., 2010), however, only a few cargoes were
addressed in this work and it remains unclear whether these
findings extend to other cargoes as well. The binding of the
cargoes to the motor complex via kinesin light chains in the
soma, and their release at their final destination, often depends
on phosphorylation/dephosphorylation of the motor (Horiuchi
et al., 2007; Guillaud et al., 2008; Verhey and Hammond, 2009).

While the motor domain is highly conserved and
well-characterized in its structure and function (Sweeney
and Holzbaur, 2018), the tail domain is more variable and
less understood (Nabb et al., 2020). Most work regarding the
tail domain characterization has been the focus on kinesin-1
(KIF5A/B/C) and kinesin-3 (KIF1A) family members, which
are most studied motors responsible for anterograde transport
in the axon, and for which a large number of adaptor proteins
mediating their binding to a different population of vesicles has
been identified (Verhey et al., 2001; Setou et al., 2002; Wang

and Schwarz, 2009; Fu and Holzbaur, 2014). Our knowledge
of adaptor proteins for other kinesin families is less defined
and the complexity of these interactions is enhanced by the
number of vesicle populations in neurons and the need for fine
sorting compounded by the extreme neuronal morphology.
Indeed, selective anterograde transport in axons and dendrites is
essential for the maintenance of neuronal function and polarity,
as proteins and vesicles move in one of these compartments and
are excluded from the other (Nabb et al., 2020). We will address
some of the adaptor proteins involved in this sorting in the
following sections, but a more extensive and detailed coverage
can be found in this review (Nabb et al., 2020).

The regulation of transport initiation is a critical aspect
of kinesin’s ability to mediate axonal transport. Indeed, free
cytosolic kinesin-1 and 3 are blocked in an autoinhibited state
and can only bind to MTs after a conformational change made
possible by their interaction with their cargo (Guedes-Dias
and Holzbaur, 2019). Said binding depends on electrostatic
interactions between kinesin and tubulin (Woehlke et al., 1997),
and the interaction between motor and MTs seems to be stronger
for kinesin 3 compared to kinesin-1 (Okada and Hirokawa, 2000;
Atherton et al., 2014; Soppina and Verhey, 2014; Lessard et al.,
2019). The nucleotide state of MTs can also influence the binding
of kinesin-3, which displays higher affinity for GTP-like MTs
(Guedes-Dias et al., 2019), while kinesin-1 preferences are
still unclear (Nakata et al., 2011; Li et al., 2017; Guedes-Dias
et al., 2019). A well-known example of MAPs, which has been
reported to inhibit the binding and motility of kinesin-1 is
Tau (Dixit et al., 2008; Kellogg et al., 2018; Monroy et al.,
2018). Interestingly, Tau mutations account for approximately
50% of cases of Frontotemporal Dementia and Parkinsonism
linked to chromosome 17 (FTDP-17), which is characterized
by progressive dementia with gradual functional decline (Siuda
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et al., 2014; Ikeda et al., 2019). However, a large percentage of
familiar FTDP-17 are also associated with concurrent mutation
of the progranulin (GRN) gene linked to a similar region on
chromosome 17 (Forrest et al., 2018). MAP7 on the other hand
facilitates the binding of kinesin-1 to MTs via its interaction with
the stalk domain (Monroy et al., 2018; Hooikaas et al., 2019).
Said interaction was recently shown to be important for axonal
sorting of cargoes, as MAP7D2 isoform preferentially localizes
to MTs in the proximal axon region, where it recruits kinesin-1
(Pan et al., 2019).

