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Abstract 42 

Background and purpose 43 

High-grade chondrosarcomas are chemo- and radio-resistant cartilage-forming tumors of bone 44 

that often relapse and metastase. Thus, new therapeutic strategies are urgently needed. 45 

Material and methods 46 

Chondrosarcoma cells (CH-2879) were exposed to carbon-ion irradiation, combined with miR-34 47 

mimic and/or rapamycin administration. The effects of treatment on cancer stem cells, stemness-48 

associated phenotype, radioresistance and tumor-initiating properties were evaluated. 49 

Results 50 

We show that high-grade chondrosarcoma cells contain a population of radioresistant cancer stem 51 

cells that can be targeted by a combination of carbon-ion therapy, miR-34 mimic administration and/or 52 

rapamycin treatment that triggers FOXO3 and miR-34 over-expression. mTOR inhibition by 53 

rapamycin triggered FOXO3 and miR-34, leading to KLF4 repression. 54 

Conclusion 55 

Our results show that particle therapy combined with molecular treatments effectively controls 56 

cancer stem cells and may overcome treatment resistance of high-grade chondrosarcoma. 57 

Keywords 58 

cancer stem cell, chondrosarcoma, particle therapy, mTOR inhibitor, miR-34 59 

  60 
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1. Introduction 61 

Despite striking improvements in the diagnosis and care of human cancer, treatment resistance 62 

remains to this day an issue in some hard-to-treat cancers. Chondrosarcomas (CSs) constitute the 63 

second most common primary bone tumor in adults [1]. Because these cartilaginous tumors exhibit 64 

resistance to chemotherapy and conventional radiation therapy, complete surgical resection still 65 

remains the primary treatment, with a 10-year survival rate comprised between 30% and 80% 66 

depending on the grade. A significant number of patients experience relapse, metastasis or present 67 

unresectable disease with poor clinical outcome and high lethality (grade III). For those reasons, the 68 

clinical management of CS is considered to be particularly challenging, and new therapeutic 69 

approaches are urgently needed. Some subtypes, such as mesenchymal CS, may be more responsive 70 

to chemotherapy, while surgery of dedifferentiated CS may be more successful when combined with 71 

chemotherapy [2]. Radiation therapy has been used in skull-base and spinal CS [3,4]. Recently 72 

published molecular therapy targets for CS have included IDH mutations, Hedgehog, Src and PI3K-73 

Akt-mTOR pathways, histone deacetylase inhibitors, angiogenesis or immunotherapy with immune 74 

checkpoint inhibition [5]. Some of those targets yielded promising results in preclinical studies, but 75 

early phase clinical results were less conclusive.  76 

Cancer stem cells (CSCs) are defined as the subset of dedifferentiated cells within a tumor that 77 

possess the ability to self-renew and reconstitute tumor heterogeneity[6]. CSCs are more resistant than 78 

their non-CSC counterparts and were suggested to be at least partially responsible for treatment 79 

resistance, relapse and metastasis[7]. Cancer treatments that do not effectively target CSCs might 80 

ultimately fail, thus it is of paramount importance to develop new treatment strategies that include 81 

CSCs. Transformed mesenchymal stem and progenitor cells with multipotent differentiation potential 82 

are likely to be cells of origin in CS [8]. CSCs have been characterized in osteosarcomas [9], but are 83 

not well defined in CS. 84 
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New high linear energy transfer (LET) radiation therapy modalities (such as heavy-ion particle 85 

beams) have emerged, which provide a number of physical and biological advantages over 86 

conventional X-ray therapy (including an improved relative biological effectiveness RBE and a lower 87 

oxygen enhancement ratio OER) and might finally contribute to overcoming treatment resistance [10]. 88 

High LET radiation treatment, in combination with other therapies (for example, the chemotherapeutic 89 

agent cisplatin or the PARP inhibitor talazoparib), has shown favourable results in bypassing tumor 90 

and CSC radioresistance [11–15]. Although we have recently shown that low- and high-LET low-dose 91 

exposures of CS cells can trigger bystander responses in non-irradiated neighbouring normal 92 

chondrocytes [16], the high RBE of carbon ions might allow lower normal tissue complication 93 

probability (NTCP) than protons, for the same local tumor control (TCP) [17], indicating that carbon 94 

ion therapy might be an appropriate CS treatment modality. In this study, we investigated the ability 95 

of high LET radiation combined with targeted treatments to target CS cells and CSCs. 96 

2. Material and methods 97 

Cell culture, treatment and sorting of cancer stem cells. CH-2879 chondrosarcoma cells [18] 98 

were authenticated by Short Tandem Repeat (STR) profiling. Cells were grown in RPMI1640 medium 99 

(Nacalai, Kyoto, Japan) supplemented with 10% fetal bovine serum (FBS) (Cosmo Bio, Tokyo, Japan) 100 

and antibiotic-antimycotic solution (Penicillin, Streptomycin, Amphotericin B. Gibco ThermoFisher, 101 

Carlsbad, CA, USA). Cultures were grown in 5% CO2 at 95% humidity. Cells were treated for 48h 102 

with rapamycin at a final concentration of 1 nM. Cells were transfected with miRCURY LNA miR-103 

34a Mimic (Qiagen, Hilden, Germany) using Lipofectamine RNAiMax reagent (Invitrogen), 104 

according to the manufacturer’s instructions, at a final concentration of 5 nM. Cells not transfected 105 

with the mimic were treated with lipofectamine alone. ALDH activity in the cells was measured by 106 

flow cytometry using the ALDEFLUOR kit (Stemcell technologies, Vancouver, BC, Canada) as 107 

previously [19]. Cells with low and high levels of ALDH enzymatic activity (respectively ALDH- and 108 

ALDH+ cells) were sorted using a FACSAria cell sorter (BD Biosciences, Franklin Lakes, NJ, USA). 109 
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As a negative control, cells were treated with diethylaminobenzaldehyde (DEAB), a specific ALDH 110 

inhibitor. 111 

Radiation exposure. X-ray irradiations were conducted using an M-150WE X-ray generator 112 

(Softex, Tokyo, Japan) at 140 kVp, 8 mA, 80V. Irradiation dose-rate was 1.3 Gy/min. Particle therapy 113 

experiments were performed at the Heavy Ion Medical Accelerator in Chiba (HIMAC). Cells were 114 

irradiated with a 290 MeV/n carbon-ion beam at the center of a 6 cm Spread-Out Bragg Peak (SOBP) 115 

as previously [11].  116 

Sphere formation assay. Cells were seeded in triplicate in ultra-low attachment plates (Corning, 117 

Corning, NY, USA) with serum-free culture medium at defined densities and grown for 10 days. 118 

Spheres larger than 60 µm in size were counted. 119 

Colony Forming Efficiency (CFE) assay. After irradiation, cells were seeded at defined densities 120 

and incubated for 10–14 days then stained. Colonies with more than 50 cells were scored and surviving 121 

fractions were determined after correcting for the plating efficiency as previously described [20]. 122 

Survival curve data were fitted to the linear (carbon-ion) or linear-quadratic model (X-rays) and are 123 

presented as the mean of at least three independent experiments.  124 

Invasion scratch assay. Cells were seeded in triplicate in 24-well plates. 16 hours before assays, 125 

culture medium was replaced with serum-free medium, then a wound was introduced into the confluent 126 

monolayer with a pipette tip. Percentage of wound closure 24 hours later was measured with ImageJ 127 

software. 128 

Oxidative stress quantification. Intracellular levels of reactive oxygen species (ROS) were 129 

measured using 5-(and-6)-chloromethyl-29,79-dichloro- dihydrofluorescein diacetate, acetyl ester 130 

(CM-H2DCFDA, Molecular Probes, Eugene, OR, USA). Cells were plated in 6-well plates, then 24 131 

hours later 10 mM CM-H2DCFDA was added and cells were incubated for 40 minutes. Fluorescence 132 



 6 

intensities were measured using a SpectraMax M5 microplate reader (Molecular Devices, Sunnyvale, 133 

CA, USA) (excitation at 493 nm, emission at 520 nm). Unstained cells were used as negative control. 134 

Results are presented as the mean of three independent experiments. 135 

Real-time PCR gene expression profiling. RNA was extracted using TRIzol reagent and 136 

PureLink RNA Mini Kit (ThermoFisher). cDNA was synthesized using the PrimeScript RT kit (Takara 137 

Bio, Kusatsu, Japan) for mRNAs or the Mir-X First-Strand Synthesis Kit (Takara Bio) for microRNAs. 138 

Then quantitative real-time polymerase chain reaction (qRT-PCR) was run in triplicate in 384-well 139 

plates, using SYBR Premix Ex Taq II (for mRNAs, Takara Bio) or TB Green Advantage qPCR Premix 140 

(for microRNAs, Takara Bio), on a ViiA 7 real-time PCR system (ThermoFisher). Relative mRNA 141 

levels were calculated using the ΔΔCt method and normalized to GAPDH (for mRNAs) or U6 (for 142 

microRNAs).   143 

Western blotting. CH-8279 cells were lysed with radioimmunoprecipitation assay (RIPA) buffer 144 

(Santa Cruz Biotechnology, Dallas, TX, USA). Protein concentrations were determined using the 145 

Protein Assay CBB solution (Nacalai) using bovine serum albumin (BSA) as a standard. Protein 146 

expression levels were measured using a Wes Simple Western instrument (ProteinSimple, San Jose, 147 

CA, USA), with KLF4 (Cell Signaling Technologies, Danvers, MA, USA,  #4038S) and GAPDH (Cell 148 

Signaling #2118L) antibodies, according to the manufacturer’s instructions [21]. Raw 149 

electropherograms were used to generate blot-like images. 150 

Reporter assays. CH-2879 cells were transfected using Lipofectamine 3000 reagent with pGL3-151 

FOXO3-Luciferase reporter, pRL-TK control reporter and/or pCMV-FOXO3 expression vector. 152 

Firefly and Renilla luciferase activities were measured using the Dual Luciferase Assay System 153 