Kinesin-Based Transport Role in Axonal
Growth, Brain Wiring, and Neuronal
Development
After the establishment of neuronal polarity, axonal elongation is
sustained by the addition of membranes to neurite growing tips
(Figure 1B). Indeed, plasma membrane precursors and vesicles
transported by kinesin-driven axonal anterograde transport
from the soma toward the growth cone are crucial to axonal
development and wiring (Guedes-Dias and Holzbaur, 2019).
KIF13B, for example, anterogradely transports PIP3-containing
vesicle, regulating the establishment of neuronal polarity
(Horiguchi et al., 2006). Knockdown of KIF13B in hippocampal
neurons results in an ‘‘axonless’’ phenotype and Par1b/MARK2-
mediated phosphorylation of KIF13B was shown to mediate axon
formation (Yoshimura et al., 2010). In PC12 cells, KIF2 deletion
inhibits anterograde transport of membranous vesicles and
associated receptors, negatively impacting neurite outgrowth
(Morfini et al., 1997). KIF2-dependent translocation of IGF-1
receptor stimulates membrane expansion and axonal assembly at
growth cone via exocytosis of plasmalemmal precursor vesicles
in hippocampal neurons (Pfenninger et al., 2003). KIF3 and
KIF4 have also been shown to transport membranous organelles
through the interaction with fodrin (Takeda et al., 2000) and an
unidentified binding protein (Sekine et al., 1994) respectively.
KIF3A mediates the transport of PAR-3 to the distal tip of axon
in hippocampal neurons, where disruption of PAR-3-KIF3A
binding significantly impairs the establishment of neuronal
polarity (Nishimura T. et al., 2004). Recently, anterograde axonal
transport of lysosome-related organelles is critical for presynaptic
biogenesis (Vukoja et al., 2018). Indeed, loss of the kinesin
adaptor Arl8 was found to result in an impaired delivery of
essential components to the presynaptic site, leading to defects
in neurotransmission (Vukoja et al., 2018).

Also, in order to deliver additional plasma membrane to
axon tips, axonal transport traffics cytoskeletal components, and
mitochondria, providing the structural framework and energy
required to support axonal growth (Maday et al., 2014). In
Zebrafish, KIF5A transports mitochondria into sensory axons
through its C-terminal interaction with the adaptors Trak1 and
Miro1/2 (Campbell et al., 2014). Mutation in KIF5A significantly
reduces the proportion and speed of anterogradely moving
mitochondria, resulting in a deficit in axonal mitochondria,
which promotes axonal degeneration. In addition to fast axonal
transport of mitochondria, KIF5A is also involved in slow axonal
transports of NFs. Indeed, NF-H, NF-M, and NF-L accumulate

in the soma of peripheral sensory neurons in KIF5A inducible
knock-out mice. Such somatic accumulation of neurofilament
proteins results in axonal reductions, loss of large-caliber axons,
and degeneration (Xia et al., 2003; Xiao et al., 2016). Interestingly,
KIF5A participates in both fast (mitochondria) and slow (NFs)
anterograde axonal transport, simultaneously contributing to the
delivery of energy and the structural scaffolds necessary for the
elongation and maintenance of axon growth.

Another kinesin, KIF4A, carries integrin β1 into immature
axons. Indeed, It was shown that depletion of KIF4A by shRNA
negatively impacts the level of integrin β1 in developing axons
and reduces axon elongation in embryonic neurons (Heintz et al.,
2014), highlighting the essential role of integrin transport in
axonal elongation and initial wiring between immature neurons.
It has been previously reported that KIF4A also acts as a regulator
of neuronal survival through its interaction and suppression of
PARP1 activity in the nucleus; indeed, membrane depolarization
induces CaMKII-Ca2+ phosphorylation of PARP1, determining
its activation after dissociation from KIF4A (Midorikawa et al.,
2006). Activation of PARP1 protects mature neurons from
apoptosis and allows KIF4A to translocate into the cytoplasm
to participate in active transport (Midorikawa et al., 2006).
Taken together these observations support a dual function of
KIF4A during neuronal development, with KIF4A promoting
axonal elongation and connectivity in immature neurons, while
protecting mature neurons from apoptosis, thus stabilizing a
functional neuronal network. KIF4 was shown to transport
anterogradely the P0 protein component of ribosomes along
axons (Bisbal et al., 2009). Knockdown of KIF4 in dorsal root
ganglion neurons leads to the accumulation of ribosomes in the
soma and their disappearance from axons (Bisbal et al., 2009),
negatively impacting axonal local protein translation.