(Promega, Madison, WI, USA). Normalized luciferase activities were obtained as previously.   154 
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Mouse experiments. 4-week old BALB/c nu/nu male mice (Japan SLC, Hamamatsu, Japan) were 155 

distributed 3 animals to a cage and maintained on a 12-hr light/12-hr dark cycle in a temperature-156 

controlled (22°C) barrier facility with free access to water and a normal diet (CLEA Japan, Tokyo, 157 

Japan). Mice were allowed to acclimatize for 5 days before the experiment. Variable numbers of 158 

ALDH- and ALDH+ chondrosarcoma cells mixed 1:1 with Matrigel Growth Factor Reduced (Corning, 159 

Corning, NY, USA) were injected subcutaneously into mouse flank on both sides under isoflurane 160 

anesthesia. 4 to 9 mice were used per experimental group (for a total of 31 mice). Five days later, 161 

miRCURY LNA miR-34 Mimic (Qiagen) was injected on one side with MaxSuppressor in vivo 162 

RNALancer II delivery system (Bioo Scientific, Austin, TX, SA), according to manufacturer 163 

instructions; 25 µL of mimic/phospholipid-oil emulsion diluted in PBS were injected (1 nmol total 164 

miRNA mimic). On the other side, phospholipid-oil emulsion without mimic was injected. Tumor 165 

volumes were measured using calipers [22]. After experiments, mice were euthanized by carbon 166 

dioxide inhalation. Mouse experiment protocols were approved by the Animal Care and Use 167 

Committee at Okinawa Institute of Science and Technology Graduate University. 168 

Statistical analysis. Clonogenic survival curve data were fitted to the linear-quadratic model (for 169 

X-ray irradiations) or linear model (for carbon-ion irradiation), using the CS-Cal software 170 

(www.oncoexpress.de), as previously [23]. Statistical significance of the difference between dose-171 

response curves was performed using one-sided 2-class t-test, Welsh and Sattlewaith approximation 172 

for each dose, with SigmaPlot software (systatsoftware.com/products/sigmaplot/) (* P<0.05). Other 173 

significant differences were assessed using Student’s t-test (* P<0.05). Errors bars represent standard 174 

deviation. 175 

3. Results 176 

Subpopulations of cancer stem cells (CSCs) have been identified in sarcomas [24]. Among a panel 177 

of four chondrosarcoma cell lines (CH-2879, OUMS27, L835, SW-1353) (Table A1), CH-2879 cells 178 

http://www.oncoexpress.de/
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and, to a lesser extent, OUMS27 cells, could grow as spheres, indicating that they may contain CSCs 179 

[25,26]. The CH-2879 cell line was established from a recurrent Grade III chondrosarcoma of the chest 180 

wall [18], with tumorigenic and invasive abilities. Because CSCs have been associated with 181 

tumorigenicity and metastasis, CH-2879 may be a good model to study treatment responses of grade 182 

III chondrosarcomas. 183 

We and others have previously shown that aldehyde dehydrogenase (ALDH) activity is a useful 184 

marker for CSC-like populations in various cancer models [19]. Here, CH-2879 cells contained an 185 

ALDH+ subpopulation (around 1%) that exhibited increased sphere formation and invasion abilities 186 

associated with a low level of reactive oxygen species (ROS) (Figure 1abcd). Exposure of CH-2879 187 

cells to carbon-ion beam resulted in significant cell death and the induction of stress response pathways 188 

(Figure A1). We then compared clonogenic survival of ALDH- and ALDH+ cells after exposure to X-189 

rays and carbon-ion beam (Figure 1e). As expected, particle therapy had a higher relative biological 190 

efficiency (RBE) and ALDH+ cells were markedly more radioresistant to X-rays and carbon-ion beam 191 

(Table 1). However, relative biological efficiencies (RBEs) for ALDH- and ALDH+ cells were similar, 192 

suggesting that particle therapy alone was not sufficient to target CSCs in CS.  193 

miR-34 is a tumor-suppressive micro-RNA associated with the regulation of stem-like cells in 194 

prostate cancer, pancreatic cancer or glioblastoma [28–30]. Administration of a synthetic miR-34 195 

mimic decreased sphere formation and invasion capabilities of CH-2879 ALDH+ cells (Figure 1bc), 196 

and increased ROS levels (Figure 1d), indicating that the maintenance of chondrosarcoma stem-like 197 

phenotype may rely also on miR-34 repression. Indeed, miR-34 expression levels were lower in 198 

ALDH+ cells than in ALDH- cells (Figure 2a) 199 

The effect of miR-34 mimic did not rely on the selective elimination of CSCs via apoptosis (Figure 200 

A2), but rather on the disturbance of the dynamic equilibrium between CSCs and non-CSCs. 201 

Expression of miR-34 target genes [31] NOTCH1, C-MYC, LMTK3 and KLF4 were repressed in 202 
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response to miR-34 mimic treatment (Figure 2b), resulting in lower proportion of ALDH+ cells (Figure 203 