Various cellular processes promote growth cone retraction
and axonal degeneration of collaterals and branches that failed
to establish functional contacts. Kinesin-13 family members,
including KIF2A and KIF2C, are important for the homeostatic
regulation of neuronal connectivity and brain wiring. KIF2A
particularly, while in absence of detectable motor activity,
acts as MTs depolymerizer in growth cones to suppress axon
collaterals (Homma et al., 2003). Indeed, it has been shown that
conditional knock-out of KIF2A promotes mossy fiber sprouting
and dendro-axonal conversion of dentate gyrus (DG) cells with
aberrant over-extended dendrites gradually acquiring axonal
properties in the DG (Homma et al., 2018). Thus, while lacking
anterograde motor activity, KIF2A appears to be an essential
regulator of neuronal connectivity and the establishment of
precise postnatal hippocampal wiring, by determining the
pruning of growth cones failing to connect to their postsynaptic
target (Figure 1B).

Axonal Trafficking During Synaptogenesis
and Synaptic Transmission
In addition to the establishment and stabilization of neuronal
connections, the formation and maintenance of functional
synapses are also largely dependent on axonal transport
mechanisms. Indeed, synaptic vesicle precursors (SVPs) are
known to be transported anterogradely by members of kinesin-3
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family, such as KIF1A and KIF1B (Okada et al., 1995). In KIF1A
knock-out mice, neurons accumulate SVPs in the soma and
fail to establish normal synaptic connections (Yonekawa et al.,
1998), while overexpressing KIF1A promotes the formation of
presynaptic terminals (Kondo et al., 2012). SVPs are transported
by KIF1A and KIF1B via either liprin-α or DENN/MADD
scaffolding complexes (Miller et al., 2005; Niwa et al., 2008).
After the delivery to a presynaptic bouton, SVPs can be recycled
directly in the terminal (Miller et al., 2005). KIF1A is also believed
to contribute to the active transport of synaptic vesicles between
neighboring presynaptic release sites, a pool of vesicles referred
to as synaptic vesicle ‘‘super pool’’ (Staras et al., 2010). In cultured
giant presynaptic terminals, an axosomatic relay synapse in the
auditory brainstem considered one of the largest mammalian
excitatory synapses, where MTs depolymerization significantly
disrupts the fast-directional transport of the vesicles between
neighboring release sites, KIF1A has been found to colocalize
with two synaptic vesicles markers, synaptophysin and VGLUT1
(Guillaud et al., 2017). These observations suggest that, in mature
synapses, KIF1A-mediated transport plays a significant role in
the trafficking and delivery of SVPs and fully functional synaptic
vesicles during synaptic transmission (Figure 1B). Indeed,
KIF1A homolog Unc-104 is involved in synapse maturation
and synaptic transmission (Zhang et al., 2017). KIF1A and
KIF1B also contribute to the anterograde transport of dense-core
vesicles (DCVs), through interaction with liprin-α (Lo et al.,
2011), in a way that is regulated by Ca2+ (Stucchi et al., 2018) or
through JNK-dependent phosphorylation of synaptotagmin-4
(Bharat et al., 2017). Interestingly, KIF1A associates with
DCVs containing Chromogranin-A or BDNF, which move
both anterogradely and retrogradely in axons, suggesting that
KIF1A might remain attached to DCVs undergoing retrograde
transport after the release of BDNF (Stucchi et al., 2018).
The anterograde transport from the soma to the synapse
of BDNF-containing DCVs is also mediated by KIF5 and
its interaction with phosphorylated huntingtin, while their
retrograde transport depends on non-phosphorylated huntingtin
(Colin et al., 2008). The redundancy of DCVs-transport
mechanisms highlights the importance of DCVs targeting
and accumulation in the presynaptic compartment and their
putative roles in synapse maturation and homeostatic plasticity
(Sorra et al., 2006; Tao et al., 2018).

Receptors and voltage-gated channels also need to be
efficiently delivered to the synapse to guarantee synaptic
transmission. Indeed, conditional KIF5A knock-out mice show
behavioral deficits reminiscent of epilepsy, which correlate
with a significant reduction in the surface expression of
GABA receptors (Nakajima et al., 2012). KIF5A is reported to
interact specifically with GABAR-associated protein known to be
involved in GABA receptors trafficking, suggesting an important
role for KIF5A-mediated transport in inhibitory synaptic
transmission. Additionally, KIF5B stalk domain has been shown
to directly interact with voltage-gated sodium channel Na1.8 and
its overexpression promotes Na1.8 accumulation and neuronal
excitability in axons of DRG neurons (Su et al., 2013), suggesting
that KIF5B is required for the anterograde transport and function
of voltage-gated sodium channels in physiological condition. The

correlation between increase in the transport of Na1.8 and KIF5B
in pathological conditions, however, needs further investigation
(Bao, 2015), and the transport mechanisms of Na1.8 and
other sodium channels remain to be fully elucidated. KIF5B-
syntabulin-mediated anterograde transport of mitochondria was
also shown to be essential for synaptic maturation, basal and
sustained neurotransmitter release, and short-term presynaptic
plasticity in superior cervical ganglia (SCG) neurons (Ma et al.,
2009). Syntabulin is a syntaxin-binding protein that links vesicles
to kinesin heavy chain and thus transports syntaxin-containing
vesicles into neuronal processes, and its impairment causes a
reduction of mitochondria along the axon, correlating with an
acceleration of synaptic depression and the slowdown of the
recovery rate after synaptic vesicle depletion (Ma et al., 2009).

Neurodegenerative Diseases Linked to
Kinesin Mutations
In support of their fundamental role in driving axonal transport,
mutations of kinesin motors are associated with a spectrum
of neurodegenerative diseases (Beijer et al., 2019; Figure 2).
De novo mutations of KIF1A have been found in conjunction
with cerebellar atrophy, spastic paraparesis, optic nerve atrophy,
peripheral neuropathy, epilepsy and cognitive impairment
(Citterio et al., 2015; Esmaeeli Nieh et al., 2015; Lee et al., 2015;
Ylikallio et al., 2015; Cheon et al., 2017). Some of these mutations
are critical for the structure and function of the motor domain
and affect axonal transport (Klebe et al., 2012; Lee et al., 2015;
Langlois et al., 2016; Samanta and Gokden, 2019). KIF1A was
also found mutated in the hereditary sensory and autonomic
neuropathy type II (HSANII), an autosomal-recessive disorder
characterized by peripheral nerve degeneration (Rivière et al.,
2011). More recently, a missense mutation in KIF1A has been
shown to increase excitatory synaptic functions in hippocampal
neurons and epileptic seizure-like activity in Zebrafish, indicating
a direct link between disruption of KIF1A-mediated axonal
transport and epileptogenesis (Guo et al., 2020).

KIF5A variants have also been implicated in
neurodegenerative diseases such as CMT2, HSP, and ALS
(Brenner et al., 2018; Citrigno et al., 2018; Filosto et al., 2018;
Nam et al., 2018). Interestingly, the site of the mutation correlates
with the clinical phenotype. Indeed, mutations in the motor
or neck domain are associated with CMT2 and HSP, while
a mutation of KIF5A C-terminus and a mutation that affect
splicing are linked to an intermediate slowly progressive form
of ALS (Brenner et al., 2018; Citrigno et al., 2018; Filosto et al.,
2018; Nam et al., 2018). Several mutations of KIF5A neck
and motor domain leading to HSP have been characterized in
detail in vitro and have been found to exhibit reduced ATPase
activity, microtubule affinity and gliding velocity, which affect
the processivity and directionality of the motor and can result
in reduced cargo flux and consequent deficient synaptic supply
(Ebbing et al., 2008; Goizet et al., 2009; Jennings et al., 2017;
Dutta et al., 2018).