1a). KLF4 protein expression was detected in ALDH+ cells, but not in ALDH- cells or ALDH+ cells 204 

treated with miR-34 mimic (Figures 2c, A3). As observed in breast cancer [19], KLF4 seems to play 205 

a role in CSC maintenance in CS, since treatment with KLF4 siRNA partially recapitulated the effects 206 

of miR-34 mimic (Figure 2d). 207 

CH-2978 cells were able to generate tumor xenografts in nude mice (Figure 2e). Tumors were 208 

observed when as few as 10,000 ALDH+ cells were injected (with 100% of the mice developing 209 

tumors), whereas ALDH- cells had very low tumor initiation potential. Administration of miR-34 210 

mimic together with tumor cells resulted in a significant decrease in tumor formation, with less than 211 

half of mice developing tumors after injection of 100,000 ALDH+ cells (Table 2). However, when 212 

miR-34 mimic was delivered one month after xenograft, it couldn’t shrink tumors and could only slow 213 

down tumor growth (Figure 2f). This suggested that miR-34 treatment alone may not be sufficient in 214 

established tumors (or that mimic delivery efficiency needs to be improved) and that combination 215 

therapies might be necessary.  216 

The PI3K-Akt-mTOR pathway has recently emerged as a promising target for intervention in 217 

chondrosarcoma [32–35]. Compelling evidence also indicates an important role of mTOR pathway in 218 

CSC maintenance. Rapamycin, an mTORC1 inhibitor, inhibited the proliferation of CH-2879 cells 219 

(Figure A4). Although rapamycin had a slight radio-sensitizing effect (Figure A5), it decreased the 220 

proportion of ALDH+ CSCs (Figure 1a). Interestingly, rapamycin administration led to slightly 221 

increased levels of miR-34 (Figure 3a) and lower miR-34 target gene levels (NOTCH1, C-MYC, 222 

LMTK3, KLF4 and Rictor), with a significant repression of KLF4 expression (Figure 3b). 223 

Forkhead box O (FOXO) transcription factors are crucial regulators of cell signaling, and 224 

coordinate Akt and mTOR activities [36]. Over-expression of FOXO3 enhanced FOXO3 promoter 225 

activity (Figure 3c) and was associated with ALDH+ cells losing sphere forming abilities (Figure 3d). 226 
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Finally, FOXO3 over-expression resulted in higher miR-34 expression levels (Figure 3e) and lower 227 

levels of miR-34 target genes, including KLF4 transcript (Figure 3f) and protein (Figure 2c). The effect 228 

of Rapamycin on CSCs was counteracted when using an siRNA for FOXO3 (Figures 1 and 3d). 229 

Altogether, these results suggest that rapamycin effects in chondrosarcoma rely on FOXO3 activity.   230 

Combined action of rapamycin and miR-34 mimic led to sustained inhibition of sphere-forming 231 

abilities of CH-2879 cells, compared to individual treatments (Figure 4a). Using combined treatment, 232 

it was possible to effectively control CSC subpopulations after exposure to carbon-ion doses as low as 233 

1 Gy, as the resulting cell populations contained at least 10 times less CSCs than non-treated population 234 

(Figure 4b). Such control was not observed when cells were exposed with a roughly equivalent X-ray 235 

dose of 2 Gy, based on an RBE of ~1.9 (Table 1). By altering CSC-like phenotype, rapamycin and 236 

miR-34 mimic treatments (alone or combined) prompted the radio-sensitization of ALDH+ cells. 237 

Although the overall effect of those treatments on the global radio-sensitivity is limited (Figure A5), 238 

the near-complete elimination of CSC-like phenotype after combination treatments may effectively 239 

address CSC-associated treatment resistance.  240 

4. Discussion 241 

Surgical resection constitutes the cornerstone of treatment for chondrosarcoma (CS), as 242 

chemotherapy is most often ineffective. Histologic grade is considered to be the most important 243 

indicator of prognosis, and the outcome for grade III CS with surgical resection alone is usually 244 

relatively poor [37]. CH-2879, a cell line isolated from recurrent grade III CS, was selected as a suitable 245 

model for the development of new therapeutic strategies in hard-to-treat CSs. 246 

Cancer stem cells (CSCs) have long been presented as an important culprit for treatment resistance 247 

[38]. Indeed, different tumors harbor various CSC contents, and the proportion of CSCs may be 248 

correlated with radio-resistance [39]. Stem-like properties of CSCs confer them a survival advantage 249 

during cancer therapy. Those include higher reactive-oxygen species (ROS) scavenging abilities 250 
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(resulting in lower radiation-induced ROS) and improved DNA damage repair activation [40]. It is 251 

therefore of outmost importance to properly identify and target the stem-like population when 252 

establishing new treatment regimen. In CS, a subpopulation of CD133+ cells have been identified that 253 

display stem-like characteristics and were capable of inducing and sustain tumor growth in vivo [24]. 254 