An autosomal dominant mutation of KIF1Bβ, Q98L, which
decreases ATPase activity and motor motility, was initially
reported to cause CMT2A in a limited number of pedigrees
(Zhao et al., 2001). The lack of confirmation in additional
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families, however, cast some doubts on the relevance of the
mutation (Drew et al., 2015). Recently, a novel KIF1Bβ mutation,
Y1087C, was identified in connection with CMT2 (Xu et al.,
2018). This mutation was shown to impair the binding between
KIF1Bβ and the insulin-like growth factor 1 receptor (IGF1R),
affecting IGF1R axonal transport, decreasing its exposure on the
neuronal surface and consequently negatively impacting Insulin
growth factor 1 (IGF-1) signaling, which is essential for neuronal
development and survival (Xu et al., 2018). However, whether
this mutation is causative of CMT2 or a polymorphism altering
IGF1R trafficking is still an object of debate, since the frequency
of the Y1087C mutation is much higher than the total amount of
CMT2 cases.

REFUELING AXONS AND SYNAPSES,
TRAFFICKING OF MITOCHONDRIA AND
mRNA GRANULES

Mitochondrial Trafficking
The homeostatic regulation of axonal growth, neuronal wiring,
and synaptic transmission require an extensive amount of energy
and rapid protein turnover in the axons, growth cones, and
presynaptic terminals, which need to be supported by local
production of ATP and proteins along the axon and at the
synapse. Axonal transport plays a key role in these phenomena.
In addition to the aforementioned syntabulin and Trak1/Miro,
RanBP2 (Cho et al., 2007) and FEZ1 (Ikuta et al., 2007) have
also been reported to recruit KIF5B and KIF5C to mitochondria
and regulate their mobility and trafficking in axons. Interestingly,
abnormal co-aggregates of FEZ1 and Kinesin-1 were described in
the brains of mouse models of Alzheimer’s disease, suggesting
a perturbation of FEZ1-mediated synaptic protein delivery
(Butkevich et al., 2016). The existence of several mitochondria
adaptor complexes reflects the importance of the axonal
transport of mitochondria for the local production of ATP
needed to sustain axonal functions (Saxton and Hollenbeck,
2012). Therefore, it is not surprising that, even in the absence of
KIF5 mediated transport, a limited fraction of mitochondria is
still transported by other kinesins. Indeed, KIF1Bα and KIF1C
have been reported to contribute to mitochondria transport
through interaction with KBP (Nangaku et al., 1994; Wozniak
et al., 2005), as well as KLP6, an uncharacterized kinesin homolog
that regulates both mitochondrial morphology and transport
(Tanaka et al., 2011).

Transported axonal mitochondria need to remain functional
to provide adequate energy support over long distances. Thus,
mutations affecting the integrity of mitochondrial morphology
and the dynamic balance between their fission and fusion,
influence axonal transport (Beijer et al., 2019; Figure 2).
Indeed, CMT2A, the most prominent subtype of CMT, is
characterized by mutations of mitofusin 2 (MFN2), an outer
mitochondrial membrane GTPase that plays a critical role
in mitochondrial fusion (Verhoeven et al., 2006). MFN2 has
been shown to interact with the Miro/Milton adaptor complex
essential for mitochondrial mobilization along MTs. The mutant
form disrupts the function of the adaptor complex, thus

inducing mitochondrial clustering/aggregation along the axonal
length (Baloh et al., 2007; Misko et al., 2010). Interestingly,
both mutations in the Miro/Milton complex mediating its
interaction with MT and as well as NF-L mutants, indirectly
affect mitochondrial transport and localization (Ni et al.,
2015). In addition to fusion, dysregulation of mitochondrial
fission is also causative of CMT. Recessive mutations of
the ganglioside-induced differentiation-associated protein 1
(GDAP1), a mitochondrial factor whose activity is dependent
on the fission factors Fis1 and the dynamin-related protein1
(Drp1), determines a reduction in mitochondrial fission activity,
while the dominant ones negatively impact mitochondrial fusion
(Niemann et al., 2009).

Mitochondrial transport and function are also affected by
alteration of the endoplasmic reticulum (ER) and its contacts
with mitochondria, where Ca2+ exchange between the two
organelles occurs. Indeed, disruption of the ER network has
been shown to result in axonal degeneration (Yalçın et al.,
2017). Mitochondrial Ca2+ uptake is required for correct
intracellular signaling, homeostasis, and mitochondrial integrity
and transport, therefore mutations in Ca2+ channels also
lead to mitochondrial dysfunction (Kumar et al., 2018). The
integral ER membrane protein vesicle-associated membrane
protein-associated protein B (VAPB), which is associated to
ALS (Nishimura A. L. et al., 2004; Chen et al., 2010),
interacts with the outer mitochondrial membrane and its
mutation impacts mitochondrial Ca2+ uptake and induces the
formation of abnormal ER inclusions (De Vos et al., 2012).
Interestingly, the ER fusion protein atlastin 3 (ATL3) has been
identified in patients with hereditary sensory and autonomic
neuropathy (Guelly et al., 2011; Fischer et al., 2014; Kornak
et al., 2014). Defects in ATL3 result in an increased number
of ER-mitochondria contact sites augmented Ca2+ crosstalk
between the two organelles and decreased number and motility
of axonal mitochondria (Krols et al., 2019).

Mutations in tRNA synthetases, enzymes that attach amino
acids to their cognate tRNA molecules in the cytoplasm and
mitochondria, affect mitochondrial function and have been
associated with a number of human neurodegenerative diseases
(Antonellis and Green, 2008; Spaulding et al., 2016). Indeed,
Glycyl-tRNA synthetase (GARS) dominant mutations have
been described in inherited neuropathies such as CMT2D and
dHMN with upper limb predominance (dHMN-V; Xie et al.,
2007; Antonellis and Green, 2008). Interestingly, dominant
GARS mutations impair neuronal mitochondrial metabolism
and cause alterations of VAPB and mitochondrial calcium uptake
(Boczonadi et al., 2018). While the disease does not seem to
be caused by a loss of the canonical function of these enzymes
(Storkebaum et al., 2009; Stum et al., 2011; Ermanoska et al.,
2014), mutations of mostly the cytosolic form of tRNA synthetase
have been shown to result in toxic gain of function, which impair
the signaling output of different families of neurotrophic factor
receptors (Stum et al., 2011; He et al., 2015; Sleigh et al., 2017a,b).

mRNA Axonal Trafficking
We have previously discussed how the correct arrangement
of the cytoskeleton and the coordinated action of a cohort
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FIGURE 2 | Schematic representation highlighting the association between RNA granule transport, neurofilaments (NFs), mitochondria, and kinesin motors with
selected neuronal degenerative diseases. In the case of mitochondria defects, the mutated proteins underlying neurodegeneration are listed.

of molecular motors are essential for the establishment and
maintenance of axonal biology. As axons depend on the delivery
of proteins and organelles, fast and local availability of proteins to
sustain axonal high turnover rate can also be supported by local
translation. While mRNA transport and local protein translation
in dendrites have been well documented, the mechanisms of
axonal mRNA targeting and translation are still the subject of
intense investigation. Indeed, several pieces of evidence have
shown that axonally synthesized proteins support axon function,
survival, and growth (Sahoo et al., 2018b).

Early observations highlighting how, after detachment from
the cell bodies, growth cones were still able to respond to
guidance cues in a manner that was dependent on calcium
signaling and local protein synthesis, supported the existence of
axonal translation (Campbell and Holt, 2001; Ming et al., 2002).
The identity and concentration as well as the localization of the
cue determine the extent and the nature of the translational
response (Brittis et al., 2002; Leung et al., 2006; Manns et al.,
2012; Nédelec et al., 2012). Chemotrophic signals, for instance,
are known to elicit mRNA transport into axons and growth
cones. Indeed, Neurotrophin-3 (NT3) induces targeting and
translation of β-actin mRNA into growth cones, which correlates
with an increase in growth cone protrusions (Zhang et al., 2001).
NGF triggers β-actin mRNA transport into axons (Willis et al.,
2005). β-actin is also involved in calcium-mediated growth cone
guidance, which is affected by inhibition of β-actin local synthesis

or misslocalization of its mRNA (Yao et al., 2006; Welshhans and
Bassell, 2011).