Significant evidence indicates that enhanced aldehyde dehydrogenase (ALDH) activity is a hallmark 255 

of CSCs and is directly involved in CSC-associated resistance [41]. ALDH+ breast cancer cells exhibit 256 

increased DNA repair abilities and higher survival in response to radiation exposure, associated with 257 

the stimulation of Nanog, BM1, Notch1 and Akt [42]. For these reasons, identification of ALDH+ 258 

cells is generally considered to be a reliable marker for stem-like subpopulations [43]. Moreover, the 259 

identification of ALDH as a key player in resistance to radiation therapy and tumor recurrence suggest 260 

that ALDH may be considered as a potential therapeutic target [44]. Here, sorted ALDH+ CH-2879 261 

cells exhibited a number of CSC distinctive features, such as lower ROS levels, increased self-262 

renewing abilities (as indicated by sphere formation assay), enhanced invasiveness, radioresistance 263 

and in vivo tumorigenicity. This suggested that in addition to CD133, ALDH expression should also 264 

be an appropriate marker for the identification of stem-like radioresistant subpopulations in CS. 265 

The relative biological efficiency (RBE) of the spread-out Bragg peak (SOBP) carbon-ion beam 266 

at the Heavy Ion Medical Accelerator in Chiba (HIMAC), relative to conventional X-rays, was within 267 

the previously observed range (1.5-2.5) in other experimental models [11–13]. It was lower than the 268 

RBE of the monoenergetic carbon-ion beam at the Grand Accélérateur National d'Ions Lourds 269 

(GANIL) [16]. Although ALDH+ cells were more radioresistant than ALDH- cells, their respective 270 

RBEs (whether at D10 or at D37) were not significantly different. While carbon-ion beam alone may 271 

be more efficient against CSCs in some models [45,46], these results demonstrated that the treatment 272 

of CS should not rely solely on particle therapy and therefore combination treatments may be needed. 273 
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The relationship between CSCs and non-stem cancer cells (NSCCs) has been a matter of 274 

enormous attention. CSCs and NSCCs coexist in a highly dynamic, bidirectional equilibrium state, 275 

whose maintenance is under the control of a not fully understood molecular crosstalk between CSCs, 276 

NSCCs and the tumor microenvironment [47]. microRNAs closely regulate pluripotency and 277 

differentiation mechanisms, and a number of CSC-associated microRNA regulations have been 278 

described [48]. miR-34 is a well-known tumor-suppressor transcriptionally activated by p53, which 279 

has been associated with cancer stem cell homeostasis in several experimental models [29,30,49]. mir-280 

34 expression is downregulated in chondrosarcoma cell lines, compared to primary non-tumorous 281 

articular chondrocytes [50]. Here, we show that in CH-2879 CS cell line, administration of a miR-34 282 

mimic was capable of decreasing stem-like radioresistant subpopulations.  283 

Hundreds of direct miR-34 targets have been identified, with an over-representation of mRNAs 284 

involved in cell cycle control, DNA damage response and apoptosis [51]. Notch homolog 1 (NOTCH1), 285 

C-MYC, Lemur Tyrosine Kinase 3 (LMTK3) and Krüppel-like factor 4 (KLF4) have all been 286 

identified as having a role in maintenance of self-renewal, chemoresistance, invasion and/or stem-like 287 

properties in cancer [52–55]. KLF4, one of the so-called Yamanaka pluripotency factors, was 288 

described either as a tumor-suppressor or as an oncogene, depending on the cancer type [56]. In 289 

osteosarcoma, KLF4 enhances proliferation and metastasis via alpha-crystallin B chain (CRYAB) [57]. 290 

In breast cancer, expression of KLF4 is determinant for the maintenance of CSCs [19,58] and KLF4 291 

seems to play a similar role in CS. Because KLF4 siRNA only partially recapitulated the effect of miR-292 

34 on CSC-like phenotype, we can hypothesize that while KLF4 is a probably a major effector of miR-293 

34 in CSCs, other pathways regulated by miR-34 are expected to be involved. As a matter of fact, miR-294 

34 is able to suppress stem-like characteristics in breast cancer by downregulating Notch pathway [59]. 295 

Furthermore, ALDH mRNA levels are reduced in tumor tissues of miR-34-treated mice [60]. Because 296 

ALDHs are involved in ROS scavenging [41,61], miR-34 effects might rely on ROS accumulation, 297 

leading to increased radiosensitivity. Although miR-34 expression levels may not be directly correlated 298 
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with survival in TCGA data of sarcoma patients, low expression of several miR-34 target genes (C-299 

MYC, Cyclin-dependent kinase 4 – CDK4, Cyclin-dependent kinase 6 – CDK6, E2F Transcription 300 

Factor 3 – E2F3) is associated with better sarcoma survival (Table A3, Figure A6). miR-34 therapy 301 

may be effective mainly as a combination with other treatment modalities. 302 

Mammalian target of rapamycin (mTOR) is a Ser/Thr kinase that is regulated in an extensive list 303 

of functions, including proliferation, survival, cytoskeleton organization or metabolism. mTOR is the 304 

catalytic subunit of two functionally distinct protein complexes: mTOR complex 1 (mTORC1) and 305 

mTORC2.  The aberrant activation of mTOR activity is observed in multiple cancer types, resulting 306 

from phosphoinositide 3-kinase (PI3K) amplification/mutation, phosphatase and tensin homolog 307 