RNA-binding proteins (RBP) recognize specific sequence
located mostly in the 5′ and 3′ UTR regions of mRNA (emerging
evidences implicate the coding region as well), and bind to
kinesins or dynein to be transported to axons or dendrites; while
the 5′UTR elements are often linked to translation regulation,
3′UTRs regions are essential for targeting to specific subcellular
compartments (Hüttelmaier et al., 2005; Chatterjee and Pal, 2009;
Merianda et al., 2013; Tushev et al., 2018). The aforementioned
β-actin mRNA, for instance, is localized to growth cones by
the RBP Zipcode-Binding Protein 1 (ZBP1; Yao et al., 2006).
mRNA, RBP and ribosomes are co-transported in large RNA
granules, which have been linked to stress granules, where
mRNA translation is actively repressed (Kanai et al., 2004; Sahoo
et al., 2018a; Pushpalatha and Besse, 2019). These granules
display anterograde and retrograde microtubule-based motor
movements (Gumy et al., 2014). In addition to KIF5, KIF1Bb
might also be involved in mRNA transport, although the
mechanism of interaction remains unclear (Lyons et al., 2009).

Axonal injuries are known to trigger local mRNA translation
of proteins that will initiate a regenerative transcriptional
program in the nucleus through a retrograde signaling cascade
originating from the site of injury (Hanz et al., 2003; Perlson et al.,
2005; Yudin et al., 2008; Rishal and Fainzilber, 2014; Terenzio
et al., 2018). Perturbation of this retrograde mechanisms can
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cause a delay in axonal regeneration and decrease neuronal
survival (Perry et al., 2012; Sahoo et al., 2018b; Terenzio et al.,
2018). Nerve injury also induces local translation of mTOR,
which in turn controls the axonal synthesis of several retrograde
injury signals; thus, disruption of mTOR activity decreases
neuronal survival after injury (Terenzio et al., 2018).

Axonal protein synthesis plays also important roles in
neurological diseases such as SMA (Spinal Muscular Atrophy),
ALS, or Alzheimer’s disease. Indeed, a growing list of mRNAs
and RNA binding proteins has been described to be axonally
mislocalized in neurodegenerative disease (reviewed in Khalil
et al., 2018; Figure 2). For example, loss of SMN significantly
alters axonal mRNA levels required for axonal growth and
synaptic transmission (Saal et al., 2014; Khalil et al., 2018).
Indeed, alterations in the local synthesis of key axonal survival
proteins implicated in neurodegenerative diseases have been
observed (Kar et al., 2018; Khalil et al., 2018). For instance,
expression of the ALS mutants of RNA-binding protein TDP-43
showed decreased mobility of axonal RNPs and reduced
axonal transport in motor neurons (Alami et al., 2014), and
ALS-causing TDP-43 mutations alter the axonal content of both
mRNAs and miRNAs in cultured spinal motor neurons (Rotem
et al., 2017). Treatment of hippocampal neurons with amyloid
peptide Aβ1–42 promotes axonal translation of Atf4 mRNA
and ATF4 retrograde transport leading to neuronal cell death
(Baleriola et al., 2014). A recent study showed mRNA translation
in axons in connection with late endosomes (Cioni et al.,
2019). Interestingly, Rab7a mutants, including those associated
with CMT2B, negatively impacted axonal protein synthesis,
impaired mitochondrial function, and axonal viability (Cioni
et al., 2019). This study highlights the high degree of cross-
interaction between different axonal organelles and how these
vesicles act as platforms for several signaling pathways as well
as different biological cellular functions that have not been
associated with intracellular trafficking until recently.

CONCLUSIONS AND PERSPECTIVES

The combined use of transgenic animal models, primary
neuronal cultures, neurons derived from human inducible
pluripotent stem cells, in addition to the recent technological
advances in proteomics, drug design, and super-resolution
microscopy has allowed the in-depth study of the underlying
molecular mechanisms behind neurodegenerative diseases
(Millecamps et al., 2006; De Vos and Hafezparast, 2017). Many
key questions, however, remain open, including the precise
molecular identity of the transported vesicles, whether or not
it is subjected to change along axons and whether there are
any region-specific differences in organelle trafficking within
the axonal compartment. Rapid advances in high resolution
live imaging in vitro and in vivo will provide a technological
platform to further our knowledge of these phenomena. For
example, the trafficking of membrane-less organelles such as
stress and/or RNA granules is critical for the maintenance of
neuronal homeostasis. The presence of mRNAs granules implies
that selected proteins can be locally translated in axons and
synapses. Identifying which mRNA can be transported, by