(PTEN) loss of function, or from the overexpression of Akt, Ribosomal protein S6 kinase beta-1 308 

(S6K1), eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1) or eIF4E. For this 309 

reason, mTOR pathway inhibition is regarded as an important target for the development of new cancer 310 

therapies. Phosphorylation of S6K1 was detected in 69% of conventional CS and 44% of 311 

dedifferentiated CS [32], suggesting that mTOR inhibition may be a good strategy for CS therapy. 312 

Surprisingly, inhibition of mTORC1 by rapamycin lowered the proportion of CSCs. The role of 313 

S6K1 and eIF4eBP1 in mTORC1-mediated regulation of translation is well known. Moreover, 314 

forkhead box O (FOXO) transcription factors are crucial regulators of cellular homeostasis and are 315 

known tumor suppressors in human cancers [62]. The complex interplay between FOXO, mTOR and 316 

Akt has been described [36]. FOXOs decrease ROS levels and inhibit mTORC1 via Sestrin3 [63]. On 317 

the other hand, it was also reported that the mTOR pathway is capable of regulating FOXO3 activity 318 

by downregulating glucocorticoid-inducible kinase 1 (SGK1), which is responsible for FOXO3 319 

phosphorylation. The inactivation of mTORC1 induced by p18 depletion led to FOXO3 320 

hypophosphorylation at Ser314 [64].  Here, we show that inhibition of mTORC1 led to increased 321 

FOXO3 promoter activity and that it directly led to the reversal of CSC-like phenotype. FOXO3 is a 322 
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transcriptional regulator of miR-34 [65,66] and its activation led to the inhibition of miR-34 targets 323 

like KLF4.  324 

Therefore, inactivation of mTORC1 by rapamycin has direct effects on miR-34-associated 325 

pathways. Rapamycin treatment together with miR-34 mimic administration had a sustain inhibitory 326 

effect on CSC-like phenotype. However, the fact that the combination of miR-34 mimic and rapamycin 327 

administration is more potent than rapamycin alone suggests that alternative molecular mechanisms 328 

are also likely to be involved. In non-treated cells, only higher irradiation doses led to significant 329 

effects (such as the induction of cell death pathways). However, high dose exposures can lead to a 330 

relative CSC enrichment [67,68]. By delivering a combination treatment, it was then possible to further 331 

decrease irradiation doses while efficiently suppressing CSC-like attributes.  332 

Altogether, these results suggest that mTOR inhibition by rapamycin supplemented with miR-34 333 

mimic treatment may be able to overcome CSC-associated radioresistance in chondrosarcoma during 334 

carbon-ion therapy. Combination treatments might also improve the effectiveness of carbon-ion 335 

therapies at lower doses, decrease risks of relapse and metastasis, and better preserve surrounding 336 

normal tissues against non-targeted effects.   337 
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Figure legends 532 

Figure 1. CH-2879 chondrosarcoma cells contain a radioresistant cancer stem cell subpopulation 533 

suppressed by miR-34. a Sorting of ALDH+ cancer stem cells. DEAB-treated cells served as negative 534 

control. The proportion of ALDH+ cells was measured after carbon-ion irradiation and/or treatment 535 

with miR-34 mimic (34m), rapamycin (rap) or rapamycin + FOXO3 siRNA (rap+Fsi). b,c,d Invasion 536 

scratch assay (b), sphere-formation assay (c) and reactive oxygen species (ROS) level measurements 537 

(d) were performed in ALDH- and ALDH+ cells after treatment with miR-34 mimic (34m). e Dose-538 

response curves for clonogenic survival of CH-2879 chondrosarcoma cells. ALDH- and ALDH+ cells 539 

were exposed to X-rays or carbon-ion beam (the differences of clonogenic survival between ALDH- 540 

and ALDH+ cells were significant for every dose after X-ray irradiation and after 2-5 Gy carbon-ion). 541 

Results are expressed as the mean ± SD of three or more independent experiments.  542 

Figure 2. miR34 exerts its effects via KLF4 and protects against tumor formation. a,b Expression 543 

of miR-34 (a) and miR-34 target genes (b) in ALDH+ cells, relative to ALDH- cells. c KLF4 protein 544 

expression levels in ALDH- and ALDH+ cells after treatment with miR-34 mimic (34m) or 545 

transfection with FOXO3 expression vector (fox). d Sphere formation assay in ALDH+ cells after 546 

treatment with KLF4 siRNA. Results are expressed as the mean ± SD of three or more independent 547 

experiments. e,f Growth of chondrosarcoma subcutenous xenografts (e) was measured by external 548 

caliper in nude mice, after injection of ALDH- or ALDH+ cells and/or miR-34 administration (f). 549 

Results are expressed as the mean ± SD for five or more animals. 550 

Figure 3. mTOR inhibition by Rapamycin targets chondrosarcoma stem cells via FOXO3 and 551 

miR-34. a,b Expression of miR-34 (a) and miR-34 target genes (b) after rapamycin treatment, relative 552 

to non-treated cells. c FOXO3 promoter activity after transfection with FOXO expression vector or 553 

rapamycin treatment. d Sphere formation assay in ALDH+ cells after treatment with FOXO expression 554 

vector (FOXO3), rapamycin (rap) or rapamycin + FOXO3 siRNA (Fsi). e,f Expression of miR-34 (e) 555 
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and miR-34 target genes (f) in cells transfected with FOXO expression vector, relative to cells treated 556 

with control vector. Results are expressed as the mean ± SD of three or more independent experiments. 557 

Figure 4. a Sphere formation assay after treatment with miR-34 mimic and/or rapamycin, when 558 

cells where plated at various times following treatment. b Proportion of remaining ALDH+ CSCs after 559 

exposure to 1 Gy carbon-ion, equivalent dose 2 Gy X-rays in cells treated with rapamycin alone or in 560 

combination with miR-34 mimic, relative to the proportion of ALDH+ cells in non-irradiated, 561 

untreated cells. Results are expressed as the mean ± SD of three or more independent experiments. 562 

Annex A. Supplementary data 563 

Supplementary data available. 564 

Table A1. Chondrosarcoma cell lines. 565 

Table A2. Primers for quantitative real-time PCR. 566 

Table A3. TCGA survival Cox regression results for miR-34 and for 18 miR-34 target genes in 567 

sarcoma patients. 568 

Figure A1. Transcriptional response of CH-2879 cells to carbon-ion irradiation (a) Number of 569 

deregulated genes 24h after exposure to various irradiation doses (b) Multi-dimensional scaling (MDS) 570 

plot showing sample relations. (c) Top Regulator Effect Networks in Ingenuity Pathway Analysis 571 

(IPA). p53-associated networks are highlighted in pink. 572 

Figure A2. Apoptosis of CH-2879 cells after miR-34 mimic administration. 573 

Figure A3. Electropherograms for KLF4 and GAPDH expression. 574 

Figure A4. CH-2879 cell proliferation after rapamycin treatment. 575 
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Figure A5. Dose-response curves for clonogenic survival of CH-2879 cells after rapamycin 576 

treatment and carbon-ion irradiation. 577 

Figure A6. Kaplan-Meier survival curves of sarcoma patients with high (top third) or low (bottom 578 

third) expression. 579 

 580 



  D10 D37 SF2 RBE(D10) RBE(D37) 

X-rays ALDH- 2.97 1.29 0.21   

 ALDH+ 3.64 1.62 0.29   

Carbon-ion ALDH- 1.57 0.68 0.05 1.89 1.90 
ALDH+ 1.96 0.84 0.09 1.86 1.93 

 
Table 1: Clonogenic survival characteristics of CH-2879 cells exposed to X-rays or 
Carbon-ion beam. 



 
Injection Control miR-34 mimic 

1,000 ALDH- 0/4 (0 %) 0/4 (0 %) 

1,000 ALDH+ 0/4 (0 %) 0/4 (0 %) 

10,000 ALDH- 0/4 (0 %) 0/4 (0 %) 

10,000 ALDH+ 5/5 (100 %) 1/5 (20 %) 

100,000 ALDH- 1/5 (20%) 0/5 (0 %) 

100,000 ALDH+ 9/9 (100%) 4/9 (45 %) 

 
Table 2. Induction of xenograft tumors in nude mice after administration of increasing 
numbers of CH-2879 cells and miR-34 mimic. 
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Name Diagnosis Grade Reference 
CH-2879 Chondrosarcoma III 1 
OUMS27 Chondrosarcoma III 2 
L835 Chondrosarcoma III 3 
SW-1353 Chondrosarcoma II 4 

 
 
Table A1: Chondrosarcoma cell lines. 
  



 3 

 
 
Gene Forward Reverse 
NOTCH1 CTGAAGAACGGGGCTAACAA AGTGGTCCAGCAGCACCTT 
C-MYC CCACACATCAGCACAACTACGC CGGTTGTTGCTGATCTGTCTCA 
LMTK3 TCGGCTTCAAGGAATTTGAGA GGGTGGTCATGTCTGAGTGTGA 
KLF4 GCCCCTCGGGCGGCTTCGTGGCCGAGCTC CGTACTCGCTGCCAGGGGCG 
RICTOR CCGTGTCGGAGGTTCATACA GCCTCTGCTTCTTCATGCATT 
GAPDH GAAGGTGAAGGTCGGAGTCA TTGATGGCAACAATATCCACTT 

 
 
Table A2: Primers for quantitative real-time PCR. 
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a 

 

b 

 
c 

 
 

 
 
Figure A1: Transcriptional response of CH-2879 cells to carbon-ion irradiation (a) 
Number of deregulated genes 24h after exposure to various irradiation doses (b) 
Multi-dimensional scaling (MDS) plot showing sample relations. (c) Top Regulator 
Effect Networks in Ingenuity Pathway Analysis (IPA). p53-associated networks are 
highlighted in pink.  
 