which trafficking pathways, and where translation takes place,
is, thus, paramount to our understanding of axonal biology.
Luckily, several novel proteomic approaches have been designed
to identify newly synthesized proteins (Forester et al., 2018;
Koppel and Fainzilber, 2018; Terenzio et al., 2018; Holt et al.,
2019), together with new imaging tools engineered to visualize
localized mRNA and protein translation (Morisaki et al., 2016;
Wu et al., 2016). These new technological developments will give
us valuable insights into the cooperation between intracellular
transport mechanisms and local protein synthesis in both
physiological and pathological conditions.

LPS of biomolecules has also recently emerged as a novel
fundamental mechanism underlying subcellular organization
and regulation (Chen et al., 2020). The formation of highly
condensed molecular assemblies, also known as membrane-less
organelles or bio-condensates, within aqueous solutions such
as the cytoplasm, plays critical roles in the maintenance
of neuronal functions and in neurodegeneration (Elbaum-
Garfinkle, 2019). The formation of various components of
mRNA and/or stress granules that are targeted to and transported
in axons have also been shown to be regulated by LPS. Indeed,
the Fragile X Mental Retardation Protein (FMRP) undergoes
phosphorylation-dependent phase separation with RNA in a
synaptic activity-dependent manner to generate membrane-less-
RNA-protein transport granules (Tsang et al., 2019). TDP43
low-complexity domain phase-separates to form cytoplasmic
stress granules (Babinchak et al., 2019) and the persistence
of phase-separated TDP43 independently of stress granules
can induce neuronal cell death (Gasset-Rosa et al., 2019).
TDP-43-containing axonal mRNA transport granules have also
been reported to display liquid-like properties (Gopal et al.,
2017). Additionally, synapsin-1 has been demonstrated to phase-
separate and promote synaptic vesicles clustering at the synapse
regulating the mobility of synaptic vesicles in axon terminals
(Milovanovic et al., 2018). Active zone protein RIM-1 has also
been shown to undergo a phase transition, which might represent
the basic mechanism underlying the organization of release sites
at the synapses (Wu et al., 2019). Lastly, LPS of disordered
proteins such as Tau in Alzheimer’s disease (Ambadipudi et al.,
2017; Wegmann et al., 2018), FUS/TDP43 in ALS (Murakami
et al., 2015; Patel et al., 2015; Conicella et al., 2016), huntingtin
protein in Huntington’s disease (Peskett et al., 2018) have been
recently reported to be critical for their pathological aggregation
and toxicity. Similar mechanisms might also be involved in
the aggregation of β-amyloid precursor proteins in Parkinson’s
disease (Boke et al., 2016; de Gap et al., 2019) and α-synuclein.

Although the contribution of LPS to long-range transport
in neurons remains an open question, perturbations in LPS
likely affect the formation of phase-separated transport granules
(reviewed in Nötzel et al., 2018). A recent study has reported
that the long-distance trafficking of mRNA granule/lysosome
complex depends on LPS of annexin 11 and that this mechanism
is critical for their axonal transport (Liao et al., 2019). Another
in vitro study also suggested that prolonged LPS of Tau can lead
to the formation and aggregation of pathogenic Tau, a form
of Tau known to affect axonal transport (Kanaan et al., 2020).
Though we have just started to decipher the molecular
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mechanisms leading to the formation of these bio-condensates,
their recruitment onto molecular motors and their targeting
to axons and synapses, the discussed pathological aggregation
of various neuronal proteins, point to a plausible correlation
between perturbations in protein LPS and neurodegeneration.
Thus, the integrative study of transport mechanisms, local
protein synthesis, and LPSs is critical to reconstructing a
comprehensive picture of the multiple cellular and molecular
pathways that cooperatively or sequentially take place to
efficiently regulate axonal functions.
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