Using RNA-Seq, we measured gene regulations in CH-2879 cells one day after carbon-

ion exposure. A number of genes were up- or down-regulated (Figure A1a), and multi-

dimensional scaling (MDS) analysis supported the partition of irradiation doses into two 

groups (“low doses” and “high doses”). The investigation of individual gene deregulations as 

well as the determination of regulator effect networks suggested that only high doses (in 

particular the highest dose of 5 Gy) predominantly activated stress response pathways and 

cell death-associated mechanisms.  
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Figure A2: Apoptosis of CH-2879 cells after miR-34 mimic administration. 
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Figure A3: Electropherograms for KLF4 and GAPDH expression after in ALDH- and 
ALDH+ cells after treatment with miR-34 mimic (34m) or transfection with FOXO3 
expression vector (fox). 
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Figure A4: CH-2879 cell proliferation after rapamycin treatment. 
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Figure A5: Dose-response curves for clonogenic survival of CH-2879 cells after 
rapamycin treatment and carbon-ion irradiation. 
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Transcript Cox 
Coefficient 

P-Value FDR 
Corrected 

Rank 

hsa-MIR-34A-5P 0.069 0.51 0.622 373 
NOTCH1 -0.117 0.27 0.565 7716 
C-MYC 0.265 0.012 0.113 1703 
LMTK3 0.027 0.8 0.915 14126 
KLF4 -0.103 0.31 0.605 8240 
RICTOR -0.114 0.29 0.586 8008 
BCL2 0.097 0.37 0.654 9054 
CCND1 -0.04 0.69 0.863 12876 
CCNE2 0.121 0.24 0.532 7204 
CDK4 0.213 0.033 0.191 2764 
CDK6 0.144 0.18 0.460 6195 
E2F3 0.395 1.80 x 10-4 0.0146 197 
HDAC1 0.237 0.034 0.193 2825 
JAG1 -0.152 0.11 0.352 4947 
MDM4 0.004 0.97 0.987 15907 
MET 0.101 0.35 0.639 8819 
NOTCH2 -0.02 0.86 0.944 14748 
SIRT1 0.083 0.43 0.701 9934 
WNT1 -0.053 0.62 0.826 12179 

 
Table A3: TCGA survival Cox regression results for miR-34 and for 18 miR-34 target 
genes in sarcoma patients. 
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Transcript Logrank 
p-Value 

 

hsa-MIR-34A-5P 0.742 

 
NOTCH1 0.0373 

 
C-MYC 0.0078 

 
LMTK3 0.341 

 
KLF4 0.416 

 
RICTOR 0.454 

 
BCL2 0.721 

 
CCND1 0.627 

 
CCNE2 0.0558 

 
CDK4 0.00961 

 
CDK6 0.0115 
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E2F3 3.79e-05 

 
HDAC1 0.147 

 
JAG1 0.379 

 
MDM4 0.384 

 
C-MET 0.16 

 
NOTCH2 0.277 

 
SIRT1 0.272 

 
WNT1 0.994 

 
 
Figure A6: Kaplan-Meier survival curves of sarcoma patients with high (top third) or 
low (bottom third) expression.  
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Supplementary material and methods 

RNA-Seq. RNA was extracted using Trizol and a column-based PureLink RNA Mini Kit 

(Invitrogen, Carlsbad, CA, USA). RNA-sequence libraries were prepared with the TruSeq 

Stranded mRNA NeoPrep kit (Illumina, San Diego, CA, USA). Sequencing was performed on 

a HiSeq 4000 machine (Illumina) to generate 150 nucleotide paired-end reads at a depth of at 

least 40 million reads. After quality control with FastQC, reads were mapped to the hg19 

reference human genome using tophat2 software (v2.1.1), assembled and quantified using the 

cufflinks software suite (v2.2.1)5. Differentially expressed genes were counted and analyzed 

with Ingenuity Pathway Analysis (Qiagen, Hilden, Germany)6. Mapped reads were also sorted 

with samtools (v1.3.1), read counts were then quantified with HTSeq-count (v0.9.1) and 

analyzed with the edgeR package (v3.22.5, using Bioconductor v3.7 on R v3.5.0) for multi-

dimensional scaling (MDS)7. The sequencing data have been deposited in the Gene Expression 

Omnibus (GEO) database (Accession Number GSE135371). 

Apoptosis. Cells were washed with PBS, then stained with Annexin V-FITC and PI at 

room temperature in the dark using Annexin V-FITC Apoptosis Detection Kit (Nacalai, Kyoto, 

Japan). The stained cells were analyzed with a FACSAria flow cytometer (Becton Dickinson, 

San Jose, CA, USA). Apoptosis was shown as the percentage of apoptotic cells to the total 

number of counted cells. 

TCGA analysis. Data from 259 sarcoma patients downloaded from the Cancer Genome 

Atlas (TCGA) were used to correlate gene expression and survival, using OncoLnc tool 

(http://www.oncolnc.org/). For each gene, Cox regression analysis was performed then 

sarcoma patients were divided in high (top third) or low (bottom third) expression groups and 

survival of the two groups was compared using Kaplan-Meier plots and log rank analysis8. 
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